
The aim of this study is to present the evaluations based on comparisons of geoid heights that are computed 
from several global geopotential models (GGMs) and the GNSS/levelling data. In this application 
framework, differences between geoid heights obtained by GGMs and GNSS/levelling were computed. 
Then, the availability of geoid heights calculated by GGMs for engineering applications were investigated.
The Konya-Polatli (Ankara) Express Train Project as a strip area project was chosen as the study area. The length 
of the project is approximately 210 km and consists of 110 benchmarks that belong to the Turkish National 
Triangulation Network. In this study a total of 69 GGMs were compared. In order to examine more detail, 
these models were classified as three groups based on CHAMP, GRACE and GOCE. Each group was evaluated 
separately and the results were obtained. According to results, the best five models were detected for geoid height 
differences (NGNSS/lev-Nggm) in terms of standard deviation. These are EIGEN-6c4, EIGEN-GRACE01s, EGM2008, 
EIGEN-6c3stat and EIGEN-6c2, respectively. Also, geoid heights were obtained using different parametric models. 
These parametric models were used in order to minimize the impact of the terms of bias, tilt etc. Generally, three, four, five 
and seven parametric models are used for the least-squares adjustment of the geoid height differences in the literature. 
Therefore, in this study the geoid heights were calculated for such different parametric models. After the geoid height 
values were computed from the parametric models, the best global geopotential models in terms of standard deviation 
were obtained as EIGEN-6c2, EIGEN-6c3stat, EGM2008, EIGEN-6c4 and EIGEN-GRACE01s, respectively.

El propósito de este estudio es presentar las evaluaciones comparativas de alturas geoidales que fueron computadas 
a partir de varios Modelos Geopotenciales Globales (GGM, del inglés Global Geopotential Models) y la 
nivelación de información del Sistema Global de Navegación por Satélite. Luego se investigó la disposición para 
aplicaciones de ingeniería de las alturas geoidales calculadas por los modelos GGM. Se seleccionó el proyecto 
del Tren Expreso Konya-Polatli (Ankara) como el área de estudio por ser un terreno lineal. La longitud del 
proyecto es de 210 kilómetros y consiste de 110 puntos de referencia que pertenecen a la Red de Triangulación 
Nacional de Turquía. En este estudio se compararon 69 modelos GGM. Para un mejor examen, estos modelos se 
clasificaron en tres grupos basados en CHAMP (CHAllenging Minisatellite Payload), GRACE (Gravity Recovery 
and Climate Experiment) y GOCE (Gravity field and steady-state Ocean Circulation Explorer). Cada grupo se 
evaluó por separado. De acuerdo con los resultados, se detectaron los cinco modelos mejores para las diferencias 
de alturas geoidales (NGNSS/LEV-NGGM) en términos de desviación estándar. Estos son EIGEN-6c4, EIGEN-
GRACE01s, EGM2008, EIGEN-6c3stat, y EIGEN-6c2. También se obtuvieron las alturas geoide a través de 
diferentes modelos paramétricos. Este mecanismo se utilizo para minimizar el impacto en términos de inclinación 
y declive. Generalmente, se utilizan tres, cuatro, cinco, y siete modelos paramétricos para el ajuste por mínimos 
cuadrados de las diferencias de alturas geoide, según la literatura. Por lo tanto, en este estudio se calcularon las 
alturas geoide con estos modelos paramétricos. Después de que se computaron los valores de altura geoide desde 
los modelos paramétricos, se obtuvieron los mejores modelos geopotenciales globales en términos de desviación 
estándar, estos son el EIGEN-6c2, EIGEN-6c3stat, EGM2008, EIGEN-6c4 y EIGEN-GRACE01s, respectivamente. 
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1. Introduction

	 Determining the gravity field with as much accuracy as possible 
is significant for earth sciences such as geodesy and geophysics, and the 
gravity field is instrumental in many natural incidents related to earth 
dynamics, primarily mass transportation. In recent years, research conducted 
to determine the earth’s gravity field has gained speed thanks to Low Earth 
Orbits (LEO). Various Global Geopotential Models (GGMs) have been 
released using in particular CHAMP (CHAllenging Minisatellite Payload), 
GRACE (Gravity Recovery And Climate Experiment) and GOCE (Gravity 
field and steady-state Ocean Circulation Explorer) orbit data. These models 
have a positive impact on determining geoid changes.

