Geofísica Colombiana № 7 pp. 30-34 diciembre de 2003 Bogotá, D.C. ISSN - 0121 - 2974

Efectos de las capas someras de alta velocidad en los datos sísmicos aplicados a la detección de hidrocarburos

TRINO SALINAS

CARLOS PIEDRAHITA

e-mail: tsalinas@ecopetrol.com.co

Grupo de Geofísica, Ecopetrol-Instituto Colombiano del Petróleo. A.A. 4185,

Bucaramanga, Santander, e-mail: sguerra@ecopetrol.com.co

SAUL GUEVARA

RESUMEN

Las ondas elásticas son una importante fuente de información de las características del interior de la tierra, necesarios en la búsqueda de hidrocarburos y otros recursos minerales. Esta información es afectada generalmente por las capas someras, cuyas características distorsionan los datos provenientes de las capas de interés, usualmente más profundas. Un caso, frecuente en la geología colombiana es el de las capas someras de alta velocidad. En este caso las ondas siguen direcciones anómalas, y con frecuencia la información es muy difícil de identificar, ya que se generan eventos que la contaminan y probablemente la atenúan. Aunque se sabe que existe este efecto, muchos de sus detalles son desconocidos. Aquí se presenta uno de estos casos, se ilustra con modelamiento sísmico con datos reales y se presenta una interpretación de sus características.

PALABRAS CLAVE: MÉTODO SÍSMICO DE EXPLORACIÓN, ZONAS GEOLÓGICAMENTE COMPLEJAS, ESTRATOS SOMEROS, AFLORAMIENTOS DE ROCAS DE ALTA VELOCIDAD, MODELAMIENTO SÍSMICO, RUIDO COHERENTE

ABSTRACT

Elastic waves provide characteristics of earth interior, which are necessary in Hydrocarbon and mineral prospections. This information is affected by shallow layers distorting the data coming from deep layers. In the colombian geology are fragment shallow layer with high velocity. In this case waves travel by anomalous paths being difficult to identity them, because these events contaminate and alternate the information considerated usefull. The effects associated to this phenomena are unknown with details. In this paper, one of these case is presented througen sismic modeling and vial data with an interpretation about its characteristics.

KEYWORDS: SEISMIC EXPLORATION, ZONES GEOLOGICALLY COMPLEX, SHALLOW STRATA, HIGH SHALLOW VELOCITY LAYER, SEISMIC MODELING, COHERENT NOISE

INTRODUCCIÓN

Las ondas sísmicas elásticas son utilizadas en la exploración de hidrocarburos para obtener imágenes de detalles geológicos dentro de la tierra. Una tecnología avanzada, el método sísmico de exploración, se ha generado con este fin, y notables éxitos se han obtenido por este medio.

Típicamente en el piedemonte de las cordilleras se encuentran zonas de interés petrolífero en Colombia. En este caso, es importante considerar el efecto de la abrupta geografía y compleja geología que caracteriza a la presencia de la cordillera de los Andes.

Manuscrito recibido para evaluación el 24 de julio de 2003. Artículo aceptado para publicación por el Comité Editorial el 30 de octubre de 2003. En general, las características de los registros sísmicos generados en estas regiones con fines exploratorios se salen de los estándares encontrados en otras zonas menos complejas, y la información objetivo es más difícil de recuperar.

Uno de los obstáculos que hay que superar para obtener imágenes de la geología es el efecto de las capas someras. Normalmente éstas son capas de baja velocidad, y con propiedades heterogéneas, afectadas por efectos de la meteorización y depositación, lo que contribuye a distorsionar la imagen de los estratos de interés, más profundos. Dentro del método sísmico de exploración se han generado técnicas para contrarrestar estos efectos, conocidas en la industria como correccion estática (Cox, 1999). Sin embargo, en el piedemonte colombiano, y en otras partes del mundo, con frecuencia

afloran rocas caracterizadas por ser altamente compactas, y por tanto con alta velocidad de propagación de las ondas. Es el caso de rocas de alta antiguedad o rocas de origen ígneo, que afloran a la superficie y suprayacen sobre rocas sedimentarias con potencial petrolífero.

Varios autores han estudiado los efectos de este tipo de características de las capas someras en piedemonte. Estos efectos se pueden dividir en varias partes; por ejemplo, uno son las características geométricas (topografía y estructura geológica) y otro la estratificación, que incluye estratos de alta velocidad, junto con otros de menor velocidad. Por ejemplo la dirección de propagación de la onda tiende a no ser perpendicular a la superficie, como sucede en el caso de capas superficiales de baja velocidad, sino a tener un fuerte componente horizontal. Además, se pueden generar varios tipos de eventos que producen interferencia, como las ondas de superficie o las reverberaciones.

