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Fast Marching Method (FMM) boasts high calculation efficiency and strong adaptability and stability while being 
applied to seismic traveltime. However, when it is applied to the largescale model, the calculation precision of 
FMM is insufficient. FMM has poor calculation precision near the source, which is an essential reason for the low 
accuracy of the whole algorithm. This paper puts forward a common traveltime calculation method to address the 
problem. Wavefront Construction (WFC) with a relatively high calculation accuracy rather than FMM is adopted for 
calculation of the grid nodes’ traveltime near the source. After that, FMM is used to calculate the seismic traveltime 
in the remaining area. Joint traveltime calculation method greatly improves the calculation accuracy of the source’s 
surrounding area and the calculation accuracy of FMM. According to the new method, FMM is still adopted for 
the calculation of most grid nodes in the model, so the high calculation efficiency of FMM is maintained. Multiple 
numerical models are utilized to verify the above conclusions in the paper.
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High-precision Joint 2D Traveltime Calculation for Seismic Processing

Cálculo de alta precisión del tiempo de viaje integrado bidimensional en procesamiento sísmico
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Se presupone que el método de la marcha rápida (FMM, del inglés Fast March Method) tiene una alta capacidad de 
calcular y una fuerte adaptabilidad y estabilidad cuando se aplica en el tiempo de viaje sísmico. Sin embargo, cuando se 
aplica a un modelo de gran escala su precisión de cálculo  es insuficiente. El FMM tiene una baja precisión de cálculo 
cerca de la fuente, lo que explica su poca exactitud en todo el algoritmo. En este artículo se presenta un método de 
cálculo común de tiempo de viaje para acercarse al problema. La Construcción de Frente de Onda (WFC, del inglés 
Wavefront Construction), con una mejor precisión que el FMM, se utilizó para el cálculo de la cuadrícula de nodos del 
tiempo de viaje cerca de la fuente. Después de esto, el FMM se utilizó para calcular el tiempo de viaje sísmico en el área 
restante. El método conjunto aumentó considerablemente la exactitud en el cálculo del área alrededor de la fuente y la 
exactitud en el cálculo del mecanismo FMM. De acuerdo con este nuevo método, el FMM se utiliza en el cálculo de  
la cuadrícula de nodos, con lo que se mantiene su alta eficiencia de cálculo. Varios modelos numéricos se utilizaron para 
verificar las conclusiones de este trabajo.
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Introduction

As the difficulty of finding oil and gas resources in shallow seismic 
exploration increases, in-depth seismic exploration is gaining more and 
more attention (Liang et al., 2016). However, deep seismic exploration 
imposes higher requirements on seismic exploration methods because of 
the larger area of calculation and the complexity of the structure. Seismic 
traveltime has a broad application in seismic exploration methods, including 
migration, demigration, tomography, and forward modeling (Wang et al., 
2018; Sun et al., 2017; Wan, Wei & Wu, 2017; Yang & Zhu, 2017; Wang, 
Li & Chen, 2017; Yang et al., 2018; Huang & Sun, 2018; Wang et al., 
2016; Sun et al, 2018). It is of great significance to study seismic traveltime 
calculation methods for in-depth seismic exploration.

Currently, traveltime calculation methods can mainly be divided into 
three kinds, including ray-based methods, finite difference methods, and 
new ray tracing methods based on graph processing techniques. Regarding 
ray-based methods, they can be divided into two kinds. The first kind is 
traditional ray tracing methods (mainly including the trial ray method and 
the shooting method); the second kind is Wavefront Construction (WFC). 
The trial ray method and the shooting method (Julian, 1977) were widely 
applied to seismic exploration techniques in the past, but these two methods 
face with prominent problems, such as low calculation efficiency and 
low adaptability to complex models. WFC was first put forward by Vinje 
(1993) and improved later by various scholars (Vinje, 1997; Coman, R., & 
Gajewski, 2005). Chambers and Kendall (2008) presented a practical WFC 
implementation method in 3D isotropic media. Hauser et al. (2008) obtained 
the multiarrival traveltime by the WFC method. Han et al. (2009) proposed 
a new positioning method for grid points in WFC. Bai et al. (2011) studied 
the seismic wavefront evolution of multiply reflected, transmitted, and 
converted phases in 2D/3D triangular cell model.

