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Climate change has led to various adverse consequences, with natural disasters being one of the most striking outcomes. 
Natural disasters negatively impact life, causing significant disruptions to the ecosystem. Prompt identification of affected 
areas and initiation of the rehabilitation process are imperative to address the disturbances in the ecosystem. Satellite 
imagery is employed for the rapid and cost-effective detection of damages caused by natural disasters. In this conducted 
study, the outputs of climate change wildfire, forest change detection, and drought analysis, have been examined, all of 
which worsens the impacts on the ecosystem. The analysis of drought involved using MODIS data, while Sentinel-2A 
satellite images were utilized to identify wildfire areas and changes in forested regions caused by windthrow. The research 
focused on Ganja, Azerbaijan, as the area for drought analysis. The driest June between 2005 and 2018 was assessed using 
the Vegetation Condition Index (VCI) in conjunction with data from the National Centers for Environmental Information 
(NOAA). At the Düzce Tatlıdere Forest Management Directorate, the Normalized Difference Red Edge Index (NDRE) 
was utilized between the years 2018 and 2019 to detect the changes occurring in forested areas due to windthrow. The 
NDRE synthetic band was added to satellite images for the years 2018 and 2019, and a Random Forest (RF) algorithm was 
employed to classify the data. The classification results were evaluated using Total Accuracy and Kappa statistics. The study 
includes the detection of the Normalized Burn Ratio (NBR) applied to determine the extent of the wildfire that occurred in 
the Solquca village of the Qabala region in Azerbaijan in 2021. According to the analysis of the VCI and NOAA, June 2014 
was identified as the driest month in Ganja. In the Tatlıdere region, the analysis indicated that 4.22 hectares experienced 
reforestation, while 24 hectares experienced deforestation. The NBR analysis has revealed that ~1007 hectares of land were 
burned in the Solquca village of Qabala. The analyses conducted provide information regarding the use of satellite imagery 
in relation to changes in forest areas due to drought, wildfire, and windthrow.

Exploración del potencial de la plataforma de Google Earth Engine (GEE) para el análisis de patrones de perturbación 
forestal a través de macrodatos

RESUMEN
El cambio climático ha generado varias consecuencias adversas, con los desastres naturales como uno de los efectos 
más notables. Los desastres naturales impactan negativamente la vida  y causan grandes daños en los ecosistemas. 
La identificación temprana de las áreas afectadas y el comienzo de los procesos de rehabilitación son necesarios para 
abordar los desajustes en los ecosistemas. Las imágenes satelitales se emplean para una detección rápida y eficaz de los 
daños causados por los desastres naturales. En este estudio se examinan los resultados de los incendios forestales por el 
cambio climático, la detección de los cambios en los bosques y los análisis de sequías, los cuales empeoran aún más los 
ecosistemas. El análisis de sequías se elaboró con información satelital MODIS, mientras que las imágenes satelitales de 
Sentinel-2ª se utilizaron para identificar las áreas de incendios forestales y los cambios en las regiones boscosas causa-
dos por el viento. El área para el análisis de las sequías se ubica en Ganja, Azerbaiyán. El mes de junio más seco entre 
2005 y 2018 se evaluó con el Índice de Condición Vegetal y con información del Centro Nacional para la Información 
Ambiental. En el Directorado de Administración Forestal Düzce Tatlıdere se ejecutó la  Diferencia Normalizada de 
Borde Rojo (NDRE, del inglés Normalized Difference Red Edge Index) entre los años 2018 y 2019 para detectar los 
cambios ocurridos en las áreas boscosas debido a los daños en árboles ocasionados por fuertes vientos. Luego se añadió 
una banda sintética NDRE a las imágenes satelitales para los años 2018 y 2019 y se empleó un algoritmo de bosques 
aleatorios para clasificar la información. Los resultados de clasificación se evaluaron con las estadísticas Precisión Total 
y Kappa. El estudio incluye la aplicación del Índice Normalizado de Área Quemada para determinar la extensión del 
incendio forestal que ocurrió en la villa de Solquca, en la región de Qabala, en Azerbaiyán, durante el 2021. De acuerdo 
con los análisis de Índice de Condición Vegetal y del Centro Nacional para la Información Ambiental, junio de 2014 
fue identificado como el mes más seco en Ganja. En la región de Tatlidere los análisis indican que 4.22 hectáreas experi-
mentaron un proceso de reforestación, mientras que 24 hectáreas experimentaron deforestación. El Índice Normaliza-
do de Área Quemada reveló que unas 1007 hectáreas de tierra se quemaron en el incendio de la villa de Solquca. Estos 
análisis realizados proveen de información relacionada al uso de imágenes satelitales en relación con los cambios en 
las áreas forestales debido a la sequía, los incendios forestales y los daños en bosques ocasionados por fuertes vientos.
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1. Introduction

In recent years, significant increases in natural disasters have been 
observed in conjunction with the process of climate change. This can be 
attributed to various factors, including extreme temperatures, increased wind 
speeds, and intense precipitation events (Trenberth, 2011; Rummukainen, 
2012). Additionally, alterations in climate parameters have given rise to 
unnatural disasters, such as wildfires, influenced by both climatic shifts and 
human factors (Lan et al., 2021; Boegelsack et al., 2018). As a result of the 
increasing frequency of natural disasters, numerous ecosystems are being 
impacted, and the recovery process is proving to be time-consuming. Therefore, 
it is crucial to promptly detect areas affected by natural disasters and implement 
interventions as quickly as possible (Basher, 2006). Ground measurements are 
typically conducted to identify areas affected by natural disasters. However, 
these ground measurements can be time-consuming and economically 
costly. (Ali et al., 2016; Yu et al., 2018) Due to the disadvantages of ground 
measurements, satellite images are often preferred for the detection of areas 
affected by various natural disasters, primarily due to their efficiency and cost-
effectiveness (Edney and Wood, 2021).