	 Launched from Russia’s Plesetsk spaceport on 15 July 2000, 
CHAMP was the first low earth satellite launched in order to determine 
gravity field. The CHAMP mission was carried out by the Potsdam 
(Germany) Earth Research Center (GeoForschungsZentrum-GFZ). The 
satellite is almost circular and located close to the pole, with 454 km starting 
height and 87.3º inclination degree. Although its work period was planned 
to be five years, it operated until 19 September 2010. The core aims to 
be reached through the CHAMP satellite are to specify long wavelength 
features of the statical earth’s gravity field (and partially time changes) with 
the greatest possible accuracy, mapping the global magnetic field, which 
means specifying the earth’s primary magnetic field and its time changes, 
and to reveal ionosphere and troposphere profiles, respectively (Seeber 
2003; Hofmann-Wellenhof and Moritz 2005). CHAMP satellite was 
groundbreaking in specifying long wavelength components of the gravity 
field. Compared to GRIM5-S1 and EGM96S models produced by several 
observations and satellites, it has been found that gravity field resolution is 
higher specified with a couple of month’s old CHAMP orbit tracking data 
(Reigber et al. 2003).

	 GRACE mission is the continuing part of the CHAMP 
satellite. Unlike CHAMP, it consists of two identical satellites 
following each other on the same orbit with 220 km ± 50 km distance 
between them. Both satellites were launched simultaneously from 
the Russian Plesetsk spaceport on 17 March, 2002. GRACE mission 
is a product of a joint project of DLR (Deutsches Zentrum für Luft-
und Raumfahrt) and NASA (U.S. National Aeronautics and Space 
Administration). University of Texas, Center for Space Research (CSR) 
was assigned as the project principal. Like CHAMP, data are needed 
that are homogeneously distributed and surrounding the earth entirely, 
in order to obtain a sensitive projection of gravity potential. Therefore, 
the GRACE mission is close to the pole and almost circular. Initial orbit 
height was selected at around 500 km, and the orbit tendency 89º. Aim 
of GRACE mission is to determine the earth’s high resolution global 
gravity field and time changes in this field. These satellites are also used 
in order to map Total Electron Content (TEC) as in the CHAMP satellite 
mission (Hofmann-Wellenhof and Moritz 2005; Jäggi 2007). Resolution 
of the gravity field based on GRACE data is better than the previous 
ones. According to Tapley et al.  (2004), it was found that improvements 
in the global gravity field were significant compared to GGM01S earth 
gravity model EGM96 determined by 110-day GRACE data.

	 GOCE mission is the core project of the Living Planet 
Programme of the European Space Agency (ESA). GOCE satellite is 
the last in the satellite series launched to determine gravity field. Orbit 
of GOCE satellite was launched from the Russian Plesetsk spaceport on 
17 March 2009 as almost circular and solar-synchronized. Orbit height 
was selected as 250 km in order to get a stronger and more sensitive 
gravity signal. Monitoring and controlling the satellite were carried out 
by ESA/ESOC in collaboration with earth stations Kiruna in Sweden, 
and Svalbard in Norway. Main objective of GOCE is to participate in 
measuring the earth’s gravity field and modelling the geoid with perfect 
accuracy and spatial resolution. Anticipated accuracies are determining 
gravity-field anomalies with 1mGal (10-5 ms-2), geoid with 1-2 cm 
accuracy, and reaching a spatial grid resolutions better than 100 km.

	 Many researchers have investigated the contribution of GGMs 
produced from CHAMP, GRACE, and GOCE satellites in local and global 
geoid models for various areas of the earth (Amos and Featherstone 2003; 
Kiamehr and Sjöberg 2005; Rodriguez-Caderot et al. 2006; Benahmed 
Dahoa et al. 2006; Ustun and Demirel 2006; Erol et al. 2009; Kotsakis 
and Katsambalos 2010; Yilmaz et al. 2010; Janak and Pitonak 2011; Gikas 
et al. 2013; Godah and Krynski 2013; Soycan 2014). Various methods 
and approaches have been suggested as a result of the above-mentioned 
research. One of the most frequently employed methods in the literature 
to determine the best GGM for an area’s gravity field is comparing GGMs 
and revealing their performance through independent datasets (GNSS/
levelling, gravity etc).

	 In this research, the geoid undulation values are calculated 
through GGMs (69 GGMs at the time of writing this paper) for a 210-
km long strip project. Then these values are compared to accurate geoid 
undulation values calculated with GNSS/levelling method. As a result, 
performance of GGMs is revealed statistically and the best GGM is 
suggested. Moreover, investigation of possible maximum geoid accuracy 
to be obtained from GGMs is aimed at in this research employing only 
geographical latitude and longitude information of points without any 
geodetic measuring in the field.

