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ABSTRACT

Wellbore stability problems increase with the exploration and development of oil and gas reservoirs. A new 3D non-linear failure 
criterion is proposed as a trigonometric function considering the intermediate principal stress (σ2) on the triaxial compression 
test data. Mohr-Coulomb and Hoek-Brown are well-known failure criteria, but they do not consider the influence of (σ2) on 
rock strength. This new criterion produces a concave surface on the principal stress space (σ1,σ2,σ3) with the influence of inter-
mediate principal stress. In this study, sensitivity analysis for the variable is also done to understand the significant influence of 
parameters on the accuracy of the proposed criterion. Further validation of this non-linear criterion on three principal stresses 
(σ1,σ2,σ3) was done compared with linear regression and second-degree polynomial regression results. It has been observed that 
the new non-linear 3D criterion with five material parameters reveals a good fit compared to linear regression and second-de-
gree polynomial regression, which have four and six material parameters, respectively. The new non-linear criterion was further 
validated by comparison with existing criteria like the Priest, Drucker-Prager, and Mogi-Coulomb. It has been observed that the 
new 3D non-linear criterion shows a more accurate result than these existing criteria as certain rock types exhibit coefficient of 
determination (DC) values near one, precisely 0.95 for inada granite, 0.94 for orikabe monzonite, and 0.91 for KTB amphibolite. 
In contrast, other rock types have DC values ranging from 0.7 to 0.9. The new 3D non-linear criterion also yields lower root 
means square error (RMSE) values than the Mogi-Coulomb criterion for seven rock types. Specifically, the RMSE values by the 
new criterion are as follows: KTB amphibolite - 40.03 MPa, Dunham dolomite - 15.16 MPa, Shirahama sandstone - 9.08 MPa, 
Manazuru andesite - 22.14 MPa, Inada granite - 35.47 MPa, and Coconino sandstone - 19.047 MPa. This new 3D criterion gave 
precise predictions of the failure of the formation under in-situ stresses and was further helpful for the simulation of the wellbore 
in the petroleum industry. The variable in the new 3D criterion should be calculated from triaxial compression test data for each 
formation rock before applying this criterion to the wellbore stability problem and the sand production problem.

Keywords: 3D failure criterion; Non-linear failure 
criterion; Linear regression; Polynomial multivariable 
regression; Geomechanics; In-situ stresses; Principal 
stresses.

Criterio de falla tridimensional por regresión multivariable en rocas in-situ

RESUMEN

Los problemas de estabilidad de un pozo se incrementan con la exploración y el desarrollo de los reservorios de petróleo y 
gas. En este trabajo se propone un nuevo criterio de falla tridimensional y no lineal como una función trigonometrica que 
considera la tensión principal intermedia (σ2) en la información para la evaluación de compresión triaxial. Los criterios 
de falla de Mohr-Coulomb y Hoek-Brown son bien conocidos, pero estos no consideran la influencia de la tensión prin-
cipal intermedia en la dureza de la roca. Este nuevo criterio produce una superficie cóncava en el espacio de las tensiones 
principales máxima, intermedia y mínima (σ1,σ2,σ3) con la influencia de la tensión principal intermedia. Para este trabajo 
también se hizo el análisis de sensibilidad con el fin de entender la influencia de los parámetros en la exactitud del criterio 
propuesto. Se realizó una validación adicional de este criterio en las tres tensiones principales (máxima, intermedia y mí-
nima) y se comparó con los resultados de la regresión lineal y la regresión polinómica de segundo grado. En este proceso 
se observó que el criterio tridimensional no lineal con cinco parámetros materiales revela un buen ajuste en comparación 
con las regresiones lineal y polinómica de segundo grado, que se trabajaron con cuatro y seis parámetros materiales, cada 
una. El nuevo criterio no lineal se validó adicionalmente con criterios existentes como el de Priest, Drucker-Prager y  
Mogi-Coulomb. Los autores observaron que el nuevo criterio tridimensional no lineal muestra un resultado más exacto 
que aquellos de los criterios existentes ya que ciertos tipos de roca exhiben valores en los coeficientes de determinación 
cerca de uno. Precisamente, 0.95 para granito inada, 0.94 para monzonita orikabe, y 0.91 para anfibolitas KTB. En con-
traste, otros tipos de rocas tienen valores en los coeficientes de determinación que van de 0.7 a 0.9. El nuevo criterio tridi-
mensional no lineal también produce valores de error cuadrático medio (RMSE) más bajos que el criterio Mogi-Coulomb 
en siete tipos de rocas. Específicamente, los valores RMSE para el nuevo criterio son los siguientes: anfibolitas KTB 
= 40.03 MPa; dolomitas Dunham = 15.16 MPa; arenisca Shirahama = 9.08 MPa; andesita Manazuru = 22.14 MPa; 
granito inada = 35.47 MPa, y arenisca Coconino = 19.047 MPa. Este nuevo criterio tridimensional ofreció prediccio-
nes precisas de falla de la formación bajo tensiones in-situ y luego fue útil en la simulación de pozos en la industria 
petrolera. La variable en el nuevo criterio tridimensional debe de ser calculada con información de la evaluación de 
compresión triaxial en cada formación rocosa antes de aplicar este criterio en los problemas de estabilidad de pozos 
y en los problemas de producción de arena.