But significant difficulties can be encountered by computer systems 
during the processes of acquiring, storing, analyzing, and visualizing satellite 
images Liu (2015). Because satellite images fall within the big data category, 
they can pose significant challenges in terms of computer storage and 
processing (Krishnan and Gonzalez, 2015; Ma et al., 2015). For the resolution 
of these problems, various programming languages are employed. However, 
the programming languages used sometimes have limitations in conducting 
a limited number of analyses. To address these challenges, the Google Earth 
Engine (GEE) platform, utilizing cloud-based infrastructure, emerges as an 
effective solution. GEE facilitates ease in handling data by storing it in its own 
cloud environment, providing conveniences for numerous studies (Gorelick et 
al., 2017). Within GEE, there exists a vast database consisting of numerous 
satellite images, demographic data, and environmental parameters such as 
elevation and slope. GEE allows for easy accessibility to the database related to 
the areas under study, thereby providing a more straightforward opportunity for 
analysis. (Moore and Hansen, 2011; Zhao et al., 2021).

Thanks to the advantages provided by GEE, the location identification of 
natural disasters resulting from climate change, as well as the determination of the 
affected area’s extent and environmental parameters, can be easily accomplished 
(Scheip and Wegmann, 2021; Amani et al. 2020). Thanks to the conveniences 
it provides, GEE has facilitated various studies related to natural disasters, 
including wildfire (Seydi et al., 2021; Tavakkoli Piralilou et al., 2022), detection 

of pollutants gases in forest fires (Çınar et al., 2023), windthrow area detection 
(Çınar et al., 2023), drought analysis (Sazib et al., 2018; Khan and Gilani, 2021), 
and flood area detection (Moharrami et al., 2021; Mehmood et al., 2021).

With the anticipated increase in natural disasters accompanying climate 
change, the prompt detection and rehabilitation of affected areas are crucial 
for effective response. The straightforward identification of disaster-stricken 
areas and understanding their historical conditions highlights the temporal and 
economic significance of satellite imagery. In this study, the Vegetation Condition 
Index (VCI) derived from MODIS satellite images was employed to analyze 
drought trends in Ganja, Azerbaijan, between 2005 and 2018.  The data obtained 
from NOAA, including temperature, precipitation, and humidity, were utilized to 
evaluate the results of the Vegetation Condition Index (VCI). For the detection of 
windthrow areas and the assessment of reforestation and deforestation processes, 
Sentinel-2A satellite imagery was utilized. Normalized Difference Red Edge 
(NDRE) was calculated from Sentinel-2A images and integrated as a synthetic 
band into the satellite imagery. The windthrow area was classified using Random 
Forest (RF), with drone images serving as a reference. Statistical evaluation was 
conducted using Kappa analysis and Overall Accuracy. Lastly, the wildfire that 
occurred in the village of Solquca in Qabala, Azerbaijan, in 2021 was identified 
using Sentinel-2A satellite images and the Normalized Burn Ratio (NBR). The 
NBR results were classified into High Severity, Moderate-high Severity, Low 
Severity, Moderate-low Severity, Unburned, and Enhanced Regrowth, Low 
(post-fire). This study illustrates the effective utilization of satellite imagery in 
monitoring and detecting natural disasters.

2. Material and Methods

2.1. Material

GEE platform was used in this research because it offers a wide variety 
of helpful capabilities for programming crucial studies in forestry-related 
applications. Figure 1. depicts the primary components of the GEE user 
interface. Access to libraries is provided via the API documentation part, 
while the script manager is used to handle the code mechanisms. File types 
like “shapefile” and “TIFF” can be uploaded through Asset management. Users 
can customize the image processing and script writing capabilities of the code 
editor to meet their needs. Any formatting mistakes in the code are shown in the 
Inspector window. The output console provides numerical data and graphical 
representations. Importing analyzed images is made easier, and transferring 
files to and from “Google Drive” is possible, all within the Task management 
section. GEE platform’s general user interface is depicted here.

Script  
manager Api 

documentation
Assest 
manager

Inspector  
tab

Console 
output

Task 
manager

Figure 1. Google Earth Engine Platform Interface
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2.2. Study areas

The research focused on specified regions for the purpose of analysis; the 
locations of these regions are shown in Figure 2. In the conducted study, Ganja 
was chosen for drought analysis. This selection was made because organic 
agriculture (Guliyeva and Lis, 2020; Aliyev et al., 2022) and forestry (Hasanov et 
al., 2020; Rosa, 2022) are significant economic livelihoods in Ganja. On the other 
hand, Tatlıdere Forest Enterprise was chosen for the detection of reforestation and 
deforestation in windthrow areas due to the availability of drone images related 
to the damage in Düzce. The area selected for wildfire detection is the largest 
wildfire that occurred in Azerbaijan in 2021, specifically in the Qabala region. 
Abundance of forests in the Qabala region and the absence of research in the area 
influenced the choice of this region for the current study. The town of Ganja and 
the area immediately around it is located in the Kura-Aras Lowland ecoregion. 
This ecoregion is distinguished by its varied topography, which includes 
grasslands, shrublands, and riparian forests. Oak forests, wetlands, and grasslands 
can all be found within this region (Abbasov, 2018; Mammadov and Mammadov, 
2016). Hasanov (2015) and Rahman et al. (2022) report that the region is put to 
use for agricultural and cultural pursuits respectively. 