2. Theoretical Background

2.1. Global Geopotential Models (GGMs) and GNSS/levelling

The sum of centrifugal and gravity forces on an object is defined 
as gravity force. Determining the earth’s gravity field is the same as 
determining its potential. As this potential is harmonical out of masses that 
form the earth, spherical harmonic series are generally used for determining 
the gravity field (Kaula 1966; Heiskanen and Moritz 1984; Rummel et al. 
2002; Seeber 2003; Hofmann-Wellenhof and Moritz 2005).

Global Geopotential Models (GGMs) are defined as spherical 
harmonic coefficients representing the earth’s gravity field in various 
wavelengths. These coefficients are obtained from satellite orbit deviation 
analyses, satellite altimeter data, gravity gradiometer data, and gravimeter 
data. GGMs are divided into three groups in this context (Vaniček and 
Featherstone 1998; Featherstone 2002).

•	 Satellite-only models: Coefficients of these GGMs are derived 
from orbit deviation analyses of artificial earth satellites. Degree of these 
models is low, and resolution is insufficient.

•	 Combined models: The combined GGMs are produced by 
combining gravity data derived from satellite data, terrestrial gravity 
observations, airborne gravimetry and satellite altimeter data in marine 
areas. Therefore, integrated models have higher degrees and produce more 
accurate results compared to satellite-only models.

•	  Tailored models: These models are generated as a result of 
improving harmonic coefficients of GGMs using special mathematical 
techniques within the first and second groups. The main aim of these 
models is to increase the degree of the model.

Improving measurement, calculation and evaluation techniques 
have contributed to constant improvement of GGMs. This improvement 
causes enhanced geoid resolution. In other words, when the degree of 
GGMs increased, errors of the deflection of the plumb line, gravity 
anomaly, and height anomaly are decreased, and the better the 
determination of the geoid (Wenzel 1998). GGMs point out the gravity 
field of the earth with spherical harmonic series. According to this the 
geoid height of a point the spherical geocentric coordinates of which are 
known might be calculated with Eq. (1) (Hofmann-Wellenhof and Moritz 2005).

1
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3

Here N stands for geoid height (undulation), h for ellipsoidal height 
obtained from GNSS measurements, and H for orthometric height calculated 
after levelling measurements. To evaluate the quality of GGM-derived geoid 
undulation values (Nggm) many independent NGNSS/lev values could be used that 
are spread over the project area. Therefore, absolute geoid height differences ∆N 
might be calculated with Eq. (3) (Kotsakis and Sideris 1999; Fotopoulos et al. 
2003; Huang and Véronneau 2004; Gikas et al. 2013).

3. Applications

3.1. Study area and data

Study field is the High-Speed Train route between Konya-Polatli (Ankara), 
which is 210 km long. There are 110 GNSS/levelling points (benchmarks) 
within the project field. Orthometric heights (H) of the points were determined 
with the geometric levelling method in the datum of the Turkey National 
Vertical Network (TUDKA). The geographic coordinates including ellipsoidal 
heights (h) were determined in static positioning mode and referred to the 
Turkish National Fundamental GPS Network (TUTGA). The orthometric and 
ellipsoidal height of the points within the study field are varying between 696 
– 1198 m and 733 – 1234 m respectively. Also, the geoid heights are varying 
between 36.72 and 37.70 m (Fig. 1). The minimum, maximum and mean 
values of distance between sequential points of the route were observed as 1.05, 
5.53 and 1.94 km respectively. SRTM-3 data and The Generic Mapping Tools 
(GMT) software were used to draw Figure 1 (Wessel and Smith 1998). The 
Shuttle Radar Topography Mission (SRTM) contains elevation data with 3 arc-
second resolution and 16 m absolute height error (90 percent confidence level). 
These data are available with free of charge via the Internet for approximately 
80 percent of the earth’s land mass (Bildirici et al. 2009).