Palabras Clave: criterio de falla tridimensional; 
criterio de falla no lineal; regresión lineal; regresión 
polinomial multivariable; geomecánica; tensiones in-
situ; tensiones principales.
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List of symbols
 σ1, σ2, σ3 Principal stresses the failure in MPa

ξ, ρ, θ Haigh-Westergaard coordinates in MPa

 I1 First invariant of stress tensor and the mean stress

J2,J3 Second invariants of the deviatoric stress tensor.

mb,s,a Empirical constants of the generalized Hoek–Brown 
criterion

τoct The octahedral shear stress in MPa

 σoct The normal octahedral stress in MPa
 σ1f Three-dimensional effective failure stress MPa
w The weighting factor for Hoek–Brown criterion

 σ3hb

Minimum 2D Hoek–Brown effective stress at failure in 
MPa

σ1hb 

Maximum 2D Hoek–Brown effective stress at failure in 
MPa

P The weighting of  σ2

RMSE The root-mean-square-error in MPa
 q1,q2 The material constant of intact rock

 ri Prediction error or residuals i-th test
DC Coefficient of determination. 
 εi Error percentage  

1. Introduction

Better prediction of the failure of rock near the wellbore has been 
essential over the last three to four decades. New oil and gas fields develop on 
the uncertainty of subsurface reservoir pressure, tectonic effect, and temperature 
gradient. More recent technology is required in drilling and production 
operations for deeper reservoirs. The problem of wellbore stability increased 
at high-pressure, high-temperature reservoirs with an inclination of the well in 
directional drilling. The prominent wellbore instability is brack-out of rock by 
a combination of tensile and compressive force on the geomechanical stress 
near the wellbore results from formation, overburden, and hydrostatic pressure 
(Mahetaji et al., 2020). Lots of wells are missed due to the instability of rock 
fractures. Geomechanical modeling with maximum wellbore stability solves 
uncertainty about the drilling well. Geomechanical stress is vital in numerical 
modeling (Zhang, 2019).

To recognize a failure phenomenon, a compatible and specific criterion 
must be used (Bou-Hamdan, 2022). While some materials fail in shear, some 
may fail due to plastic deformation. The reasons behind the near-wellbore 
instability problems are tensile failure of formation, shear failure without plastic 
deformation, formation collapse or compressive failure, erosive-cohesive 
failure, and creep failure during drilling. (Aadnoy and Looyeh, 2019).

Various failure criteria are introduced in the literature for the failure 
of different-different materials. Mohr-Coulomb criterion and Hoek-Brown 
failure criterion are well-known failure criteria that consider maximum and 
minimum principal stress (σ1, σ3) and neglect the intermediate principal stress 
(σ2) (Culshaw and Ulusay, ISRM Suggested Method 2007-2014). Mohr-
Coulomb criterion is driven by the linear relation of mean and shear stress. 
Mohr-Coulomb failure criterion is mainly recommended when principal 
stresses σ1, σ2, and σ3 are compressive and in a limited range of mean stress. The 
Hoek-Brown failure criterion is the empirically derived relation between two 
principal stress σ1 and σ3 (Hoek and Brown, 1997; Hoek et al., 2002). Hoek-
Brown criterion is a non-linear, parabolic curve with the independence of the 
effect of intermediate principal stress. Experimental evidence shows that the 
intermediate principal stress influences the failure of rock material (Takahashi 
and Koide, 1989). Mohr-Coulomb and Hoek-Brown’s failure criterion does not 
consider the effect of intermediate principal stress, so the rock failure prediction 
under the triaxial stress condition is unreliable. These lead to developing several 
three-dimensional Hoek-Brown criteria given by Pan and Hudson (1988); 
Priest (2005); Zhang and Zhu (2007); Zhang (2008); Jiang and Yang (2020). 
Singh et al. (2011) and Mahetaji et al., (2023) developed a modified non-linear 
Mohr-Coulomb criterion considering the effect of intermediate principal stress 
on strength behavior.

Furthermore, failure criteria are introduced after considering the effect of 
intermediate principal stress, such as the Drucker and Prager criterion (Drucker 
and Prager, 1952) and the Lade criterion (Kim and Lade, 1984). Drucker-Prager 
criterion was a curvilinear 3D generalized form of the Mohr-Coulomb criterion 
for soils. Drucker-Prager criterion is the relation between normal and octahedral 
shear stress through material constant. The Lade criterion (Kim and Lade, 1984) 
and Modified Lade criterion (Ewy, 1999) relate to the respective first and third 
invariants of the effective stress tensor at the failure. Modified lade criterion is 
further used for sand production to produce well and wellbore stability problems 
with the effect of intermediate stress (Yi et al., 2005; Yi et al., 2006).

The failure criterion from the triaxial experimental testing data in terms 
of the power law, considering three principal stresses, is given by Mogi (1971). 
Other rock triaxial testing data also validate failure criterion based on the 
experiment data by Haimson and Chang (2000), Chang and Haimson (2000), 
Takahashi and Koide (1989), and Xiaodong and Haimson (2016). Priest (2005) 
proposed the 3D failure criterion based on the extended Hoek-Brown yield 
criterion combined with the Drucker-Prager criterion. Melkoumian et al., 
2008 further developed the 3D Hoek-Brown yield criterion by considering the 
weighting of intermediate principal stress. Further research and triaxial rock 
testing are necessary before applying any of the 3D failure criteria.

