
ISSN 1794-6190 e-ISSN 2339-3459
https://doi.org/10.15446/esrj.v28n3.112376

EARTH SCIENCES 
RESEARCH JOURNAL

Earth Sci. Res. J. Vol. 28, No. 3 (September, 2024): 277 - 285

G
EO

PH
Y

SI
C

S

Spatial Porosity Modeling in the Mixed Siliciclastic-Carbonate Kazhdumi Reservoir  
in an Iranian oilfield located in Abadan Plain

Zahra Sadeghtabaghi*, & Vali Mehdipour
1. Exploration and Production, Dana Energy Co, Tehran, Iran

*zahrasadeghtabaghi@aut.ac.ir

How to cite item:
Sadeghtabaghi, Z., & Mehdipour, V. (2024). Spatial 
Porosity Modeling in the Mixed Siliciclastic-Carbonate 
Kazhdumi Reservoir in an Iranian oilfield located in 
Abadan Plain. Earth Sciences Research Journal, 28(3), 
277-285. https://doi.org/10.15446/esrj.v28n3.112376

Record
Manuscript received: 05/01/2024
Accepted for publication: 18/10/2024

ABSTRACT

Spatial porosity modeling is vital in static modeling, as variations in both lateral and vertical dimensions significantly 
influence reservoir quality and volumetric calculations. This study focuses on the spatial modeling of effective porosity 
in the mixed siliciclastic and carbonate Kazhdumi reservoir within a section of the Abadan Plain. Despite numerous 
studies on porosity distribution, a suitable model for the studied area has yet to be established. Here, electrofacies 
analysis is employed to distribute porosity more accurately. Petrophysical logs, including porosity and mineral volumes 
from eight drilled wells in the Abadan Plain, were analyzed. Electrofacies analysis revealed high porosity in sandy sili-
ciclastic intervals, contrasting with shaly facies that exhibit poor reservoir characteristics. Additionally, two calcareous 
facies were identified. Data analysis linked porosity to facies codes, ensuring a better match between porosity and rele-
vant facies distributions. The constructed porosity model of the Kazhdumi Formation is a significant outcome of this 
study. On average, carbonate intervals exhibit 6% porosity, while sandy intervals exhibit 8%. Notably, the northern and 
western parts of the studied area display increased porosity, reaching up to 9%. Siliciclastic intervals generally exhibit 
higher reservoir quality compared to carbonate intervals.

Keywords: Kazhdumi reservoir; Effective porosity; 
Electrofacies; Spatial modeling;
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Caracterización del espacio poroso en el reservorio siliclástico y carbonatado de Kazhdumi, en un campo petrolífero en la 
llanura de Abadan, Irán

La caracterización del espacio poroso es determinante en el modelado estadístico de un reservorio ya que las varia-
ciones laterales y verticales influyen significativamente en su calidad y en los cálculos volumétricos. Este estudio se 
enfoca en la caracterización espacial de la porosidad efectiva del reservorio siliclástico y carbonatado de Kazhdumi, 
en una sección de la llanura de Abadan. A pesar de numerosos estudios en la distribución de la porosidad, aún no se 
ha establecido un modelo apropiado para el área de estudio. En este estudio se utilizó el análisis de electrofacies para 
distribuir la porosidad con mayor exactitud. Se analizaron registros petrofísicos, entre ellos la porosidad y el volúmen 
mineral, de ocho pozos perforados en la llanura de Abadan. Los análisis de electrofacies revelaron una alta porosidad 
en los intervalos arenosos siliclásticos, en contraste con las facies esquistosas de los reservorios de parámetro pobre. 
Adicionalmente se identificaron dos facies calcáreas. En el análisis de datos se vinculó la porosidad con los códigos de 
las facies con el fin de asegurar un mejor acople entre la porosidad y las distribuciones de las facies relevantes. El mode-
lo de porosidad construido para la Formación de Kazhdumi es un logro significativo de este estudio. En promedio, los 
intervalos carbonatados muestran el 6 % de porosidad, mientras que los intervalos arenosos muestran el 8 por ciento. 
Se resalta que en las partes hacia el norte y hacia el oeste del área de estudio se registró un incremento en la porosidad 
de hasta el 9 por ciento. Los intervalos siliclásticos generalmente muestran parámetros mayores de la calidad del reser-
vorio en comparación con los intervalos carbonatados.