Windthrow study was carried out in the Tatldere Forest Enterprise, which 
is situated in the city of Düzce in Türkiye. The area that was affected by the 
windthrow has the coordinates 31.357E - 40.865N and 31.373E - 40.851N in its 
corner points. The climate of the Tatldere region, which is located in the Black 
Sea region of Türkiye, is characterized by high levels of both precipitation and 
humidity on average. The windthrow region is dominated by oak species and 
Eastern beech, scientifically known as Fagus orientalis Lipsky. 

The province of Soqulca within the Qabala region, which is located in 
the northern section of Azerbaijan, served as the primary focus of the wildfire 
investigation that was carried out as part of this study. The Greater Caucasus 
Mountains can be seen in the distance from this region, which is found in their 
foothills. According to the Koppen climate classification system, Qabala has 
what is known as a humid subtropical climate, or Cfa for short. The region is 

characterized by warm summers and chilly winters, and it receives a significant 
amount of precipitation throughout the course of the entire year (Aliyeva et al., 
2020; Aliyev, 2005). The Qabala Region is made up of mountainous terrain 
that is covered in forest, as well as mountain meadows and rivers. According to 
Aliyeva et al. (2020), the woods in the area are distinguished by the presence 
of both deciduous and coniferous tree species, including oak, beech, and fir. 

2.3. Data used

This study made use of MODIS (Moderate Resolution Imaging 
Spectroradiometer) satellite data, which was made available on the GEE 
platform, in order to undertake the drought analysis that was carried out in 
Ganja, Azerbaijan. MODIS is an integral instrument that is mounted on both 
the Terra and Aqua satellites that are part of NASA’s Earth Observing System 
(EOS). The major goal of this instrument is to collect worldwide measurements 
of land, ocean, and atmospheric variables at a resolution that is somewhere 
between moderate and high. The visible through the thermal infrared spectrum 
is covered by the 36 spectral bands that are a part of the MODIS instrument. 
Depending on the particular spectral band, the device is capable of providing 
data at a variety of resolutions, ranging from 250 meters all the way up to 1 
kilometer. Due to the fact that it has a swath width of 2330 km, it is able to 
acquire footage of the entire planet in as little as one or two days.

In addition, the GEE platform utilized Sentinel-2A imagery for coding 
forest degradation in the windthrow area of Duzce and wildfire study in the 
Solquca town of Qabala. Both of these activities took place in Qabala. As a part 
of the Copernicus programme, the European Space Agency (ESA) successfully 
launched a satellite known as Sentinel-2A in the year 2015. High-resolution 
land observation is its primary purpose, and it is outfitted with a multispectral 
imaging device known as the Multispectral device (MSI). The satellite has a 
swath width of 290 kilometres and a revisit period of 5 days at the equator, thus 
it can provide frequent coverage. Additionally, the satellite has a revisit time 
of 5 days.

Figure 2. Location Map

Legend Azerbaijan (Ganja) 
Azerbaijan (Solguja village of Qabala) 
Duzce (Tatlidere) 

0         6       12                   24
 Kilometers
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2.4. Method

For the purpose of the present research, the GEE platform was utilized 
for the coding of forest area changes brought on by windthrow, to identify and 
evaluation of the impact of wildfire areas, and drought assessments. The process 
of coding was carried out within the GEE platform, making use of discrete 
procedures for the decoding of Earth observation imagery that were unique to 
each investigation. Figure 3 depicts the workflow that must be followed in order 
to carry out these analyses. 
2.4.1 Drought Analysis

It is anticipated that changes in the climate would bring about a general 
warming of the planet as well as sudden increases in the speed of the wind. It is 
anticipated that the rise in temperatures caused by global warming would add to 
the worsening of drought conditions. In addition, trees, which play a significant 
part in reducing the negative effects of environmental change, may be put at 
risk of deterioration as a result of the growing wind speeds. One such predicted 
effect is an increase in the number of wildfires around the world that are caused 
by unexpected jumps in temperature.

The Vegetation Condition Index (VCI) was utilized in order to carry out 
the task of assessing the severity of the drought. The formula for the VCI, which 
is one of the indexes that is utilized, can be found in (1). 

VCI= (X -Xmin ) / (Xmax – Xmin)* 100 (1)

In this context, X stands for the smoothed weekly absolute Normalized 
Difference Vegetation Index (NDVI), (Xmax) denotes the value of the multi-year 
NDVI that was highest, and (Xmin) is the value of the multi-year NDVI that 
was lowest. According to Kogan (1995), Kogan and Sullivan (1993), the value 
of the VCI can range from zero to one hundred, with higher values indicating 
healthier vegetation environments and lower values representing vegetation 
that is stressed. VCI values are broken down into the following categories 
according to the classification constructed by Jain et al. (2009):

• Values of the VCI between zero and ten demonstrate a very dry 
condition.

• Values of the VCI between ten and twenty suggest that there is an 
extreme drought.