The study aims to propose a 3D non-linear failure criterion from the actual 
triaxial compression data. The proposed criterion may apply to a subsurface 
rock formation using the triaxial compression test of that rock formation. After 
that, this failure criterion is helpful for the wellbore stability problem and the 
prediction of sand production in producing well. A new failure criterion is 
proposed by considering the effect on the strength of the rock. Proposed failure 
criteria produce a curve surface as a failure envelope on a 3D space of (σ1, σ2, 
σ3) that is easy to derive and interpret. Available triaxial data in the literature 
from various researchers (Mogi, 1971; 1974; 2007; Takahashi and Koide, 
1989; Chang and Haimson, 2000; and Xiaodong and Haimson, 2016) as shown 
in Table 1 are used for the non-linear regression analysis of the proposed 3D 
criterion on principal stress space (σ1, σ2, σ3).
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Table 1. Sources of Laboratory Test Data for Ten Rock Samples.

Rock Type Source of the Tabular Data. Original Source of Data. Specimen Size

KTB amphibolite
(German Continental 
Deep Drilling Program)

Colmenares and Zoback (2002) Haimson and Chang (2000) -

Shirahama sandstone Colmenares and Zoback (2002) Takahashi and Koide (1989) Rectangular prism 3.5 cm × 3.5 cm × 7.0 cm

Dunham dolomite Mogi (2006) Circular cylinders 1.6 cm × 5.0 cm

Solnhofen limestone Mogi (2006) Circular cylinders 1.6 cm × 5.0 cm

Yamaguchi marble Mogi (2006) Rectangular prism 1.5 cm × 1.5 cm × 3.0 cm

Mizuho trachyte Mogi (2006) Rectangular prism 1.5 cm × 1.5 cm × 3.0 cm

Manazuru andesite Mogi (2006) Rectangular prism 1.5 cm × 1.5 cm × 3.0 cm

Inada granite Mogi (2006) Rectangular prism 1.5 cm × 1.5 cm × 3.0 cm

Orikabe monzonite Mogi (2006) Rectangular prism 1.5 cm × 1.5 cm × 3.0 cm

Coconino sandstone Xiaodong and Haimson(2016) Rectangular prism 1.9 cm × 1.9 cm × 3.8 cm

2. Theory 

The failure criteria are visualized and expressed with principal stress space 
f(σ1,σ2,σ3), stress invariant f(I1,J2,θ), f(J1,J2,J3) or f(I1,I2,I3), or a version of 3D 
Haigh- Westergaard coordinates stress space (ξ, ρ, θ) which is a direct physical 
interpretation geometrically (Ottosen, 1977). The Geometric representation of a 
stress state in Haigh–Westergaard and principal stresses space is given in Figure 
1. Haigh- Westergaard coordinates are widely used invariant in (ξ, ρ, θ) where ξ 
is the projection on the unit of the hydrostatic axis, ρ is the radial distance from 
a failure point P and θ is the similarity angle range of 0 to π/3 from the rotation 
of the axis.

 = √3 = 1 + 2 + 3
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                                                (1)
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The ξ-ρ plane is also called the rendulic plane. Principal stress σ1,σ2,  and 
σ3 in the terms of the (ξ, ρ, θ) are given by Brannon et al., 2009. 

 1 =
1
√3

+
√2

cos −
sin
√3

                                     (5)

Further validation of the proposed 3D criterion is done by comparison 
of predicted results with actual triaxial data on ten rock types on 3D Haigh- 
Westergaard coordinates stress space (ξ, ρ, θ). In addition, the sensitivity of 
the parameter on the prediction error and comparison of the proposed criterion 
with the Priest criterion are discussed on the ten rock types. The priest criterion 
combines the three-dimensional Drucker-Prager criterion (Drucker and Prager, 
1952) and the two-dimensional Hoek–Brown criterion. The proposed 3D non-
linear failure criterion considers the trigonometric relation between on principal 
stress space (σ1, σ2, σ3). Based on that, predicted strength by the new 3D criterion 
might indicate a more accurate result compared to the existing failure criteria.

Figure 1. Geometric Representation of a Stress State in the Haigh–Westergaard 
and Principal Stresses Space (Recreated after Lian et al., 2013).
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1
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+
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1
√3

+
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−
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√3

− cos                                      (7)

Angle θ is the stress angle, and cos3θ is the Load parameter. When θ 
equals zero in compressive meridian and for θ is equal to 60֩ in tensile meridian

New Failure Criterion

In the conventional Mohr-Coulomb and Hoek-Brown criterion, the 
effect of the intermediate stress is neglected on the rock failure prediction. The 
experimental result of the triaxial compression failure test indicates the impact 
of the intermediate principal (σ2) on the rock strength. Rock strength increases 
with the increment in the value. Mogi's (1971) failure criterion is based on the 
true triaxial testing data regarding the power law. That failure criterion best fits 
the actual triaxial experimental data by obeying the power law between normal 
octahedral stress and octahedral shear stress τoct. 

The sine function, often denoted as sin(x), is a fundamental trigonometric 
function that relates an angle in a right triangle to the ratio of the length of the side 
opposite the angle to the length of the hypotenuse. However, the sine function 
can also be extended to real numbers beyond the scope of triangles. The plot of 
the sine function exhibits a smooth wave that oscillates for the value of the θ in 
the range of 0 to 2π. It has been observed from the experimental data that the 
non-linear relation between principal stresses is matched with the upper crest side 
oscillating sine function wave that is constructed in a curvilinear plotting range 
of 0 to π (Shvarts and van Helden, 2022). So, choosing this sine function for the 
regression analyses of principal stress ( σ1 ≥ σ2 ≥ σ3) for actual triaxial compression 
test data with five material parameters gives the best fitting result compared to 
linear and second-degree polynomial regression. The new 3D non-linear criterion 
as trigonometric sine function between the principal stresses as proposed,

 1 =  sin( 1 2 + 1) sin( 2 3 + 2)                        (8)

where σ1,σ2, and σ3 are the principal stresses and a,b1,b2,d1,and d2 are 
material constants for the best fitting with the actual triaxial data point.