RESUMEN
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1. Introduction

Reservoir quality assessment is a vital component of field studies that 
underpins commercial development. Among different parameters affecting 
reservoir quality, porosity is a substantial factor. Since porosity is an important 
parameter in identifying and understanding the behavior of an oil reservoir, its 
proper spatial distribution is necessary. In fact, porosity is the fundamental rock 
property which affects the reservoir fluid volume directly (Wong et al., 1995). 
In addition to reserve estimation, porosity model can be applied for reservoir 
simulation, pore pressure prediction, etc. (Dvorkin and Nur., 2002).

The spatial distribution of porosity parameter has always been a 
favorite subject for researchers due to its effect on reservoir management and 
development. Spatial behavior of the porosity in Shurijeh B gas reservoir in 
Khangiran gas field has been assessed by Hosseini et al., 2019. They used 32 
wells information to model porosity applying kriging and Sequential Gaussian 
Simulation methods. Artificial neural network method has been used as a strong 
tool for this purpose (Esmaeilzadeh et al., 2013; Zargari et al., 2013; Arabani 
and Nabi-Bidhendi, 2002; No., 2011). Also, other geostatistical methods such 
as ordinary kriging have been used for spatial porosity distribution in the Asmari 
reservoir of Mansuri oilfield (Nazarpour et al., 2014). Although, previous 
researches reveal valuable results, they are limited to using geostatistical and 
artificial intelligence methods for determining spatial distribution of porosity. In 
this paper, the electrofacies analysis has been applied to be link to the porosity 
parameter in order to achieve more appropriate spatial distribution. In addition, 
GRFS algorithm was applied for porosity distribution. Moreover, it must be 
emphasized that porosity variation of mixed siliciclastic and carbonate of 
Kazhdumi reservoir has not yet been studied in this area.

As a main reservoir property, porosity can be distributed using geostatistics 
in 3D static reservoir models (Huysmans and Dassargues., 2013). The reliability 
of the porosity model is influenced by several factors, including the quality 
of porosity interpretation, the number of wells, cell size, upscaling methods, 
geostatistical algorithms, and secondary variables. Incorporating microfacies, 
electrofacies, or seismic facies can also enhance the understanding of 
porosity distribution. Furthermore, utilizing an acoustic impedance cube as 
a secondary variable for co-simulation can provide significant value in the 
modeling process. To construct a proper model of porosity, an appropriate 
zonation is required. Obviously, reservoir zonation plays a vital role in field 
development programs and production management. In this regard, applying 
sequence stratigraphic concept can provide an efficient reservoir zonation 
(Magalhães et al., 2020). Due to the efficiency of using sequence stratigraphy 
in reservoir zonation, widespread researches have been done. For instance, 
sequence stratigraphic approach has been applied for carbonate, siliciclastic, 
and carbonate-siliciclastic reservoirs (Jodeyri-Agaii et al., 2018; Mehrabi et al., 
2019; Kiani et al., 2022, Asadi et al., 2022; Magalhães et al., 2020; Enayati–
Bidgoli and Rahimpour-Bonab., 2022).

Jodeyri-Agaii et al., (2018) conducted a detailed investigation into the 
depositional and diagenetic characteristics of Mishrif carbonates within a 
sequence stratigraphy context. Their research demonstrated that substantial 
portions of the Mishrif Reservoir are shaped by diagenetic processes associated 
with subaerial exposure, resulting in the development of zones characterized 
by increased storage capacity and enhanced rates of fluid flow. Mehrabi et 
al., (2019) examined the reservoir rock typing and zonation of the Cretaceous 
Dariyan Formation through the concepts of sequence stratigraphy. Their 
analysis revealed that the reservoirs associated with the lower and upper 
carbonate units of the Dariyan Formation possess distinct lithofacies and 
diagenetic modifications. These variations are attributed to deposition within 
two intrashelf basins situated in the northwestern and southeastern regions of 
the Persian Gulf, as well as subsequent exposure to meteoric water flow during 
episodes of subaerial exposure.