The method does not break new ground regarding principles. It is 
still a new technique to realize traditional ray tracing methods in essence, 
but the technique succeeds in playing an important role in popularizing 
the application of ray theories to seismic exploration. WFC boasts a good 
calculation precision, but its calculation efficiency is low because lots of 
rays are required to insert into the calculation process to ensure the ray 
density of the model space. Combining graph processing techniques 
and traveltime calculation, modern ray tracing methods mainly include: 
interpolation method (Asakawa & Kawanaka, 1993; Cardarelli & Cerreto, 
2002; Nie & Yang, 2003); shortest ray path tracing method (Moser, 1991; 
Bai, Greenhalgh & Zhou, 2007; Sun Z., Sun J., & Han, 2009). These 
methods can help obtain both traveltime and ray paths, but their calculation 
process calls for the screening of authentic ray paths from numerous useless 
ones. Thus, methods of the kind are low in calculation efficiency.

A finite difference method for traveltime calculation was first put 
forward by Vidale (1988). Methods of the kind obtain the viscosity solution 
of the eikonal equation through numerical analysis. Their calculation 
efficiency is high, but their defect is striking, in that, their calculation 
accuracy is low especially in the area near the source. Fast Marching Method 
(FMM) is one of the finite difference methods, which was raised by Sethian 
(1996). The technique was originated from the Level Set method (Sussman, 
Smereka & Osher, 1994). It integrates the narrow-band technology and the 
heapsort technique into its calculation process to achieve high efficiency, 
stability, and adaptability. Due to salient advantages, FMM was favored by 
many scholars (Sun & Fomel, 1998; Alkhalifah & Fomel, 2001; Rawlinson 
& Sambridge, 2004) not long after its emergence, but it still failed to solve 
inadequate calculation accuracy of traveltime near the source. For the 
strong adaptability of FMM, it was often used for calculating models under 
rugged topography (Sun, Z., Sun, J. & Han, 2010; Sun, Z., Sun, J. & Han, 
2011; Sun, J. & Han, 2012). Liu et al. (2014) proposed a TTI traveltime 
computation method based on a dynamic programming approach. Ma and 
Zhang (2014) obtained the ray information from the first arrival traveltime 
by solving the topography dependent eikonal equation. Sun et al. (2016) 
analyzed the effects of seawater velocity variation on deep-water seismic 
migration and found that the traveltime difference was a significant factor. 
Huang et al. (2016) solved the complex eikonal equation to obtain the 
traveltime by a nonuniform grid-based finite-difference method. Sun et 

al. (2016) traced the ray in the random media with complex topography 
by employing the GMM-ULTI method. Sun et al. (2017) calculated the 
seismic traveltime under complex conditions using the group marching 
upwind hybrid method. Huang and Greenhalgh (2018) further proposed an 
approximate solution for the seismic complex traveltime. Lan and Chen 
(2018) presented an upwind fast sweeping scheme for seismic traveltime 
calculation under the irregular free surface condition.

Based on the advantages and disadvantages of FMM and WFC, 
this paper puts forward a joint traveltime calculation method for deep-sea 
geology. According to this method, WFC is adopted for traveltime calculation 
in the surrounding of the source; and FMM is for the traveltime calculation of  
the remaining area. By improving the traveltime calculation accuracy near the 
source, the joint traveltime calculation method achieves the goal of enhancing 
the overall calculation accuracy while maintaining the high calculation 
efficiency of FMM. The above conclusions are verified through the error 
analysis of the homogeneous model and the trial of the gradient model, the 
layered model, the Marmousi model, and Sigsbee model.