Relation of the a and UCS with adopting  σ2 = 0 and σ3 = 0 as, 

UCS = a sin d1 sin d2

The value of σ1 must be positive for σ1≥ σ2 ≥σ3 compression failure in 
equation (8). For a positive value of σ1, the value of sin(b1σ2 + d1) and the value 
of sin(b2σ3 + d3) must be positive, so the range of (b1σ2 + d1) and (b2σ3 + d3) must 
be between 0 to π. All the strength parameters are easy to derive by the triaxial 
compression test data for a minimum six-core sample.

Equation 8 is a proposed non-linear failure criterion directly derived 
from non-linear 3D regression analysis considering the effect of σ2 on the rock 
strength. Equation 8 produces a concave surface on the principal stress space 
(σ1,σ2,σ3). 

Proposed non-linear failure equation in the Haigh- Westergaard 
coordinate is given by the function of  (ξ,ρ,θ) as

 

( , , ) =
1
√3

+
√2

cos −
sin
√3

− a sin 1
1
√3

+ 1

√2
2 sin
√3

+ 1 sin 2
1
√3

+ 2

√2
−

sin
√3

− cos + 2                         (9

This equation is complex to solve with the arithmetic method but easily 
solved by the numerical method. Newton Raphson's method is recommended to 
solve this equation with a quick convergent rate. Newton Raphson's method has 
a limitation in that f'(ξ,ρ,θ) is not zero. If that f'(ξ,ρ,θ), then it must be required to 
modify the Newton-Rapson method. Modifying code for the Newton-Rapson 
method is done by making a bridge for that range at f'(ξ,ρ,θ) nearly equal to zero 
or using another method like the bisection method.

Table 2. Regression Analysis for Ten Rock Types.

ROCK 
TYPE Polynomial Degree 1 Polynomial degree 2 Trigonometric function (nonlinear 3D 

criterion)

KTB 
amphibolite σ1=0.529 σ2+ 5.315 σ3+293 σ1=1.03σ2+8.56σ3-0.0013σ2

2+0.0026σ2 σ3-
0.0248σ3

2+187.25
σ1=1303*sin(0.002σ2+0.7229)*sin(0.008

0σ3+0.269)

Dunham 
dolomite σ1=0.515 σ2+ 2.743 σ3+371 σ1=1.27σ2+3.55σ3-0.0025σ2

2+0.0059σ2 σ3-
0.0140σ3

2+294
σ1=2193*sin(0.0026σ2+0.703)*sin(0.001

6σ3+0.2285)

Solnhofen 
limestone σ1=0.294 σ2+ 2.470 σ3+346 σ1=0.509σ2+2.67σ3-0.0013σ2

2+0.0068σ3-
0.0136σ3

2+331
σ1=7700*sin(0.0025σ2+0.8253)*sin(0.002

6σ3+0.059)

Shirahama 
sandstone σ1=0.156 σ2+ 4.141 σ3+86.53 σ1=0.37σ2+6.10σ3-0.0052σ2^2+0.026σ2 σ3-

0.083σ3
2+66.35

σ1=299.3*sin(0.00754σ2+0.9390)*sin(0.0223
5σ3+0.2675)

Yamaguchi 
marble σ1=0.428 σ2+ 3.582 σ3+114 σ1=1.145σ2+2.35σ3-0.0055σ2

2+0.0174σ2 σ3-
0.0113σ3

2+106.02
σ1=11080*sin(0.004σ2+0.6386)*sin(0.000

3σ3+0.0155)

Mizuho 
trachyte σ1=0.229 σ2+ 2.789 σ3+165 σ1=0.496σ2+4.20σ3-0.0014σ2

2+0.00426σ2 σ3-
0.018σ3

2+121.30
σ1=8884*sin(0.0028σ2+0.8190)*sin(0.000

3σ3+0.0273)

Manazuru 
andesite σ1=0.551 σ2+ 5.691 σ3+276 σ1=1.29σ2+11.35σ3-0.0034σ2

2+0.0087σ2 σ3-
0.0818σ3

2+162.82
σ1=956.1*sin(0.0039σ2+0.7607)*sin(0.008

8σ3+0.4191)

Inada granite σ1=0.965 σ2+ 3.796 σ3+461 σ1=1.97σ2+5.44σ3-0.0057σ2
2+0.0112σ2 σ3-

0.0168σ3
2+358.78

σ1=1901*sin(0.0023σ2+0.647)*sin(0.003
0σ3+0.3562)

Orikabe 
monzonite σ1=0.92σ2+ 2.732 σ3+458 σ1=1.89σ2+4.59σ3-0.0052σ2

2+0.0129σ2 σ3-
0.0207σ3

2+329.43
σ1=1572*sin(0.0029σ2+0.5776)*sin(0.003

4σ3+0.3702)

Coconino 
sandstone σ1=0.073σ2+3.132 σ3+161 σ1=0.201σ2+0.516σ3-0.00104σ2

2+0.0046σ2 σ3-
0.0202σ3

2+113.40
σ1=663.2*sin(0.0028σ2+0.9803)*sin(0.0067

5σ3+0.2436)



277Multivariable Regression 3D Failure Criteria for In-Situ Rock

Equation 8 and Equation 9 represent failure criterion in the coordinate of 
(σ1,σ2,σ3) and (ξ, ρ, θ), respectively. Till date, no such equations are available in 
the literature to predict the rock failure as Equation 8 and Equation 9.