In this paper, despite previous publications, sequence stratigraphic 
zonation and electrofacies analysis have been used to reach better porosity 
distribution. In other words, the 3D effective porosity model of the Kazhdumi 
reservoir in the studied field (located in the Abadan Plain) has been modeled 
using electrofacies of mixed siliciclastic and carbonate facies. To that end, 

as the primary step, the zonation of the Kazhdumi Formation has been done 
using sequence stratigraphic concept. Subsequently, interpreted petrophysical 
logs, which include mineral volumes and effective porosity, were utilized for 
electrofacies analysis through the application of the MRGC method. In the next 
step, the electrofacies codes were modeled using SIS algorithm. Eventually, 
the porosity has been modeled by applying GRFS algorithm and linking to the 
facies codes. Therefore, average maps were generated based on constructed 
models which can provide a great insight into the lateral changes of porosity 
along the studied area which is a beneficial achievement.

Following the introduction, the geological characteristics of the studied 
area, along with a detailed overview of the Kazhdumi Formation, will be 
presented. The methodology section will outline the key concepts related to 
sequence stratigraphy, zonation, and modeling. Finally, in the results section, 
the constructed porosity model will be evaluated, and maps depicting the 
porosity distribution in sand and carbonate facies will be generated to illustrate 
the lateral variations.

2. Geological setting

The Zagros Basin includes both carbonate (such as Ilam, Sarvak, etc) and 
siliciclastic (Kushk sandstone and Azadegan sandstone) reservoirs. The studied 
field is located in the Abadan Plain. The Abadan Plain, situated in southwestern 
Iran, is characterized as a structural subzone. This is limited by Zagros 
Mountain, Persian Gulf, and Iraq (Motiei, 1993). Abadan Plain is located in the 
northwest of the Persian Gulf (Figure. 1). The structures of this area follow the 
N-S trend. Geophysical studies and previously drilled wells are two important 
sources of information in this area.

Kazhdumi Formation was deposited in the late early Cretaceous (Albian). 
The Kazhdumi Formation, part of the Cretaceous Bangestan Group, is exposed 
in the Dezful Embayment and the Fars and Izeh Zones of the Zagros region 
(Motiei, 1993). This formation is conformably situated above the Dariyan 
Formation and is underlain by the Sarvak Formation (James and Wynd, 
1965). The reference section of the Kazhdumi Formation, characterized by a 
thickness of 210 meters, is located in Tang-e-Gurguda, approximately 10 km 
north of Gachsaran City, as originally described by James and Wynd (1965). 
The formation is widely distributed across southwestern Iran, particularly in 
the Dezful Embayment, the Abadan Plain, and the northwestern Persian Gulf.

The Kazhdumi Formation was deposited in a mixed environment 
comprising both carbonate and clastic materials. It includes calcareous and dark 
bituminous shales that interdigitate with argillaceous limestone and sandstone, 
especially in its lower section. A significant rise in sea level during the Albian 
period led to the deposition of dark organic-rich shales and argillaceous 
limestones of the Kazhdumi Formation in Iran, as well as its equivalents, such 
as the Nahr Umr Formation, in neighboring regions (Motiei, 1993; Ghazban, 
2009). The presence of ammonite fossils and a foraminiferal-oligosteginid 
assemblage indicates the formation’s origination in deep marine conditions 
characterized by anoxia and a connection to the Neo-Tethys (Ziegler, 2001). 
The basal sandstone and shale layers of the Kazhdumi Formation are referred to 
as the “Azadegan Sandstone Member” (Esrafili-Dizaji and Rahimpour-Bonab, 
2019; Mehrabi et al., 2019).

In the Dezful Embayment, the Kazhdumi Formation has been referred to 
as the source of the accumulated oils in Bangestan Group. It is also the most 
important source rock for the reservoirs accumulated in Asmari Formation. The 
Kazhdumi Formation in the studied field has carbonate and siliciclastic intervals 
which both have hydrocarbon potential (Figure 2). The Azadegan sandstone 
member (siliciclastic) of the Kazhdumi Formation with a sandstone-shale 
lithology is known as a reservoir in some Iranian offshore oil fields (Alsharhan, 
1994). In the studied field, Azadegan sandstone member is one of the important 
reservoir intervals, although the carbonate interval of the Kazhdumi Formation 
also has notable potential. It is a well-known source rock in the Zagros Basin 
(Bordenave and Burwood, 1990 and 1995; Bordenave and Huc, 1995; Shakib, 
1987).  In the studied field, thickness of the Kazhdumi Formation is about  
230 m, including about 58 m for Azadegan Member.