Fig. 1. Study area, Konya-Polatli express train project
3.2 Evaluation Procedure

A total of 69 models were used to investigate the quality of GGMs. In 
order to display the results from those models clearly, GGMs are classified in 
three models derived from CHAMP, GRACE, and GOCE satellites. Spherical 
harmonic coefficients of all models were obtained from the International Centre 
for Global Earth Models (ICGEM) web page. In addition, geoid heights based 
on GGMs can be calculated using coefficients and software on this website. 
Within the scope of implementation, in order to include all of Turkey, separate 
grid networks (grid step is 0.1o x 0.1o) were established for each GGM. GRS80 
elipsoid parameters were used to establish grids. A correction needs to be applied 
on the difference between the true potential of the geoid and the normal potential 
of GRS80 when calculating geoid height, when using GRS80 as the chosen 
reference field. The reason for this correction is the difference between the GM 
value estimated for earth and the GM value for GRS80 elipsoid. Therefore, 
the “zero-degree” term based on different GM values needs to be considered 
in geoid height computation (Smith 1998). In addition, while the shape of the 
geoid depends on the permanent tide system type (mean, zero and tide-free), the 
values of true gravity potential do not change when one system transform another 
system. Therefore, the tide-free geoid model is suggested to be used in conversion 
of the GNSS heights (Smith 1998). Thus, correction term (zero degree term) has 
been applied to all calculations within the context of this application, and tide-free 
model is used as the tide system. In each of the GGM grid nets established, geoid 
heights of project points are interpolated using a script.

where r, θ, λ are the spherical geocentric coordinates of the 
computation point: radial distance, co-latitude and longitude, 
respectively, GM  is the gravitational constant (G) times mass (M) of the 
earth, γ is mean normal gravity of the reference ellipsoid, R is the mean 
earth’s equatorial radius, Cnm' Snm are fully normalized geopotential coefficients 
with degree n and order m, Pnm(cos θ) fully normalized associated Legendre 
functions, and nmax is the maximum degree of the GGM.

	 In order to determine the optimum GGM for an area’s 
gravity field, geoid heights derived from the GNSS/levelling method 
could be compared to the geoid heights calculated by GGMs (Amos 
and Featherstone 2003; Kılıçoğlu et al. 2009; Yilmaz et al. 2010; Hirt 
2011; Guimarães et al. 2012). In many GNSS applications users feel a 
need for transformation between ellipsoidal height and orthometric height. 
The main reason of this is using orthometric heights in engineering, determined 
by levelling, and the difficulty of making levelling measurements for each point. 
Highly precision geoid models are needed for this type of implementation. Geoid 
height (undulation) values produced based on GNSS/levelling measurements 
are necessary to determine sensitively to this end (Doganalp and Selvi 2015). 
According to the GNSS/levelling method, geoid undulation value at a point is 
calculated with Eq. (2) (Heiskanen and Moritz 1984).
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GGMs based on CHAMP

In this section, the results on GGMs for 110 points of the study area 
produced based on CHAMP are addressed. Totally 17 CHAMP-based 
global geopotential models are used. Names, production years, degrees 
and the data used to produce them are given in Table 1. Geoid undulations 
within study area are estimated using these models. The statistics of 
the differences between the GNSS-based and the GGM-based geoid 
undulations are given in Table 2 and Figure 2.

Table 1. Global geopotential models based on CHAMP (S: Satellite, G: 
Gravity, A: Altimetry)

Table 2. Statistics of geoid height differences between GGM-derived (Nggm) 
and GNSS/levelling (NGNSS/lev) data, units in meters (based on CHAMP)

Fig. 2.  The standard deviations of geoid undulation differences between 
GNSS/levelling and GGMs (based on CHAMP)

Table 2 and Figure 2 show the standard deviation values range between 
0.28 – 1.03 m with regard to geoid undulation differences. Moreover, the 
best five models for CHAMP-based GGMs are aiub-champ03s, eigen-
cg01c, eigen-cg03c, eigen-champ05s and ulux_champ2013s, respectively.

GGMs based on GRACE

In this section, 24 global geopotential model evaluations have been 
done using GRACE-based models. Information on GGMs is given in 
Table 3. Performance of GGMs determined after evaluation of 110 points 
within the project field is shown in Table 4. Moreover, the diagram displaying 
the differences between geoid heights calculated by GGMs and the known 
heights of GNSS/levelling points is given in Figure 3.

Table 3. Global geopotential models based on GRACE (S: Satellite, G: 
Gravity, A: Altimetry)

Table 4. Statistics of geoid height differences between GGM-derived (Nggm) 
and GNSS/levelling (NGNSS/lev) data, units in meters (based on GRACE)
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Fig. 3.  The standard deviations of geoid undulation differences between 
GNSS/levelling and GGMs (based on GRACE)

Table 4 and Figure 3 show the standard deviation values range 
between 0.13 – 1.24 m according to geoid undulation differences. Lower 
standard deviation values are reached compared to CHAMP-based models. 
In addition, the best first five models for GRACE-based GGMs are eigen-
grace01s, egm2008, gif48, aiub-grace01s and eigen-51c, respectively.