Usually, in-situ condition rock break-out done by the compression and 
rock fracture is due to the combination of compression and tension (Bui et al., 
2023; Ghassemi, 2017; Lee et al., 2012). Experimental data on true triaxial 
compression tests are available in the literature review. Estimating the strength 
parameters a,b1,b2,d1,and d2 is done by two methods: the non-linear regression 
analysis on the triaxial compression test data result and the analytical solution 
of the new failure criterion by the triaxial compression test data. Non-linear 
three-dimensional regression analysis was done to find the material parameters 
(a,b1,b2,d1,and d2), as shown in Table 2. The strength parameter is dependent on 
the rock property. The failure equation for each rock type is shown in Table 2. 
This equation considers three principal stresses in relation to the function of sine

Linear Multivariable Regression  

Linear multivariable regression analysis is conducted on all these ten-
rock types to find the linear criterion that considers all three principal stresses 
in the linear relation. Linear regression analyses give the linear relation for the 
KBT amphibolite as 

 σ1 = p1σ2 + p2σ3  + c1                                                                        (10)

Where, 
p1 = co-efferent of the σ2 =0.529
p2 = co-efferent of the σ2 =5.315
c1  = intersection=293 MPa
The value p1, p2,and c1 is dependent on the formation rock property that is 

given as the weighting of the intermediate principal stress, minimum principal 
stress on the strength of the formation, and compressive strength of the 
formation, respectively. The value of the maximum principal stress is calculated 
based on the above equation as a combination of the value at the yield point. 
The yield point is the point where the first crack is initiated. The equation for all 
ten-rock types based on the linear regression with a variable is given in Table 2.  

Second Degree Polynomial Regression 

Polynomial regression analysis on these ten-rock types for the failure 
in true-triaxial compression test is done the finding appropriated relationships 
between these three principal stresses. Polynomial regression analysis on the 
data of KBT amphibolite’s triaxial compressive test is given as, 

 σ1 = q1σ2 + q2σ3  - q3σ2
2 + q4 σ2σ3 - q5σ3

2 + c 2                                               (11)

Where, 
q1 = co-efferent of the σ2 = 1.03,
q2 = co-efferent of the σ3 = 8.56,
q3=co-efferent of the σ2

2 = 0.0013,
q4 = co-efferent of the σ2 σ3 = 0.0026,
q5 = co-efferent of the σ3

2 = 0.0248,
c2 = intersection =187.25 MPa

The value of q1, q2, q3, q4, q5, and c2 is determined by the formation rock 
property, which is defined as the weighting of the σ2, σ3, σ2

2, σ2, σ3, σ3
2, and 

compressive strength of the formation, respectively. The maximum principal 
stress is calculated using the above equation as a combination of the σ2 and σ3 
values at the first crack begin. Table 2 shows the equation for all ten rock types 
based on linear regression with variables.

Priest Criterion 

Priest (2005; 2009) developed a three-dimensional failure criterion by 
combining the three-dimensional Drucker-Prager criterion (Drucker and Prager, 
1952) and the two-dimensional Hoek–Brown criterion. Three-dimensional 
effective failure stress (σ1f ) is estimated by

 1 = 1ℎ + 2 3ℎ − ( 2 + 3)                           (12)

Where, σ3hb is the minimum two-dimensional Hoek–Brown effective 
stress at failure, and σ1hb is the maximum two-dimensional Hoek–Brown 
effective stress at failure given by 

 3ℎ = 2 + (1 − ) 3                                    (13)

σ1hb is calculated by Hoek–Brown criterion (1997) 

 1ℎ = 3ℎ + 3ℎ +                                   (14)

Where, σ1hb calculated by Hoek-Brown criterion (1997), w is a weighting 
factor, mb is the Hoek–Brown constant value, and s is a fracture parameter of 
the rock mass.

Drucker- Prager Criterion 

The Drucker-Prager failure criterion is a curvilinear 3D generalized form 
of the Mohr-Coulomb criterion for soils. Drucker-Prager criterion is the relation 
between octahedral stress and octahedral shear stress τoct through material 
constant.

Drucker-Prager Criterion is given by the equation (Drucker and Prager, 
1952) 

 =
2
3

(3 + )                                 (15)

λ and k are material constants. Drucker-Prager Criterion in Haigh-
Westergaard coordinates. (ξ, ρ, θ) is given by equation.

 

3

= √2(√3 + )                                  (16)

λ and k can be expressed in terms of cohesion intercept and internal 
friction angle (Yi et al., 2005)

 

= √2(√3 + )  

                                (17)

Mogi-Coulomb Criterion

Al-Ajami and Zimmerman (2005) proposed a failure criterion by 
considering the Mogi criterion (1971) and linear Mohr-coulomb failure criterion 
called the Mogi-Coulomb criterion. The Mogi-Coulomb criterion is the linear 
relation between octahedral stress (τoct) and mean effective stress (σm2).