279Spatial Porosity Modeling in the Mixed Siliciclastic-Carbonate Kazhdumi Reservoir in an Iranian oilfield located in Abadan Plain

Figure 1. The Abadan Plain location (Shabani et al., 2020)

Figure 2. Simplified stratigraphic chart of Abadan Plain. Please note that the dominant lithology in each formation is presented, and this column is drawn in a simple and 
general form (Sadeghtabaghi et al., 2024).

3. Methodology

In this study, data sets of an Iranian oilfield (eight wells) have been used. 
Petrophysical data (conventional raw and result logs), well deviation data, well 
coordinates, depth surfaces, and formation tops are the applied data of this 
paper. Figure 3 illustrates the fundamental steps undertaken in this paper. A 
detailed description of these steps is provided in the subsequent sections.

Figure 3. Schematic of this paper’s steps.
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Reservoir zonation

Estimating rock porosity and its spatial distribution in a heterogeneous 
reservoir is a significant step in static reservoir modeling. However, separating 
the reservoir and non-reservoir rocks (zonation) in heterogenous reservoir 
is very important. In this paper, reservoir zonation has been done based on 
sequence stratigraphy concept. Reservoir zonation is one of the most important 
applications of sequence stratigraphy.

Sequence stratigraphy examines how sediment responds to variations in 
sea level and the resulting depositional patterns that arise from the interaction 
between accommodation (the space available for sediments) and sedimentation. 
This field offers significant insights into the Earth’s geological history, revealing 
responses to both local and global changes, and enhancing predictive capabilities 
in economic exploration and production. The foundational principles of 
sequence stratigraphy largely transcend the specific depositional environments 
found within sedimentary basins, such as siliciclastic versus carbonate settings. 
Typically, clastic systems are used to illustrate these concepts (Van Wagoner et 
al., 1988; Catuneanu et al., 2009).

Researchers often describe sequence boundaries and stratigraphic units 
in relation to shifts in relative sea level, which involve a combination of global 
eustatic sea level changes and regional subsidence due to tectonic activity, 
thermal effects, and load-induced subsidence. The alterations caused by these 
vertical forces either increase or decrease the accommodation space available 
for sediment accumulation in a basin. Additionally, the rate of sediment 
supply influences how quickly that space is filled. Sequence boundaries are 
considered the most critical surfaces and are defined as unconformities or their 
corresponding conformities, typically resulting from a fall in sea level.

The idea of systems tracts has emerged to connect contemporary 
depositional systems. These tracts serve as subdivisions within a sequence, 
classified based on their strata stacking patterns, sequence position, sea level 
fluctuations, and types of bounding surfaces.

•	 A low-stand systems tract (LST) occurs when sedimentation rates 
exceed the rate of sea level rise early in the sea level curve, defined 
by a subaerial unconformity or its equivalent at the base and a 
maximum regressive surface at the top.

•	 A transgressive systems tract (TST) is delineated by a maximum 
regressive surface at the base and a maximum flooding surface at 
the top, forming when the rate of sedimentation cannot keep up with 
rising sea levels.

•	 A high-stand systems tract (HST) develops during the later phase 
of rising base levels, when the rate of sea level rise falls below the 
sedimentation rate, resulting in a high-stand period defined by a 
maximum flooding surface at the base and a composite surface at 
the top.

•	 A regressive systems tract forms in the marine portion of the basin 
during a fall in base level, coinciding with the development of 
subaerial unconformities on the landward side of the basin (Van 
Wagoner et al., 1988; Catuneanu et al., 2009).

INPEFA, an acronym for Integrated Prediction Error Filter Analysis, is 
a methodological framework that facilitates the transformation of the Gamma 
Ray (GR) curve into a spectral trend attribute curve, commonly referred to as 
the INPEFA curve. This analytical technique is particularly adept at processing 
facies-sensitive well logs. The resultant INPEFA curves elucidate discontinuities 
present in the log data, which, from a geological perspective, can be interpreted 
as hiatuses, erosional surfaces, or shifts in lithology and sedimentation rates. 
Given that these geological phenomena may occur at both field and regional 
scales, INPEFA curves provide significant utility in well correlation and 
reservoir zonation (Nainggolan et al., 2019; Soua., 2012).