• Values of the VCI falling from twenty to thirty determine an average 
drought.

• Values of the VCI from thirty to forty indicate a moderate degree 
of drought.

• VCI scores that are higher than forty imply that there is no sign 
of drought.

The VCI plays a crucial role in the agribusiness and forestry industries 
by monitoring crop health and detecting signs of drought stress. It is also a 
valuable tool for evaluating the impact of environmental changes on vegetation 
and assessing ecosystem health. In regions where ground-based tracking is 
challenging, the VCI offers numerous advantages. Dutta et al. (2015) emphasize 
its effectiveness in efficiently managing plant health and drought-induced 
stress, enabling informed decision-making.

In the current research, a time series analysis was utilized so that the 
temporal fluctuations in the VCI could be analyzed. This analytical technique 
offers insightful understanding into the ways in which the VCI has changed 
throughout the course of time. The finds that were acquired from this analysis 
help in the process of interpretation because the data are represented visually 
in the results. The analysis of time series can be applied to many different 
data layers, as long as those data layers display temporal changes and 
include both historical and up-to-date information. (Liao, 2005; Wang et al., 
2012) This methodology has seen extensive use across a variety of research 
domains, including environmental science and remote sensing, with the goal of 
investigating and better comprehending dynamic factors.

The findings of the time series analysis conducted on the VCI were 
validated using temperature and precipitation data obtained from the esteemed 
National Oceanic and Atmospheric Administration (NOAA) dataset. The 
NOAA satellite is used to detect atmospheric and climatic parameters. With 
NOAA, temperature, precipitation, and various ground measurements can be 
conducted. Due to its real-time representation of atmospheric events, NOAA is 
widely utilized in numerous research studies (Los et al., 2000; Hill et al., 2005; 
Engebretson et al., 2015).

Figure 3. Workflow (The left-hand side of the visualization represents Forest area change due to windthrow, the middle part represents Wildfire, and the right-hand side 
represents Drought in the flowchart)
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2.4.2. Detection of Changes in Forest Area Due to Windthrow Damage

The Normalized Difference Red Edge Index (NDRE) was utilized so that 
changes in forest area that were the result of windthrow could be assessed. (2) 
provides the formula that must be used in order to calculate the NDRE. 

NDRE = (ρNIR - ρRE) / (ρNIR + ρRE) (2)

The NDRE is a vegetation indicator that is an essential component of the 
algorithm that determines the rates of deforestation and reforestation. It does 
this by using reflectance values, which are affected by the amount of water 
and chlorophyll that are present in the leaves. According to Eitel et al. (2011), 
the NDRE index is a standard tool for evaluating the dynamics of vegetation 
and determining the level of stress present in plant and tree communities. 
Additionally, the NDRE index is capable of capturing reflected radiation, which 
can vary based on the particular properties of the plant species that are being 
investigated (Li et al., 2014).

For classification purposes, the area was divided into two categories: 
forested areas and regions with windthrow damage, with the drone image 
(Figure 6) of the area serving as a reference. The NDRE synthetic band has been 
added to the Sentinel-2A satellite image. Bands B2, B3, B4, B5, B6, B7, B8, 
and NDRE from the Sentinel-2A satellite image are utilized in the classification 
process. The importance values of the bands used in the classification have 
been determined according to the RF method. RF method is widely used in 
the field of machine learning. Through machine learning, it is possible to create 
specific classes within a database. RF can successfully apply the classification 
it has created and determine its effectiveness. In RF, training data is crucial, as 
it uses the provided training data to create trees within itself, aiming to achieve 
the best outcome. During the process of creating each tree, the RF algorithm 
generates random trees and separates them from each other based on the Gini 
index criterion. This allows it to provide the best possible result to the user. This 
random feature selection helps to prevent overfitting and encourages diversity 
among the trees, which ultimately contributes to an improvement in the random 
forest’s overall performance. RF generates a robust prediction that demonstrates 
better accuracy and generalization capabilities. This is accomplished by 
integrating the outputs of a number of different trees. (Breiman, 1996). In 
Random Forest (RF), “mtry” represents the number of randomly selected 
features (predictor variables) at each split point when building decision trees 
within the ensemble. It is used to create decision trees within the forest. The 
“mtry” parameter in the RF algorithm determines the subset of features to be 
considered at each decision point (Genuer et al., 2008). A smaller “mtry” value 
introduces more randomness since fewer features are taken into account at each 
split, providing increased diversity among the individual trees in the forest. 
Therefore, the performance of the Random Forest (RF) model was assessed 
using a cross-validation dataset by runing various “mtry” values. Efforts were 
made to determine the optimal “mtry” value in order to achieve the best results, 
and this value was determined to be “5.”

Gini index is a metric that is utilized in order to evaluate the efficacy of a 
split that is contained within a decision tree. According to Breiman (1996), it is 
a method for quantifying the probability of incorrectly classifying a randomly 
picked element from a set if the element were labeled randomly. This method 
is based on the distribution of labels within the subset. Following is the formula 
that may be used to determine the Gini index value (3):

∑ ∑(j≠i)(f (Ki, M) / |M|) (f (Kj, M) / |M|) (3)

The probability that the selected states belong to the class Ki is calculated 
using the expression (f (Ki,M) / |M|), while the likelihood that they belong to the 
class Kj is expressed by the equation (f (Kj, M) / |M|). Because of this scenario, 
the selected instances will contain members of many classes (Pal, 2005).