 = + ∗ 2                              (18)

Here,
 

= √( 1− 2)2+ ( 2− 3)2+ ( 3− 1)2

3
 and 2 = 1+ 3

2
  
 

Material constant a and b is simply related to the angle of internal friction 
(Ø), and cohesion (c) is given by  

Mogi-coulomb criterion in Haigh-Westergaard coordinates (ξ, ρ, θ) is 
given as.
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 = √3 +
2

(3 − √3 )                                             (19)

3. Result and Discussion 

Failure Prediction and Validation on Principal Stress Space (σ1, σ2, σ3 )

The root means square error (RMSE) function was used to find the misfits 
between the triaxial test data and predicted strength by the failure criterion. The 
standard deviation of the residuals defines RMSE.

 = 1 ∑ 2
= 1    ,  i=1,2,…,n                                         (20)

Where n is the number of the test data point of a specific rock.
Residuals or prediction errors are defined by

                                           (21)

σi
calc is ith calculated value by the failure criterion, and σi

test is the i-th tested 
data. The best fitting RMSE value is the minimum, and if prediction is the best 
fit of test data, the mean of the residuals is always equal to zero.

Figure 2 indicates the prediction of rock strength by the proposed criterion 
on ten rock types with a triaxial compression test. Scatter data indicate triaxial 
compression test data, and solid lines represent the data prediction by a single 
equation for all rock types shown in Table 2.

In Figure 2, the black dotted line is for  σ1 = σ2 > σ3 or  σ1 > σ2 = σ3; color 
solid is the proposed failure criterion, and scatter data is the experimental 
triaxial compression data point. The single-color solid line is for the fixed 
value of the minimum principal stress. For the shirahama sandstone, the RMSE 
value is minimum among all the rock types,, so we will discuss the shirahama 
sandstone shown in Figure 2. Color indication for a solid line when the value of 
σ3

  equal to 5 MPa, 8 MPa, 15 MPa, 20 MPa, 30 MPa, and 40MPa is gradually 
blue, red, forest green, purple, maroon, and lime. All solid line is plotted by a 
single equation given in Table 2. The regression analysis estimates parameters  
a = 299.3, b1=0.00754, d1=0.9390, b2=0.02235, and d2=0.2695. It has been 
observed that the parameter is independent of the principal stresses.

Figure 2. Failure Prediction by Proposed Criterion in Space for Ten Rock Type

a) b)

c) d)
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e) f)

g) h)

i) j)
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Table 3 shows the RMSE values of σ1 for shirahama sandstone is a 
minimum of nearly 9.08 MPa and for the KTB Amphibolite is a maximum of 
nearly 65.03 MPa for the best fitting triaxial data point. RMSE values of σ1 are 
between 9.08 MPa to 65.03 MPa for the rest of all rock types shown in Table 3. 
Figure 3 shows the distribution of the error percentage for predicted σ1 for all 
the rock types. The equation defines the prediction error,

 
 −   

  
∗ 100% =                        (22)

Or in terms of the σ1

 = 1 − 1 ∗ 100%                                (23)

σ1i
calc is the ith value of predicted σ1 from the triaxial data point. σ1i

test is 
the tested value of σ1 on the triaxial data. The predicted error distribution for 
all the rock types is as a histogram shown in Figure 3. The distribution of data 
points is excellent and distributed equally in the range of -10 % to 10%, and 
the maximum number of data points distributed is near zero percentage error. 
Like Gaussian distribution, this type of indicator with a maximum number of 
data having an error percentage around zero is preferable. Error distribution for 
the shirahama sandstone, yamaguchi marble, inada granite, orikabe monzonite, 
manazuru andesite, and coconino sandstone is distributed assuredly as a 
Gaussian distribution, so it suggests that the new failure criterion works better 
for that rock types. Error distribution for the remaining rock types is also good, 
with a maximum error percentage near zero, but the distribution shape is not 
like a bell curve, shown in Figure 3.

a b

c d
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Figure 3 Error Percentage Distribution as Histogram for Ten Rock Types.
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Validation on Haigh- Westergaard Coordinates Stress Space (ξ, ρ, θ)

The proposed failure criterion is validated with the help of Haigh- 
Westergaard coordinates stress space (ξ, ρ, θ). The non-linear failure criterion 
generates a curve in stress space (ξ, ρ, θ), so validation can be done with the 
coefficient of determination (DC). To validate the proposed non-linear failure 
criterion here, we compare it with experimental triaxial test data of ten rock 
types, as shown in Figure 4.

Equation 9 is the failure criterion in Haigh-Westergaard coordinates. 
(ξ, ρ, θ). Here ρ is a dependent variable, ξ is an independent variable, and θ 
depends on rock type. Figure 4 compares the proposed 3D failure criterion with 
triaxial compression test data. Scatter data on the plot indicate the triaxial test 
data, where the solid red line indicates the failure criterion by the equation (9). 
Validation of the proposed 3D failure criterion is done with the help of DC with 
the reliability prediction of  by the failure criterion.