GGMs based on GOCE

In this section, 28 global geopotential models are evaluated based on 
the GOCE satellite. Information on GOCE-based GGMs is given in Table 
5. Performance of GGMs within the study area is shown in Table 6. Moreover, 
the diagram displaying the standard deviation of differences between geoid 
heights calculated by GGMs, and the known heights of GNSS/levelling points 
is given in Figure 4.

Table 5. Global geopotential models based on GOCE (S: Satellite, G: 
Gravity, A: Altimetry)

Table 6. Statistics of geoid height differences between GGM-derived (Nggm) 
and GNSS/levelling (NGNSS/lev) data, units in meters (based on GOCE)

Fig. 4. The standard deviations of geoid undulation differences between 
GNSS/levelling and GGMs (based on GOCE)

Table 6 and Figure 4 show the standard deviation values range between 
0.12 – 0.49 m with regard to geoid undulation differences. These values might be 
considered good compared to CHAMP and GRACE-based models. Moreover, 
the best first five models for GOCE-based GGMs are eigen-6c4, eigen-6c3stat, 
eigen-6c2, eigen-6c and go_cons_gcf_2_tim_r5, respectively.

Best GGMs in the study area

In order to summarize the results of all the implementations, five GGMs 
obtained from implementations conducted in three classes are evaluated. Table 
7 contains the best five GGMs according to geoid undulation differences within 
every class. Figure 5 shows the performance of GGMs using the standard 
deviation values calculated in Table 7.

Table 7. Statistics of geoid height differences between GGM-derived (Nggm) 
and GNSS/levelling (NGNSS/lev) data, units in meters.
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Fig. 5. The standard deviations of geoid undulation differences between 
GNSS/levelling and GGMs

Table 7 and Figure 5 show the best GGM for the study area is eigen-
6c4. This model is followed by eigen-grace01s, egm2008, eigen-6c3stat and 
eigen-6c2, respectively. Considering the performance of these models, there 
is no large difference between them with regard to standard deviation values. 
In addition to this, general characteristics of models show that all the models 
except eigen-grace01s have a considerable degree, and gravity and altimeter 
data make positive contributions to the model (Table 8). 

Differences between GNSS/levelling-based geoid heights and GGM-
based geoid heights are influenced by datum inconsistencies and systematic 
errors. Therefore, different parametric models could be used in order to 
minimize these values (bias and tilt) (Kotsakis and Katsambalos 2010; Yilmaz 
et al. 2010). Generally, three, four, five and seven parametric models are used 
for the least-squares adjustment of the geoid height differences in the literature. 
Therefore, these parametric models were tested in this paper.

Table 8. The best five global geopotential models in the study area (S: 
Satellite, G: Gravity, A: Altimetry)

Geoid Heights Determination using Different Parametric Models

Systematic errors such as datum shifts and distortion among height 
systems might be minimized using the Least Squares Adjustment (LSA) model. 
If Eq. (3) is edited with this aim

4

10

11

12

9

is obtained (Kotsakis and Sideris 1999; Kiamehr and Sjöberg 
2005). Here ai  stands for known coefficients vector, x unknown 
parameters vector, and νi a residual random noise term. Four different 
parametric models (3, 4, 5 and 7-parameters) are used within the context 
of application. Mathematical statements for these models are as below, 
respectively (Kotsakis and Katsambalos 2010).

 where xi transformation parameters between two datums, vi residual 
random noise term, (φi, λi) geodetic coordinates of points, e first eccentricity of 
the reference elipsoid, and  . The matrix form is created as 
follows for the equations

Where  ai  is the coefficients vector and x is unknown’s vector for Model 
4. For other parametric models, coefficients and unknowns vector might be 
formed as in Eq. (9). If the formed coefficients are expanded for each GNSS 
point, A coefficients matrix (design matrix) would be obtained to be used in 
LSA (Eq. 10). Afterwards, unknown parameters can be solved with LSA.

Table 9 and Figure 6 show the statistical values obtained with 3, 4, 5, and 
7-parameter LSA implementation of the best five GGMs reached as a result of 
application. Table 9 and Figure 6 also show the best results obtained from the 
eigen-6c2 model. Moreover, the 7-parameter transformation model gives results 
that are the most compatible with minimum standard deviation values when 
compared to other parametric models. Figures 7-11 show the geoid heights after 
implementing transformation and geoid heights obtained from GGMs with 
GNSS/levelling geoid heights.