The INPEFA curve represents a robust alternative method for interpreting 
wireline log (GR) data, allowing for the extraction of key sequence stratigraphic 
information and offering a comprehensive framework for understanding 
sequence stratigraphy. This curve effectively captures the succession of climatic 
phases during sediment deposition and is principally governed by the processes 
of relative transgression and regression occurring across the sedimentary 
basin throughout the sedimentation process. Consequently, the INPEFA curve 
delineates the ordering of sequences that evolve within a stratigraphic package, 
thereby contributing to a refined understanding of sedimentary processes and 
stratigraphic architectures (Nainggolan et al., 2019; Soua., 2012).

As known, sequences can be defined based on stacking patterns and 
stratigraphic surfaces (Magalhães et al., 2020). Gamma-ray data can be used 
for reservoir zonation based on sequence stratigraphy concept using some 
softwares such as Cyclolog which applied in this study (Emery and Myers, 
1996). The system tracts, along with their associated boundaries—such as 
the Maximum Flooding Surface (MFS) and Sequence Boundary (SB)—are 
identified through variations in the gamma ray log, which exhibit decreasing 
and incremental patterns. As decreasing trend of the gamma ray log, represents 
the regressive system tract and increasing trend of the gamma ray log, indicate 
transgressive system tract (Sarg, 2001). The Cyclolog software has been used 
in this paper which applies INPEFA trends.

Electrofacies analysis

In this study, Geolog software has been used for electrofacies analysis. 
The electrofacies determination and clustering were done using Facimage 
module of this software. The term “electrofacies” was originally defined as a set 
of log responses that characterizes a bed and permits it to be distinguished from 
others (Serra and Abbott, 1980). These properties are defined by the physical 
characteristics of the rocks to which the wireline logs respond. Effective 
porosity, along with the mineral volumes of calcite, quartz, and shale, were 
chosen as the input interpreted logs. After normalizing the input data, the logs 
were trained using the MRGC algorithm. Figure 4 displays the cross plots of the 
input logs organized into different clusters.

Figure 4. Cross plots between input logs in different clusters (Kazhdumi Formation 
from the eight studied wells). Note that PHIE refers to effective porosity, while 

VOL_CALCITE, VOL_QUARTZ, and VOL_WCS represent the volumes 
of calcite, sand, and shale, respectively. The colors utilized in the figures are 

designated according to Facies classes. For understanding these colors, please refer 
to the Table. 4.

Property modeling

The primary purpose of creating a static model is to create a 3D 
representation of the reservoir in order to assist in the development of the 
hydrocarbon resources. Static modeling consists of two important steps 
structural and property modeling followed by volumetric calculation, 
uncertainty analysis, and sensitivity analysis. Structural modeling contains 
fault modeling, 3D geocellular modeling, making horizons, making zones, and 
layering (Mehdipour et al., 2023). Property modeling is the process of assigning 
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data, discrete (facies) or continuous petrophysical properties (such as porosity, 
and permeability …), to the cells of the 3D fine grid.

Sequential Indicator Simulation (SIS) is a variogram-based technique for 
categorical simulation that has gained considerable traction in the modeling of 
categorical variables. This method is particularly advantageous in situations 
where there are no discernible genetic shapes amenable to object-based 
modeling. In the context of petrophysical modeling, Sequential Gaussian 
Simulation (SGS) has been found to exhibit slower computational performance 
when compared to Gaussian Random Function Simulation (GRFS). This 
disparity in speed arises from SGS’s sequential computation of input 
variables, which enables it to encompass a broader spectrum of uncertainty. 
This sequential characteristic is the fundamental distinction between SGS and 
GRFS; the latter operates with random sampling in a more expedited manner, 
thereby capturing a narrower range of uncertainty. Consequently, the integration 
of GRFS with any facies modeling algorithm generally results in a reduced 
range of uncertainty when juxtaposed with the integration of SGS with the same 
algorithmic approaches (Alabert, 1987; Aduomahor and Ibezim, 2020; Bai and 
Tahmasebi, 2022).