In the accuracy assessment stage, Kappa analysis, which is a widely 
utilized approach (Jensen et al., 1995; Foody, 2020), was employed. Kappa 
analysis is a statistical technique that assesses the agreement level between data 
sets and quantifies accuracy through a measure known as Kappa (Congalton, 
1991; Rwanga and Ndambuki, 2017). The Kappa formula (4) is utilized to 
conduct this analysis. 

Kappa  = (Po - Pe) / (1 - Pe)  (4)

where:
Po is calculated by dividing the total number of observations by the 

number of observed agreements.
Pe = equals the “Expected Probability of Coincidence
In categorical data, the level of agreement between observers or raters 

can be determined with the use of kappa values. The values of kappa can range 
anywhere from -1 to 1, and each value has a unique connotation depending on 
its value:

• If the kappa value is -1, it indicates that the observers are totally 
in agreement with each other. This indicates that the ratings 
present a perfect example of an inverted relationship, as well as a 
contradiction.

• A kappa value of 0 implies that the agreement was the result of 
random chance. In this instance, the observed agreement is quite 
comparable to what one would anticipate based just on the operation 
of random chance.

The level of agreement between the observers is considered to be flawless 
when the kappa value is 1. This indicates that there is perfect concordance 
between the evaluations, often known as consistency.

The interpretation of kappa values gives us the ability to understand the 
level of agreement that goes above what would be expected as a result of random 
chance. It offers a quantitative measure of agreement or disagreement, which 
gives researchers the capacity to evaluate the dependability or consistency of 
categorical data evaluations. (Gwet, 2002; Sim and Wright, 2005).

When evaluating the precision of a classification or prediction model, 
one metric that is commonly used is called the Overall Accuracy. According to 
Alberg et al. (2004) and Sui et al. (2014), it is the ratio of correctly classified 
samples or observations to the total number of samples or observations in the 
dataset. The following is the formula for the overall accuracy score (5):

Overall Accuracy = (Number of correctly classified samples / Total number of 

samples) x 100  (5) 

Overall Accuracy values fall within the range of 0 to 100, where a value 
of 0 implies no correct classifications, while a value of 100 indicates that all 
classifications are accurate.  

The values for the Overall Accuracy range from 0 to 100, where a value of 
0 indicates that there are no correct classifications and a value of 100 indicates 
that all classifications are accurate (Mellor et al., 2013). 

2.4.3. Wildfire Area Detection from Sentinel-2A Satellite Imagery

The Normalized Burn Ratio (NBR) was calculated on the Sentinel-2A 
sattelite imagery to identify wildfire-affected areas using satellite imagery 
(Lopez et al., 1991). The formula to calculate this index using the satellite 
image is provided in the following number: (6).

NBR = (ρNIR - ρSWIR) / (ρNIR + ρSWIR) (6)

The bands in the satellite image that are represented by NIR and SWIR 
correspond to specific wavelengths, such as B8 and B12 in Sentinel 2A.  
The NBR was computed using the satellite image that was captured both before 
and after the fire, and the area of the wildfire was determined by applying 
equation (7) (Lasaponara et al., 2019). 

dNBR = (NBRprefire - NBRpostfire) (7)

The NBR analysis results derived from Sentinel-2A satellite imagery 
have been subjected to classification. The following bands value were used to 
define the categories: values between +660 and +1300 indicate “High Severity,” 
whereas values between +440 and +659 indicate “Moderate-high Severity,” 
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values between +270 and +439 indicate “Low Severity,” values between +100 
and 269 indicate “Unburned,” values between -100 and -99 indicate “Enhanced 
Regrowth, Low,” and values between -250 and -101 indicate “Enhanced 
Regrowth, High” (Key and Benson, 2006). 

3. Results

3.1. Drought monitoring through VCI 

Ganja was selected as the research region to conduct drought analysis, 
and the borders of the area were outlined on the GEE platform using a geometric 
shape. A total of 301 NDVI photos were analyzed in order to determine which 
June in the region experienced the lowest amount of precipitation between 
the years 2005 and 2018. After doing some calculations, the satellite image’s 
minimum, maximum, and overall NDVI values were found. NDVI pictures 
were used in the calculation of the VCI, after which the appropriate formula 
was applied in order to generate a single image. After that, the resulting VCI 
image was categorized by assigning various colors to each class, and the results 
of that classification were displayed in the legend. According to the findings of 
the study, the month of June in the Ganja region had a drought during the year 
2014. This was determined based on the data. The results of the VCI drought 
analysis are presented in Figure 4. 

Figure 4. The result of the VCI drought index analysis

The results of the time series analysis are displayed on the console screen 
(Figure 4), which may be found here. The blue line in the graph reflects the 
changes in drought levels over time as indicated by the VCI index. The data 
points in the graph indicate the individual days on which these circumstances 
were observed. The specified region was determined to be experiencing a 
severe drought in June 2014 by using the VCI index. 