Para estos casos se han propuesto diversos modelos y soluciones. Las técnicas de migración preapilado en profundidad (basadas en los principios de propagación de las ondas) son las favoritas para obtener imágenes de zonas altamente plegadas, pero dependen de una buena corrección de los efectos de las capas someras para que sean efectivas. Se han desarrollado métodos que extrapolan la propagación de onda hasta la superficie, teniendo en cuenta características como la abrupta variación de la topografía y las altas velocidades (Salinas y Larner, 1997), que son extensiones de técnicas de migración. En otro enfoque, Fliedner y White (2001) aplican un método que integra diversas técnicas como la refracción, el modelamiento y los datos sísmicos de reflección, para obtener imágenes del campo de velocidades bajo capas basálticas. Esta técnica implica la obtención de datos sísmicos de gran separación entre fuente y receptor (Offset), que llega a 15 km en el caso de dicho artículo. Otros métodos, por ejemplo el de Jones y Gaiser (1999) incluyen la utilización de ondas S u ondas convertidas, aparentemente menos afectadas por las capas someras de alta velocidad.

Sin embargo, en pocos trabajos publicados se trata el tema de la generación de ruido coherente debido a las características estratigráficas. En este trabajo se tratan algunos aspectos de las características de la propagación de ondas en este medio, gracias al modelamiento de la propagación de ondas sísmicas, buscando contribuir a la explicación de las características de los registros sísmicos afectados por afloramientos de rocas de alta velocidad.

METODOLOGÍA

En este caso se estudió un modelo típico de las montañas colombianas, en particular de las montañas del valle alto del río Magdalena, en los que las capas de rocas de alta velocidad, frecuentemente ígneas, yacen sobre capas sedimentarias altamente plegadas. La figura 1 muestra un perfil aproximado de las principales características de un caso típico de este terreno. La figura 2a muestra un registro sísmico, producto de un disparo detectado por

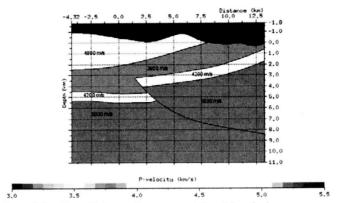


Figura 1. Sección geológica que ilustra características típicas de algunas zonas montañosas de Colombia. Nótese el estrato superior de alta velocidad.

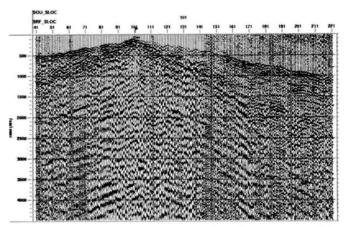


Figura 2a. Ejemplo de un registro de disparo que ilustra las características de los registros de disparo en zonas con afloramientos de alta velocidad. La coordenada vertical corresponde a tiempos de arribo, y la horizontal a localizaciones de los geófonos en la superficie del terreno.

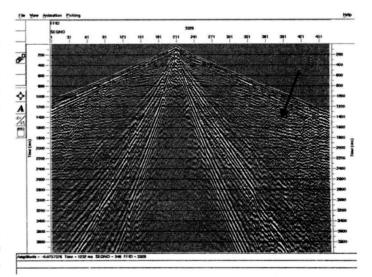


Figura 2b. Registro de disparo en una zona no compleja. La flecha señala la reflección proveniente de reflectores de interés.

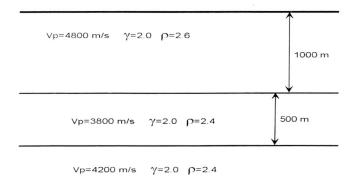


Figura 3. Modelo geológico A, con el afloramiento de un estrato de alta velocidad.

Figura 4. Modelo geológico, B con una capa somera de baja velocidad sobre un estrato de alta velocidad.

una serie geófonos (sensores o sismógrafos) en una zona compleja y con afloramiento de rocas ígneas. La figura 2b muestra un registro resultante de un experimento sísmico en una zona de características más normales, es decir sin topografía compleja o afloramientos de alta velocidad. Nótese que en este último caso es mucho más fácil identificar los eventos correspondientes a las interfaces geológicas de interés.