The amalgamation of SIS and SGS is noteworthy for yielding the 
highest range of uncertainty, attributable to the sequential nature inherent in 
both methodologies. SIS employs upscaled cells to establish the proportions of 
various facies types being modeled, while the variogram serves to regulate the 
distribution and connectivity among these facies. This renders SIS particularly 
effective for modeling facies characterized by ambiguous or undefined shapes, 
especially in scenarios where input data are sparse. Conversely, SGS is founded 
on a straightforward and mathematically robust algorithm that, while providing 
flexibility, does not replicate the input variance with the same level of precision. 
The synergistic combination of SIS and SGS facilitates the effective capture 
of extreme values, both maximum and minimum; however, it is generally 
considered to be slower in execution compared to alternative methods (Alabert, 
1987; Aduomahor and Ibezim, 2020; Bai and Tahmasebi, 2022).

In this study, a structural model with 100m × 100m gridding was 
constructed. After structural modeling, the electrofacies codes and effective 
porosity were scaled up. Then, data analysis has been done for both of them. 
Therefore, vertical proportion setting (for EFAC) and data transformation 
setting (for PHIE) were set, and then variography setting has been done for both 
properties. Major, minor and vertical ranges with other necessary parameters 
for variography of porosity and electrofacies such as sill, azimuth, nugget and 
variogram type have been shown in Table 1 and Table 2.

Table 1. Variography setting for porosity distribution
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Table 2. Variography setting for electrofacies distribution

M
aj

or
 r

an
ge

 
(m

)

M
in

or
 r

an
ge

 
(m

)

Ve
rt

ic
al

 
ra

ng
e 

(m
)

Si
ll

A
zi

m
ut

h

N
ug

ge
t

Ty
pe

from to from to from to from to
0 0.0001 Spherical

5509 17193 3272 6731 1.04 3.253 0.3895 1.2737

In the next step, 3D modeling of electrofacies and porosity was performed 
using stochastic simulation algorithms. Gaussian simulation methods, including 
SGS (Sequential Gaussian Simulation), SIS, and GRFS, are conditional 
geostatistical techniques that utilize kriging mean and variance to generate a 

Gaussian distribution of parameters (Evans Annan et al., 2019). In this paper 
SIS and GRFS algorithms have been applied for modeling electrofacies and 
porosity, respectively. The parallel kriging is the base of estimation in GRFS 
which is a conditional simulation method. The algorithm of parallel kriging 
was introduced in 2008 which is faster than the old algorithm (Daly et al, 2010. 
Parallel kriging method results in more accurate estimates (Zhuo et al., 2011). In 
addition to high accuracy, parallel algorithm causes lesser duration of execution 
(Pesquer et al., 2011). Comparing SGS, the performance of GRFS for porosity 
modeling is better (Daly et al., 2010).

4. Results and Analysis

As mentioned, the reservoir zonation of the Kazhdumi Formation has 
been done using sequence stratigraphic concepts. In fact, the previous reservoir 
zonation (which was solely derived from the responses recorded from the 
petrophysical logs) has been updated by applying the sequence stratigraphy 
concept via Cyclolog software. This software uses INPEFA log for this purpose 
(Figure 5). Kazhdumi Formation has been divided into two main zones 
including carbonate and siliciclastic (Azadegan sandstone) zones. In turn, the 
carbonate zone has been divided into 3 subzones and Azadegan sandstone 
has been divided into eight subzones. Table 3 indicates reservoir zonation of 
the Kazhdumi Formation, in which the bolded zones show the high potential 
hydrocarbon zones. As shown, this reservoir has been divided into eleven zones.

Figure 5. Reservoir zonation based on sequence stratigraphy concept in one of the 
studied wells (variation of the INPEFA log with depth)

Table 3. Reservoir zonation of the Kazhdumi reservoir (the bolded zones indicate 
the high potential hydrocarbon zones)

Formation Lithology Zones PHIE (Fraction)

Kazhdumi

carbonate
K1 0.0342
K2 0.0489
K3 0.0154

siliciclastic 
(Azadegan 
Sandstone)

K4 0.018
K5 0.0912
K6 0.0055
K7 0.1187
K8 0.0343
K9 0.0913
K10 0.0208
K11 0.0139
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In the next step, the electrofacies analysis has been done. To that 
end, MRGC method was selected as the most effective approach among all 
available methods. Finally, 24 facies have been classified. Then these clusters 
were merged into five final clusters as shown in Table 4. Also, the minimum, 
maximum, mean, and standard deviation values of effective porosity and 
mineral volumes of all facies codes have been listed in Table 5.