 
= 1 −

∑ ( − )2
= 1

∑ ( −  ̅ )2
= 1

 
                                 (24)

Where ρi
calc i-th calculated value data, ρi

test is i-th tested data on the triaxial 
test, ρ-

i
test is the mean value of tested data by the triaxial test. DC=1 means it is an 

ideal case where test data agree with the zero misfits. The desirable value of the 
DC must be near one. Desirable values of DC are for Inada granite (DC=0.95), 
Orikabe monzonite (DC=0.94), and KTB amphibolite (DC=0.91). DC for the 
rest of the rock types (dunham dolomite, yamaguchi marble, mizuho trachyte, 
solnhofen limestone, shirahama sandstone, manazuru andesite, coconino 
sandstone) in the range of 0.7 < DC < 0.9 shown in Figure 4. This DC value 
near one suggests that the proposed non-linear failure criterion shows better 
results in Haigh-Westergaard coordinates. 

a b

c d
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Figure 4. Validation of The New 3D Failure Criterion for the Ten Rock Types
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Sensitivity Analysis on Variables of New 3D Criterion

Values of a, b1, b2, d1, and d2 are selected from non-linear regression 
analysis as shown in Table 2. There is a minimum RMSE value of σ1 for all the 
optimum values of parameters. The influence of a single parameter on the value 
of RMSE(MPa) for σ1 is discussed in this section. For the shirahama sandstone, 
values of parameter-driven from the regression are a = 299.3, b1 = 0.0075, 
b2 = 0.9390, d1= 0.02235,and d2 = 0.2675. If the value of one parameter a change 
from 200 to 320 for shirahama sandstone, it has been observed that with no 
changes on the remaining parameter (b1,b2, d1, and d2) shown in Figure 5 (i).  

In Figure 5 (i), the RMSE decreases from 66.83 MPa to 14.36 MPa when 
it increases from 200 to 300 and then increases again to 19.70 MPa when a 

value is more significant than 320. Hence, the best-fit value for the shirahama 
sandstone a is 300 with the minimum RMSE value (14.36 MPa). Figures 5(ii), 
5(iii), 5(iv), and 5(v) show the influence of the parameter (b1, b2, d1, and d2) 
gradually on RMSE (MPa) of σ1 when remain parameters are static and given 
in Table 2 for the shirahama sandstone. Hence best-fit value for b1  is 0.0055 
with minimum RMSE (9.33 MPa); is d1 0.8 minimum RMSE (11.63MPa); 
b2 is 0.0225 minimum RMSE (14.36 MPa), and d2 is 0.27 minimum RMSE 
(14.35MPa) exclusively. Best fitting value of parameters a, b1,b2, d1, and d2  
with minimum RMSE given by optimization methods like gradient descent and 
stochastic gradient descent in machine learning and deep learning. 

Figure 5. Sensitivity Analysis of Parameters a, b1,b2, d1, and d2 of New Non-linear Trigonometric Criterion for Failure Prediction in RMSE.

i)

iii)

ii)

iv)

v)
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Comparisons of the New 3D Non-linear Criterion with Linear Regression, 
Polynomial Regression, and Existing Criteria.

Figure 6. Comparisons of RMSE for  by New 3D Non-linear Failure Criterion 
with Linear, Second-degree Polynomial, and Existing Criteria: Dracker-Prager, 

Mogi-Coulomb, and Simplified Priest Criterion.

The prediction of principal stress (σ1) is made with the help of the 
combination of another two principal stresses (σ2 and σ3)  by the failure criterion 
discussed above. Maximum principal stress at the failure using the New non-
linear criterion given in Figure 2 and by Priest Criterion is given as shown in 
APPENDIX I. Maximum principals stress is not directly driven by the Drucker- 
Prager criterion and Mogi-Coulomb criterion. The equation for the Drucker- 
Prager and Mogi-Coulomb criterion is difficult to determine the maximum 
principal stress as a dual result of the quadratic equation of the principal stresses. 
The solution of the Drucker- Prager and Mogi-Coulomb criterion is done with 
the help of the Haigh-Westergaard coordinates (ξ, ρ, θ) and then converted 
into the principal stresses for the comparison of the all-failure criterion which 
was discussed above. APPENDIX II and APPENDIX III gradually show 
the Drucker- Prager and Mogi-Coulomb criterion result. Comparisons of the 
RMSE value with linear regression and second-degree polynomial regression 
and with existing failure criteria are given in Table 3 and Figure 6 for all rock 
types. RMSE in MPa for the linear regression, the Drucker-Prager criterion, 
and the Priest criterion are higher for all the rock types than the New non-linear 
criteria, Mogi-Coulomb criterion, and polynomial equation. RMSE by New 
non-linear criteria, second-degree polynomial, and Mogi-Coulomb criteria 
gave the lowest value among the ten-rock type. Seven rocks have lower RMSE 
by the New non-linear criterion than RMSE by the Mogi-Coulomb criterion, as 
shown in Figure 6. The minimum RMSE value by Mogi-Coulomb is 8.36 MPa 
for yamaguchi marble, and the maximum is 55.51 MPa for orikabe monzonite. 
The maximum RMSE by the New non-linear criterion is 50.04 for orikabe 
monzonite, and the minimum is 9.08 for shirahama sandstone.