In order to verify the findings of the VCI, weather information for Ganja 
during the driest June that occurred between 2005 and 2018 was retrieved from 
the NOAA and showed in Table 1. The highest temperature ever measured in 
June was 27.9 °C in both 2014 and 2016, while 2014 also saw the least amount 
of precipitation with only 1 millimeter falling during that month. On the other 
hand, the year 2009 was marked by the highest total quantity of precipitation 
ever recorded, which came in at 23.1 millimeters.  In addition to precipitation 
(mm) and temperature (°C), the humidity (%) levels between June 2005 and 
2018 were also determined from NOAA data. According to NOAA data the 
minimum humidity level was recorded in 2014 at 1% while the maximum 
humidity levels were detected in 2009 and 2010 at 14%. The data provided by 
the NOAA indicate that the month of June 2014 was classified as a drought year 
because of the significant disparity between the average temperature, amount 
of precipitation and the humidity. The VCI time series analysis, which was 
performed using MODIS satellite imagery, came to the conclusion that June 
2014 was the driest month ever recorded. 

3.2. The detection of reforestation and deforestation area changes due to wind-
throw

Within a windthrow area during the course of a single year, this study made 
use of Sentinel-2A photos to identify places that have undergone reforestation 
as well as deforestation. The major purpose of the method was to provide an 
estimation of the size of these regions expressed in hectares. The algorithm 

consisted of a few different phases. To begin, NDRE values were determined by 
using the satellite photos that were obtained in the months of June 2018 and June 
2019. Subsequent to this step, the RF classification, based on the drone imagery 
(Figure 5.), was applied to satellite photographs taken in the same month for both 
regions. Overall Accuracy and Kappa Statistics were utilized in the process of 
determining whether or not the categorization was accurate. 

Figure 6. on the GEE platform provides a graphical representation of the 
findings of the investigation.

Figure 5. The drone imagery of the area affected by windthrow damage

Table 1. Average precipitation, temperature and humidity NOAA (2005-2018)

Date Precipation 
(mm)

Temperature (°C) Humidity (%)

2005 11 22.8 7
2006 18 20.1 9
2007 7 26.3 5
2008 18 26.7 9
2009 27 23.1 14
2010 23 26.5 14
2011 4 25.1 2
2012 2 26.9 2
2013 18 24.6 10
2014 1 27.4 1
2015 2 26.7 2
2016 6 27.9 4
2017 6 27.1 4
2018 16 25.6 9



443Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data 

Figure 6. Result of deforestation algorithm (windthrow) analysis

According to the findings of the study, there was reforestation in an area 
of roughly 4.22 hectares between the years 2018 and 2019, but there was also 
deforestation in an area of approximately 24 hectares during that same time 
period. According to the data that was collected, reforestation accounted for 
0.95% of the total area, whereas deforestation affected 5.39% of the land, and 
the remaining 93.66% of the area did not change. Both the 2018 and 2019 
satellite photos showed promising performance when it came to the accuracy 
evaluation of the classification results. It was discovered that the total accuracy 
of the image for 2018 was found to be 92.2%, which indicates a high level of 
agreement between the secret image and the data collected from the ground. 

Figure 7. Importance values for the classified bands in the Sentinel-2A satellite 
imagery from the year 2018.

Figure 8. Importance values for the classified bands in the Sentinel-2A satellite 
imagery from the year 2019.

This would imply that the classification model was successful in capturing 
the various land cover classifications to an acceptable level of accuracy. For 
the picture from 2018, the Kappa statistic, which gauges agreement, came out 
to be 0.84 when it was calculated. This score demonstrates a significant level 
of agreement and adds even more weight to the validity of the classification 
outcomes. The Total Accuracy was calculated to be 93.75% for the satellite 
picture that was acquired in 2019, which, when compared to the image that 
was acquired in 2018, indicates a marginal improvement in accuracy. The 
Kappa Statistic for the 2019 image was calculated to be 0.85, which once again 
demonstrates a significant level of agreement between the two sets of data. The 
importance graph of the bands for the Sentinel-2A satellite images classified by 
the RF method in the years 2018-2019 is provided in Figure 7. and Figure 8.

In the classification results based on Sentinel-2A for the years 2018-2019, 
the most crucial band for classification was found to be B4 (RED) within the 
wavelength range of 0.665-0.705 μm. On the other hand, B8 (Vegetation Red 
Edge) within the wavelength range of 0.783-0.842 μm contributed the least to 
the classification.

3.3. Wildfire area mapping and assessment 

For the purpose of this study, imagery obtained from the Sentinel-2A 
satellite was analyzed to locate areas affected by wildfires. In order to determine 
which regions were burned, the NBR index was applied in the form of coding. 
Before computing the NBR index, cloud masks were applied to both pre-fire 
and post-fire satellite pictures. This was done to guarantee that the results were 
accurate. This procedure serves to reduce the influence that cloud cover has on 
the results of the analysis. The generated NBR index photos were separated 
into pre-fire and post-fire images while they were being processed by the GEE 
platform. It was possible to exactly calculate the size of the region that was 
affected by the wildfire by using the equation (NBR prefire-NBR postfire) to 
subtract the NBR value of the image that was taken before the fire from the 
NBR value of the image that was taken after the fire. This approach makes 
it possible to identify and map the precise regions that were impacted by the 
wildfire. This approach provides vital information that can be used for further 
analysis and management purposes. Wildfire area recognition is made more 
accurate and efficient thanks to the integration of satellite data, the NBR index, 
and approaches for cloud masking into the GEE platform.