The reservoir characteristics decreases from facies code 1 to facies code 
5. The characteristics of these facies codes are as follows:

•	 Facies-1: This sandy facies consists of 69% quartz volume (average 
value), then it is sandstone. The average value of shale volume in 
this facies is around 17%. Also, due to high porosity (14%) it has the 
best reservoir characteristics.

•	 Facies-2: The main lithology of this facies is limestone and the 
average content of calcite volume is 90%. The average porosity 
is 9%. Therefore, it can also be considered as a good facies with 
proper reservoir property.

•	 Facies-3: This shaly sandstone facies consists 49% quartz and 47% 
shale volumes. The average value of porosity is about 4%.

•	 Facies-4: The lithology of this facies is limestone having 93% 
calcite volume. The average porosity is 3%, then this facies has low 
reservoir quality.

•	 Facies-5: This facies which is shale, contains 84% shale volume. 
The average porosity is 1% which represents a non-reservoir facies.

These electrofacies codes are shown in one of the studied wells (Figure 6).
According to the Fig. 6, zones K1, K2, and K3 are predominantly 

comprised of carbonate, while the remaining zones of the Kazhdami 
Formation consist of a heterogeneous mixture of sand and shale. An analysis 
of the juxtaposition between the mineral volume column and the electrofacies 
codes reveals that the upper carbonate section is characterized by two distinct 
electrofacies codes, namely codes 2 and 4. Notably, the dominant electrofacies 
manifestation in this carbonate region is code 4, which is indicative of dense 
limestone.

Table 4. Final electrofacies classes (for more information on these histograms, please refer to Table 5)

Table 5. Minimum, maximum, mean, and standard deviation of effective porosity and mineral volumes of all facies codes

Facies_1 Facies_2 Facies_3 Facies_4 Facies_5

Effective 
Porosity 
(Fraction)

Min 0 0.05 0 0 0

Max 0.27 0.17 0.16 0.1 0.09

Mean 0.14 0.09 0.04 0.03 0.01

Std 0.05 0.02 0.03 0.02 0.01

Calcite Volume 
(Fraction)

Min 0 0.69 0 0.57 0

Max 0 0.95 0 0.99 0.57

Mean 0 0.9 0 0.93 0.09

Std 0 0.03 0 0.06 0.13

Sand Volume 
(Fraction)

Min 0.33 0 0.22 0 0

Max 1 0 0.82 0 0.36

Mean 0.69 0 0.49 0 0.07

Std 0.11 0 0.11 0 0.11

Shale Volume 
(Fraction)

Min 0 0 0.16 0 0.38

Max 0.52 0.17 0.68 0.4 1

Mean 0.17 0.01 0.47 0.04 0.84

Std 0.12 0.02 0.12 0.06 0.13



283Spatial Porosity Modeling in the Mixed Siliciclastic-Carbonate Kazhdumi Reservoir in an Iranian oilfield located in Abadan Plain

Figure 6. Layout showing the lithology and electrofacies codes

Descending from zone K4, there is a discernible sequence comprising 
shale, limestone, and sand. The optimal reservoir characteristics, represented 
by the electrofacies code for sands with high porosity (electrofacies code 1), 
are prominently identified in zones K5, K7, K9, and K11. Furthermore, from 
a reservoir property perspective, the sandy intervals within the Kazhdumi 
Formation exhibit superior conditions relative to their carbonate counterparts. 
This suggests a greater potential for hydrocarbon accumulation in the sand-rich 
zones as compared to the carbonate-rich zones.