Un modelo simplificado se estudia con el objeto de identificar características de la propagación de las ondas en este tipo de terreno. En esta aproximación se dejaron de lado efectos de la topografía y de la heterogeneidad lateral de los estratos, para concentrarse en los eventos sísmicos generados por la variación vertical de velocidades y comparar estos efectos con lo que se observa en los datos reales. Se utilizaron dos modelos geológicos, uno con un estrato espeso de alta velocidad (modelo A, figura 3) y otro con una capa de baja velocidad sobre un estrato espeso de alta velocidad (modelo B, figura 4). El estrato de alta velocidad simula rocas ígneas.

Para el modelamiento de propagación de las ondas se utilizaron dos métodos que se pueden considerar complementarios entre sí:

diferencias finitas y trazado de rayos. El método de diferencias finitas utiliza una simulación basada en aproximaciones numéricas a las ecuaciones diferenciales parciales de la propagación de las ondas elásticas. Una característica muy importante de este método es que genera todos los eventos de la propagación de ondas en medios elásticos. En el trazado de rayos, los frentes de onda son remplazados por sus normales, conocidas como rayos. Este método tiene flexibilidad para mostrar varios tipos de características de los datos e identificar diferentes eventos y, además, es muy eficiente computacionalmente.

Para el método de diferencias finitas se utilizó el algoritmo elástico de dos dimensiones desarrollado por Levander (1988). Este tipo de algoritmo establece limitaciones a las dimensiones y características del tipo de modelo que se puede utilizar, relacionados con los recursos computacionales necesarios y con los posibles problemas numéricos que se generan en el proceso de cálculo. Estos factores influyeron en el modelo de velocidades considerado, así como en el contenido de frecuencias de la fuente de energía (con una frecuencia dominante de 15 Hz). Para el modelamiento por trazado de rayos se utilizó el software NorsarTM 2-D.

RESULTADOS

La figura 5 muestra el resultado de la componente vertical para el modelo A, en el que aflora un estrato superior de alta velocidad, según el método de diferencias finitas. La fuente de energía utilizada tiene una frecuencia dominante de 15 Hz. Se observan reflecciones típicas de las interfaces del modelo, para varios tipos de onda. La identificación de los tipos de onda se puede confirmar por medio de la instantánea o *snapshot* de la figura 5b, correspondiente

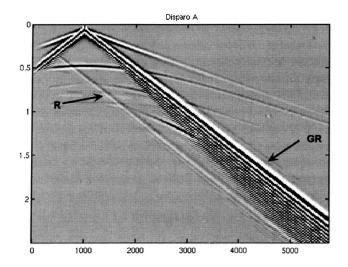


Figura 5a. Resultados del modelamiento de diferencias finitas sobre el modelo A. Observese que las reflecciones se distinguen fácilmente.

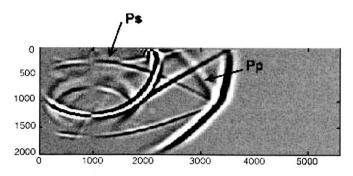


Figura 5b. Instantánea o snapshot de la propagación de las ondas a través del modelo A para un tiempo de 0,6 segundos.

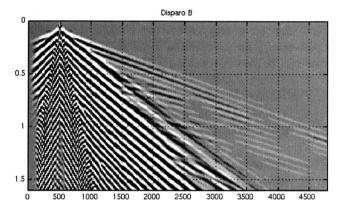
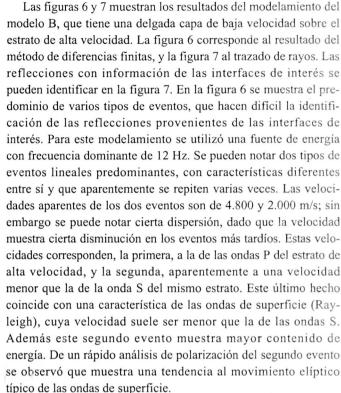



Figura 6a. Resultados del modelamiento de diferencias finitas sobre el modelo B. Obsérvese la dificultad para distinguir las reflecciones y la presencia de varios eventos que interfieren (ruido).

Las instantáneas de la figura 6b presentan características de los diferentes eventos. Aquí también se observan los numerosos eventos repetidos. También se puede ver que la longitud de onda es mayor al espesor de la capa de baja velocidad, y que en este estrato se generan muchos eventos inexistentes en el modelo A.

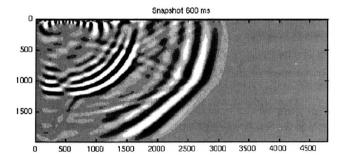


Figura 6b. Instantánea o snapshot de la propagación de las ondas a través del modelo B para un tiempo de 0,6 segundos.

a 0,6 segundos. En esta figura también se nota que las ondas reflejadas (modos Pp y Ps) inciden en ángulo agudo con la superficie del terreno. También se pueden observar algunos "artefactos" debidos al cálculo numérico y no a la propagación de la onda, como la dispersión en el evento GR y la reflección de borde R.