We followed the scale that was presented in Figure 9., which was initially 
devised by Key and Benson (2006), in order to classify the wildfire area that 
was found. Figure 10. provides a graphical representation of the extensive 
findings that were derived from our examination and was received from the 
GEE platform.
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Severity Level dNBR Range 
(scaled by 103)

 dNBR Range 
(not scaled)

Enhanced Regrowth, 
high (post-fire)  -500 to -251  -0.500 to -0.251

Enhanced Regrowth, 
low (post-fire)  -250 to -101  -0.250 to -0.101

Unburned  -100 to +99 -0.100 to +0.99

Low Severity +100 to +269  +0.100 to +0.269

Moderate-low 
Severity  +270 to +439  +0.270 to +0.439

Miderate-high 
Severity +440 to +659  +0.440 to +0.659

High Severity  +660 to +1300 +0.660 to +1.300

Figure 9. The severity levels of burning

Enhanced Regrowth, lost (post-fire)
Unburned
Low severity
Moderate-low Severity
Moderate-high Severity
High Severity

Figure 10. The result of the NBR index analysis

According to the findings of the investigation into the NBR index, the 
wildfire was responsible for the destruction of approximately ~1,007 hectares 
of land. In particular, the evaluation found that about ~219 hectares were 
categorized as “High Severity,” ~262 hectares were classed as “Moderate-
high Severity,” and the remaining hectares were classified as “Low Severity.” 
~194 hectares were classified as having “Moderate-low Severity,” while ~332 
hectares were classified as having “Unburned and Enhanced Regrowth, Low 
(post-fire).”

4. Discussion

During this period of increased frequency in natural disasters, numerous 
regions are experiencing damage. It is imperative to promptly identify the 
affected and damaged areas, initiating the rehabilitation process swiftly. The 
most time-efficient method for identifying damaged areas and monitoring the 
recovery process is through satellite imagery. In recent times, cloud-based 
approaches have gained prominence, facilitating faster analysis by alleviating 
the impact of satellite imagery on computer storage capacity. In this study, 
the GEE platform, utilizing cloud storage, has been chosen for its advantages 
in enabling efficient analysis and processing. Within GEE, it is possible to 
observe various interdisciplinary studies such as land cover mapping (Huang 
et al., 2017), vegetation monitoring (Li et al., 2020), land use change detection 
(Adelisardou et al., 2021), forest carbon mapping (Kafy et al., 2023), urban land 
cover analysis (Sidhu et al., 2018), and evaluating large-scale environmental 
initiatives (Lin et al., 2020). In addition to these analyses, GEE can also be 
applied to studying natural disasters such as wildfires (Tavakkoli Piralilou et 
al., 2022) and drought analysis (Khan and Gilani, 2021). In this study, analyses 

have been conducted on drought, wildfire area detection, and forest change 
detection due to windthrow.

For drought analysis, indices such as the Temperature Condition Index 
(TCI) and Vegetation Health Index (VHI) can be used. However, in the 
mentioned study, Vegetation Condition Index (VCI) was employed to identify 
the driest month of June. The preference for using VCI in drought analysis is 
based on a study by Zhong et al. (2020), which stated that VCI values increase 
during the vegetation development process but decrease outside the vegetation 
periods. The study emphasized the usefulness of the Vegetation Condition 
Index (VCI) in drought analysis by highlighting its strong correlation with 
precipitation and temperature, excluding the vegetation periods. In another 
study utilizing VCI, Niu et al. (2022) used MODIS satellite imagery. They 
emphasized the high correlation between VCI and precipitation as well as 
temperature in the Pearl River Basin, and highlighted its strong relationship 
with soil moisture. In a different study, Dai et al. (2022) stated that VCI values 
increase during vegetation development periods. They also emphasized the 
significant correlation between VCI and temperature, noting that VCI decreases 
with rising temperatures and reduced rainfall. Based on the collective evidence 
from these studies in the literature, it can be concluded that VCI serves as a 
promising indicator of drought. 

Monitoring the temporal changes in drought is of great importance 
due to the anticipated increase in drought occurrences as a consequence of 
climate change, which can have detrimental effects on forest areas and other 
natural habitats. In this coding study, the Vegetation Condition Index (VCI) 
was calculated and time series analysis was performed to detect variations in 
drought over the years. Other researchers, such as Zhao et al. (2021), Khan and 
Gilani (2021) and Zhao et al. (2022), have conducted similar studies; however, 
these investigations were conducted in different countries. Notably, Rezaei et 
al. (2014) previously employed the VCI in a study conducted in Azerbaijan 
to determine drought levels. Their research focused on Sharghi and identified 
drought years between 2000 and 2011, highlighting the highest drought 
levels in 2000, 2001, 2008, and 2009. However, their study did not include 
an analysis of drought trends over the years and was limited by the absence of 
local weather station data. In contrast, this present study, conducted in Ganja 
province, utilized two distinct data sources to assess drought levels. According 
to the VCI analysis, the driest month in Ganja was June 2014. The results of the 
analysis, based on temperature, precipitation and humidity parameters obtained 
from NOAA, are supportive of each other.