Table 9. Statistics of the differences between geoid heights obtained from 
GGMs and from GNSS/levelling data after applying the 3-, 4-, 5- and 7-parameter 

transformation, units in meters
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Fig. 6. The standard deviations of geoid undulation differences between 
GNSS/levelling and GGMs after transformations

Fig. 7. Undulation values according to eigen-6c2 model

Fig. 8. Undulation values according to eigen-6c3stat model

Fig. 9. Undulation values according to egm2008 model

Fig. 10. Undulation values according to eigen-6c4 model

Fig. 11. Undulation values according to eigen-grace-01s model

When the Figures 7-11 were examined, it has seen that there were a 
jump for the first geoid height values calculated from GGMs and the datum 
shift. The reason for these effects is thought to be systematic errors. Therefore, 
different parametric models could be used in order to minimize these effects. If 
the Figures are reviewed, it can be seen that these effects are minimized when 
the degree of parametric transformation is increased.

The parametric models describing the systematic errors and datum shifts 
in the different height data sets are used in the study. When the application 
results and the figures were examined, the 7-parameter transformation model 
gave results that are the most compatible with minimum standard deviation 
values when compared to other parametric models. Also, results show that 
eigen-6c2, eigen-6c3stat, eigen-6c4 and egm2008 global geopotential models 
produce approximately ±3 cm accuracy when compared to GNSS/levelling. 
Especially, 7-parameter transformation of eigen-6c2 and eigen-6c3stat models 
produces geoid height information with ±2.7 cm accuracy for 110 points within 
this test field. This accuracy obtained from GGMs can be seen adequate for 
several engineering applications. When the contributions of the new satellites 
going to be launched in the near future are considered, the accuracies obtained 
from GGMs will increase with each passing day. Thus, the use of GGMs for 
determining values such as the geoid height, the height anomaly, the gravity 
field etc. will play an important role in the earth sciences.

4. Conclusion and Suggestions

The aim of this study is to investigate the performance of GGMs 
produced by CHAMP, GRACE, and GOCE as well as comparing GGMs with 
GNSS/levelling data, and eventually to determine the best model. Within the 
scope of this study, the 210-km long Konya-Ankara high-speed train project 
was selected in order to investigate GGMs performance. When the study area 
is examined, it can be stated that the route has a flat ground and there is not 
a sudden height-change structure. While the orthometric height values of the 
points in the study area range between 696 and 1198 m, the ellipsoidal height 
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733 - 1234 m. 110 GNSS/levelling (benchmarks) points were included in 
the study area. Geoid heights of these points were calculated for all GGMs using 
only latitude and longitude of the points. Then these values were compared to 
true geoid heights and the performances of GGMs were examined.

According to results, the standard deviation was obtained as approximately 
12 cm after comparing with true values of the geoid heights obtained from the 
best match GGMs. The best GGMs are obtained eigen-6c4, eigen-grace01s, 
egm2008, eigen-6c3stat, and eigen-6c2, respectively. High degrees of the GGM 
of all the models except for eigen-grace01s along with its different data variety 
(gravity and altimeter) contributed to improving geoid height information 
obtained from the models.

Systematic errors in GGMs such as datum shifts and distortions can 
be minimized using different parametric models. Therefore, these errors are 
minimized using four different parametric (3, 4, 5, and 7-parametric) models 
in the scope of the implementation. When were examined the results after 
transformation, 7-parameter model compared to other models were produced 
the better results. According to 7-parameter model results, the best five 
GGMs are eigen-6c2, eigen-6c3stat, egm2008, eigen-6c4 and eigen-grace01s. 
Standard deviation value obtained from GGMs is approximately 3 cm for the 
first four models and 8 cm for the eigen-grace01s model. Standard deviation 
value obtained from the eigen-grace01s is significantly higher compared to the 
other models. This is most probably related to the data, including only satellite 
observations, and lower degree (nmax = 140) of the model.

According to the application results, it may be possible to use 3 cm-geoid 
height information for various engineering applications. It is obvious that geoid 
heights obtained from GGMs will be improved through developing technology 
and new satellite missions to be launched in the near future. It is also possible to 
conclude that after reaching 1-2 cm geoid height accuracy, height of points will 
be obtained with high accuracy using GGMs without the need for the levelling 
process in many engineering applications.
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