Table 3. Comparison of New 3D Non-linear Criterion with Linear, Polynomial Criterion, and Existing Failure Criterion for RMSE of σ1 (MPa)

Rock Type Number of 
Data Points

RMSE
(Linear 

criterion) 

RMSE (Polynomial 
criterion -degree 2)

RMSE
(New non-linear 

criterion)

RMSE 
(Drucker- 

Prager criterion)

RMSE 
(Mogi-Coulomb 

criterion)

RMSE
(Simplified Priest 

criterion)

KTB amphibolite 42 89.31 61.94 40.03 73.63 40.64 83.76

Dunham dolomite 54 39.62 22.29 15.16 47.88 17.22 37.03

Solnhofen limestone 26 24.10 17.83 15.32 53.93 14.92 32.67

Shirahama sandstone 38 10.39 6.49 9.08 14.89 11.06 13.58

Yamaguchi marble 38 17.26 11.31 12.15 18.86 8.36 21.96

Mizuho trachyte 31 20.27 11.31 13.53 31.84 9.74 15.47

Manazuru andesite 23 51.73 24.31 22.14 55.10 29.98 39.7

Inada granite 46 69.79 47.06 35.47 61.04 36.16 42.46

Orikabe monzonite 44 73.86 38.75 50.04 69.94 55.15 65.16

Coconino sandstone 48 38.50 67.05 19.047 44.50 20.51 35.57
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4. Summary and Conclusions 

This study develops three criteria based on the true-triaxial compressive 
test data as a relationship of intermediates principal stresses. These criteria 
are developed by considering intermediate principal stress for the prediction 
of failure of rock in the compressive nature. The first criterion is developed 
as a trigonometric function of stresses as discussed, the second one is the 
linear relationship of stresses, and the third is the second-degree polynomial 
relationship among principal stresses. These trigonometric non-linear and 
second-degree polynomial criteria develop a concave surface on 3D space of 
(σ1, σ2, σ3) whenever linear criterion develops plane surface. These 3D failure 
criteria are not reported in the previous literature. 

Failure criterion for linear and polynomial regression (second-degree) 
has four and six material parameters, respectively. Rock failure prediction by 
linear criterion has poor results compared to exiting criterion as regression is 
poor fitting with triaxial compression test data. RMSE value for the failure 
prediction is improved by second-degree regression criterion with the best 
fitting with actual data for shirahama sandstone, yamaguchi marble, mizuho 
trachyte, and orikabe monzonite considering six material parameters. RMSE 
for some rock types like KTB amphibolite (61.94 MPa RMSE), inada granite 
(47.06 MPa RMSE), and coconino sandstone (67.05 MPa RMSE) is higher due 
to the overfitting of data with six material parameters. Linear criterion is under 
fitted on data, and second-degree polynomial is overfitted on data, so best fitting 
on data is done with new non-linear data with five material parameters.   

The material parameters in the proposed 3D failure criteria are obtained 
from the linear and non-linear regression analysis of conventional triaxial 
compression test data. A minimum of five to six triaxial testing data are required 
for regression analysis. The number of data points and their value affects the 
accuracy of regression analysis. The quality of the data point and the quantity 
of data used for the regression analysis play an important role in accuracy. The 
proposed new 3D failure criterion as a trigonometric function is validated with 
triaxial tested data points for the ten rock types. Comparing these new 3D failure 
criteria is done with existing criteria like the Priest criterion, the Drucker-Prager 
criterion, and the Mogi-Coulomb criterion. It has been shown that the New 3D 
non-linear criterion and Mogi-Coulomb performance gave better results among 
all these criteria. The RMSE by the new 3D non-linear criterion is lower than the 
Mogi-Coulomb criterion for seven rock types: KTB amphibolite - 40.03 MPa, 
Dunham dolomite - 15.16 MPa, shirahama sandstone - 9.08 MPa, manazuru 
andesite - 22.14 MPa, inada granite- 35.47, coconino sandstone - 19.047 MPa. 
Mogi-Coulomb has the best RMSE for solnhofen limestone - 14.92 MPa, 
yamaguchi marble - 8.36 MPa, and Mizuho trachyte- 13.53 MPa. The desirable 
DC values are close to one in certain rock types (0.95 for inada granite, 0.94 
for orikabe monzonite, and 0.91 for KTB amphibolite), while others fall within 
the range of 0.7 to 0.9. The proposed non-linear failure criterion performs well 
in Haigh-Westergaard coordinates, effectively predicting the failure behavior 
of different rocks.

 The Mogi-Coulomb criterion is related to octahedral shear stress and 
means effective stress that becomes difficult to solve. The Mogi-Coulomb 
solution gave dual results, making it challenging to choose one for the best 
prediction of principal stress. The number of parameters affecting the accuracy 
of the failure prediction. This new non-linear criterion considers five parameters 
that may reduce the accuracy. So, selecting the proper value of these parameters 
is challenging as per sensitivity analysis. However, sensitivity analysis suggests 
that all the parameters simultaneously influence the RMSE value. A limitation 
of this new 3D failure criterion is that the input parameters must be optimized 
initially to achieve higher accuracy. There must be a minimum RMSE for the 
best fitting of the parameters. Prediction should further improve on optimizing 
all five parameters, that is, concerning trigonometric function with machine 
learning tools. However, before applying the new failure criterion, significant 
research is required on calibrating constants with triaxial compression test 
results as material parameter is changed with rock type. It is advisable in further 
research to develop a criterion that contains a minimum material parameter 
that is not dependent on rock types. Although new 3D non-linear and Mogi-
Coulomb criteria gave the best result, 3D non-linear criteria are recommended 
for simplicity for the solution of the equation. A linear criterion is the 
simplified extended Mohr-Coulomb criterion as linear relationship principles 
stress whenever a second-degree polynomial criterion adds complexity with 
overfitting on the data. The non-linear 3D criterion is further helpful in applying 

wellbore stability and sand production prediction with derived variables from 
the triaxial compression test on the in-situ rock.
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