Another analysis conducted in the study is the identification of wildfire 
areas. The studies conducted by Parks et al. (2018), Arruda et al. (2021), 
and Konkathi and Shetty (2021) can be observed regarding the detection of 
wildfire areas on the GEE platform. Parks et al. (2018), Arruda et al. (2021), 
and Konkathi and Shetty (2021) utilized the Normalized Burn Ratio (NBR) 
to identify wildfire areas. They emphasized the ability of NBR to rapidly and 
accurately detect wildfire areas within defined boundaries. In our GEE wildfire 
area detection study, we also employed NBR. According to the NBR results, we 
determined that approximately ~1007 hectares of land in the Solquca village 
of Qabala were affected by wildfires. In a research conducted by Konkathi 
and Shetty (2021), utilizing NBR, it was stated that a total of ~78,000 hectares 
of land in the Kudremukh National Park in the Western Ghats of India were 
affected by wildfires. Another study using NBR, conducted by Parks et al. 
(2018), emphasized the successful detection of 18 different wildfires in the 
United States. They found that the average size of the wildfires was ~15,000 
hectares. In a different study, Arruda et al. (2021) identified a total area of 
~20,223 hectares affected in the Brazilian savanna using NBR. Arruda et al. 
(2021) emphasized the reliability of NBR by stating that it detected 97% of 
the fire-affected area in their study. Parks et al. (2018), Arruda et al. (2021), 
and Konkathi and Shetty (2021) have reported wildfire sizes in their respective 
studies that are larger than the affected area in Solquca village of Qabala. In 
contrast to other studies Parks et al. (2018), Arruda et al. (2021), and Konkathi 
and Shetty (2021), this study incorporated the use of “Focal Statistics” after 
NBR classification to calculate the statistics of each cell in relation to its 
neighboring cells, thus minimizing pixel misclassification. The use of Focal 
Statistics can contribute to the establishment of more precise boundaries and 
more accurate results for burnt areas. According to the results obtained from 
the application of Focal Statistics, the wildfire in Qabala was categorized 
into various severity classes: ~219 hectares were classified as high severity,  
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~262 hectares as moderate-high severity, ~194 hectares as moderate-low 
severity, and ~332 hectares as low severity. 

In this study another analysis, changes in forested areas affected by 
windthrow were detected by calculating the NDRE and applying classification 
based on RF. The classification was validated using the areas identified in the 
drone imagery as a reference. While previous studies by Schmid (2017) and 
Brovelli et al. (2020) employed the Normalized Difference Vegetation Index 
(NDVI) in the study to explore forest change areas, this study used the NDRE 
index to assess changes in forest areas resulting from windthrow. The decision to 
use NDRE was influenced by the findings of Minařík and Langhammer (2016), 
who highlighted its superior boundary delineation capabilities in damaged 
forest areas. This choice was further supported by Einzmann et al. (2017), who 
identified NDRE as one of the most suitable indices for windthrow-affected 
areas. Additionally, Reinisch et al. (2020) demonstrated the effectiveness of 
NDRE in detecting deforestation impacts on vegetation, indicating its potential 
as a valuable tool for monitoring land-use change effects on ecosystems. Sharifi 
and Felegari (2023) also confirmed the higher sensitivity of NDRE compared 
to NDVI in assessing changes in vegetation health and biomass. For the satellite 
image classification, the RF classification technique was employed in this study. 
The preference for RF was based on the studies conducted by Sheykhmousa et 
al. (2020), Na et al. (2010), and Zhang and Yang (2020), which demonstrated 
the superior performance of RF compared to other classification methods such 
as Support Vector Machine (SVM) and CART. RF exhibited higher accuracy in 
the classification results. The classification results using RF showed an overall 
accuracy of 92.2% and a Kappa statistic of 0.84 for the 2018 satellite image. 
Similarly, for the 2019 image, the overall accuracy was 93.75% with a Kappa 
statistic of 0.85. These statistical results indicate a high level of reliability in 
the classification results, falling under the “Almost perfect agreement” category 
as defined by Viera and Garrett (2005). The classification of images showing 
windthrow-induced changes in forests, categorized under “Almost perfect 
agreement,” demonstrates the efficacy of the NDRE index in detecting changes 
in forested areas affected by windthrow.

5. Conclusions

Climate change is causing serious disruptions to natural ecosystems. The 
disturbances in natural ecosystems lead to global water scarcity, followed by the 
emergence of drought issues. Additionally, there is a significant increase in forest 
fires, another natural disaster, observed worldwide. Climate change has resulted 
in changes in certain climate parameters. One of the parameters undergoing 
changes is wind speed. Sudden increases in wind speed can create serious 
disruptions in ecosystems. It is crucial to detect and initiate the rehabilitation 
of ecosystem disturbances as soon as possible. To commence rehabilitation, it 
is necessary to promptly identify the damaged areas. Satellite images are the 
most suitable tool for identifying damaged areas in the most cost-effective and 
time-efficient manner. However, the processing time for satellite images can be 
lengthy. The processing can be expedited by implementing specific algorithms 
and platforms. One of the platforms that shortens the processing time of satellite 
images is GEE. In this study, GEE was utilized for the analysis of natural 
disasters that have occurred in conjunction with climate change. Different 
algorithms were used for each analysis, and the results of the analyses were 
evaluated. This study specifically focused on the analysis of drought, wildfire, 
reforestation and deforestation area changes due to windthrow addressing 
disruptions in natural ecosystems. The study provides information on the 
detection of natural disasters in satellite images and the monitoring process.

Availability and Requirements

Drought Code: https://code.earthengine.google.com/
b7c272045e4c0de79124c8d312c445b5

Forest Area Change due to Windthrow Code: https://code.earthengine.
google.com/e84759ded357047b9e751149d0bf600c

Wildfire Areas Detection Code: https://code.earthengine.google.
com/063621b947fbcf6266175cb0cd0bf9de
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