After electrofacies analysis and constructing the structural model and 
scaling up the electrofacies and porosity logs, both logs have been distributed 
via applying geostatistics algorithms. The constructed electrofacies model 
was checked to provide a great match between initial and modeled data  
(Figure. 7A). It should be noted that data analysis of porosity was linked to 
facies codes. 3D model of the effective porosity (PHIE) has been generated 
using scaled-up effective porosity log into the 3D grid. As mentioned earlier, 
PHIE has been linked to the facies. Porosity propagation has been done using 
the GRFS algorithm for propagating the properties during reservoir modeling 
(Figure. 7B). The constructed PHIE model was checked to provide a great 
match between the initial and simulated data. In order to a better assessment of 
the Kazhdumi reservoir, average porosity maps of both siliciclastic and carbonate 
intervals of this reservoir are shown in Figure 8. As illustrated, there is a general 
trend that shows porosity increases from southeast to northwest parts of the 
studied area. It can be concluded that the Kazhdumi reservoir shows the best 
reservoir characteristics in the northern and western parts of the studied area.

As illustrated in Fig. 8A, the porosity values within the studied area 
exhibit a significant gradient, increasing from 2% in the southern regions to 
12% in the northern regions. It is noteworthy that the areas characterized by 
favorable porosity in the northern part are discontinuous and fragmented. 
This discontinuity indicates that caution is warranted in planning the drilling 
of future wells, as the isolated pockets of porosity may affect hydrocarbon 
recovery efficiency.

Moreover, an examination of the carbonate intervals within the Kazhdumi 
Formation, as depicted in Fig. 8B, reveals a predominance of dense limestone. 
The sections exhibiting high porosity are primarily confined to the western 
part of the study area. This spatial restriction of high-porosity zones further 
underscores the necessity for strategic planning in drilling operations, taking 
into account the variability in reservoir quality across different regions of the 
formation. Also, the statistics values of thickness and effective porosity of the 
Kazhdumi reservoir have been presented in Table 6. As shown, the siliciclastic 
intervals have high porosity than carbonate intervals.

Figure 7. Electrofacies (A) and effective porosity (B) models of the Kazhdumi 
Formation in a 3D view and their relevant histograms
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Figure 8. Average porosity distribution for A: siliciclastic intervals and B: 
carbonate intervals

Table 6. Statistics values of thickness and effective porosity of the Kazhdumi 
reservoir

Parameters Lithology Min Mean Max

Thickness (m)
Carbonate 132 172 192

Sandstone 45 58 93

Effective 
porosity (%)

Carbonate 0.02 0.06 0.09

Sand 0.03 0.08 0.12

5. Conclusion

The analysis of electrofacies within the Kazhdumi Formation reveals 
the presence of five distinct facies codes. Among these, two facies exhibit 
high porosity: facies 1 (siliciclastic) and facies 2 (carbonate). The remaining 
facies, consisting of shale and carbonate, are classified as non-reservoir facies. 
Notably, electrofacies code 1, which indicates sands with high porosity, is 
associated with the Azadegan Member. The upper carbonate sections of 
Kazhdumi Formation primarily comprise dense limestone interspersed with 
layers of porous limestone. Despite the Azadegan Member being characterized 
by the highest electrofacies code (code 1), it also contains sequences of shale, 
limestone, and sand that can occasionally diminish reservoir quality.

To model the electrofacies codes, a comprehensive data analysis was 
conducted for all facies. Subsequently, the electrofacies were modeled utilizing 
the SIS algorithm, followed by the modeling of effective porosity through a 
linkage to facies codes using the GRFS algorithm. Given the superior accuracy 
and speed of the GRFS algorithm, it was favored over the SGS algorithm for 
this study. The final results indicate that the reservoir characteristics of the 
Kazhdumi Formation improve from the southeast to the northwest of the study 
area. Although the reservoir conditions of the Azadegan Member are enhancing 
in the northern regions, it is important to highlight that the high porosity zones 
are discontinuous and warrant further investigation in future drilling operations. 
Additionally, the Azadegan sandstone demonstrates higher porosity compared 
to the carbonate intervals. Therefore, it is recommended that detailed regional 
studies be conducted to better understand the sedimentary environment of the 
Kazhdumi Formation and the origins of its sands.

6. Nomenclature

INPEFA INtegrated Prediction Error Filter Analysis
EFAC Electrofacies
GRFS Gaussian random function simulation
MFS Maximum flooding surface
MRGC Multi-resolution graph-based clustering
PHIE Effective porosity
SB Sequence boundary
SGS Sequential Gaussian Simulation
SIS Sequential indicator simulation
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