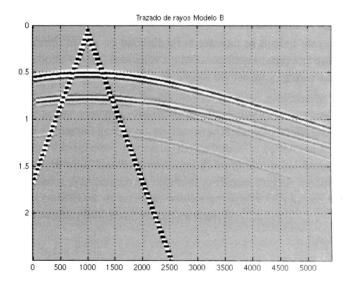


Figura 7. Resultado del modelamiento con trazado de rayos en el modelo B. Sólo aparecen las reflecciones provenientes de los estratos de interés y arribos directos.

GEOFÍSICA COLOMBIANA, 7, DICIEMBRE DE 2003

DISCUSIÓN

Al comparar los resultados anteriores con los datos reales de la figura 2, y teniendo en cuenta la simplicidad de este modelo numérico comparado con el caso real, se observan similitudes entre los datos de la figura 2a y los resultados de la figura 6. En la figura 2a, los eventos reflejados son aparentemente imposibles de identificar, y lo más coherente que se observa son eventos aproximadamente paralelos con dos direcciones predominantes, como en la figura 6.

Los datos de modelamiento parecen mostrar que, en el caso de capas de alta velocidad cubiertas por una delgada capa de baja velocidad, varios eventos diferentes a las ondas sísmicas compresionales provenientes de las capas profundas se generan y predominan en el campo de onda detectado en la superficie. Según estos datos, los eventos repetidos que arriban primero parecen corresponder a reverberaciones de refracciones en la interface de alta velocidad. El grupo que arriba más tarde parece corresponder a ondas de superficie, pero que a su vez genera un tipo de reverberación relacionada con ella. Este resultado corresponde y puede dar una explicación a los datos reales, como por ejemplo los observados en la figura 2.

Sin embargo, es necesario tener en cuenta varias características de los datos reales, así como limitaciones del modelamiento para interpretar más acertadamente estos resultados. Una de ellas es que el modelamiento está basado en un modelo elástico e isotrópico y referido a un medio homogéneo, y la tierra tiene comportamientos anelásticos (atenuación), cambio de propiedades con diferentes direcciones y cambios de propiedades dentro de los estratos. Además, el modelamiento tiene sus propios requisitos, que en este caso se traduce en una relativa baja frecuencia en la fuente de energía, lo cual puede contribuir a efectos como la dispersión.

CONCLUSIONES

En este trabajo se muestra la factibilidad de que la interacción entre una capa muy somera de baja velocidad (capa meteorizada o weathering) y un estrato rocoso de velocidad muy alta genere un

alto nivel de ruido coherente que contribuye a la dificultad para obtener información de estratos sedimentarios más profundos, de interés en la industria petrolera.

Experimentos posteriores pueden contribuir a una caracterización detallada de propagación de las ondas en este tipo de medios, y, con base en eso, a la búsqueda de métodos que permitan contrarrestar su efecto pernicioso en la obtención de información geológica del subsuelo. Filtramientos de estos efectos implican una diferenciación de las características de estos eventos de ruido coherente comparado con los datos de reflecciones que queremos resaltar.

AGRADECIMIENTOS

Este trabajo se debe a Ecopetrol, empresa que facilitó los medios para su realización. También se contó con la contribución de Héctor Alfonso, de Exploración Ecopetrol, en el planteamiento de este tipo de problemas y su relación con ejemplos de casos reales. Se agradece al proyecto Crewes de la Universidad de Calgary y a Gerald Schuster y su grupo de la Universidad de Utah que nos facilitaron herramientas de software y el código de modelamiento por diferencias finitas, así como a la compañía Norsar que facilitó el software de modelamiento por trazado de rayos.

REFERENCIAS

COX, M. (1999). Static corrections for seismic reflection surveys. SEG Geophysical References.

FLIEDNER, M. y WHITE, R. (2001). "Seismic structure of basalt flows from surface seismic data, borehole measurements, and synthetic seismogram modeling". *Geophysics* 66, 1925-1936.

JONES, N. y GAISER, J. (1999). "Imaging beneath high-velocity layers".
69th SEG meeting abstracts.

LEVANDER, A. (1988). "Fourth-order finite difference P-SV seismograms". *Geophysics*, 53, 1425-1436.

SALINAS T. y LARNER, K. (1997). "Comparison of datuming alternatives in areas of rough terrain". SEG 67th Annual Meeting Expanded Abstracts.