Methods

FMM is an efficient and stable method to calculate seismic traveltime. 
Its calculation of grid nodes’ traveltime relies on the information of the 
surrounding nodes already derived. Since there is little node information 
near the source, the calculation accuracy of the area is relatively weak. 
Inadequate calculation accuracy in the area also influences the overall 
calculation accuracy. To improve the efficiency of FMM near the source 
is of vital importance to the improvement of the method. WFC is also an 
effective method for traveltime calculation. However, with the increase 
of the calculation area, the blind calculation zone will appear, and the 
calculation efficiency is not high, but its calculation accuracy near the 
source is relatively high. Based on the characteristics of the two traveltime 
calculation methods, this paper puts forward a joint traveltime calculation 
method based on the two calculation methods. As is shown in Figure 1, the 
new method employs WFC for traveltime calculation in the surrounding 
of the source, and FMM for traveltime calculation of the remaining area. 
Before introducing the joint traveltime calculation method, this part first 
gives a brief introduction of basic principles of FMM and WFC; then puts 
forward strategies to realize the combination of the two ways, and finally 
provides the schematic flow diagram.

Principles of FMM
By solving the eikonal equation through the upwind method, FMM 

obtains the seismic traveltime. Before the introduction of the method, the 
2D eikonal function is first introduced (Bai, Greenhalgh, Zhou, 2007).

Figure 1. FMM and WFC calculation regional diagram in the joint calculation 
method. WFC calculates the gray region, FMM calculates the white part.
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∇ =t s 					     (1)

Where, t is the seismic traveltime; s is the slowness;  is the gradient 
symbol. In (1), the upwind difference of the gradient item is approximate to 
(Sethian, J. A., & Popovici, 1999): 

∇ =
+

+ +

− +

−
t

D t D t

D t D
i j
x

i j
x

i j
z

i

max( , ) min( , )

max( , ) min(

, ,

, ,

0 0

0

2 2

2
jj
zt+















, )

/

0 2

1 2

		 (2)

Where, D ti j
x

,
− , D ti j

x
,
+ , D ti j

z
,
−  and D ti j

z
,
+  are the forward and backward 

difference operator in the direction of x and z. Below are the specific forms:

D t t t
x

D t t t
x

D t t t
z

D

i j
x i i

i j
x i i

i j
z i i

i j

, ,

, ,

,

,

− −

− −

= −
∆

= −
∆

= −
∆

1 1

1

+ +

+xx i it t t
z

= −
∆

+1
			   (3)

(2) could be reduced to a simpler form:
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During the realization process, FMM adopts the narrow-band 
technique as the wavefront expansion method. The first step of the narrow-
band procedure is to establish the first narrow-band. Usually, the grid 
points near the source were selected as the elements of the first narrow-
band, which is shown in Figure 2. During the narrow-band initialization,  
traveltime of the source (is, js) is zero. The traveltime of the points near the 
source can be expressed as
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Where, t stands traveltime;v for velocity; h for grid space. When the 
traveltime calculation of the grid nodes is complete, they will be inserted to 
the narrow band to establish the initial narrow band.

Figure 2. Narrow-band initialization. The red star is the source; gray points are the 
initial elements of the narrow-band.

After the narrow-band initialization is finished, the wavefront will be 
expanded as is shown in Figure 3. In this step, the minimum traveltime grid 
node within the narrow band need to be found, and the heapsort technique 
is employed to improve the calculation efficiency.

Figure 3. Narrow band extension schematic diagram of FMM. A is the minimum 
traveltime grid node within the narrow-band.

Principles of WFC

The theoretical basis of WFC for traveltime calculation is to solve 
the Kinetic Radial Tracing (KRT) equations. The KRT equations are shown 
below:
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Where, xi stands coordinates in space; v for velocity; pi for slowness 
component product;  for the value of traveltime. 

Figure 4. Conditions for inserting a new ray.

By solving the above equations, traveltime of discrete nodes along the 
ray paths can be obtained. For the reason that WFC is only employed near 
the source, just the distance factor is considered to insert a new ray to ensure 
the ray coverage. As is shown in Figure 4, new rays are added only when the 
distance is higher than the critical value.

In the joint traveltime calculation method, traveltime of regular grid 
nodes is needed. Below is a brief introduction of calculating traveltime of 
regular grid nodes based on the information along the ray paths.

Figure 5. WFC traveltime calculation schematic diagram.
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The adjacent rays and the wavefronts form irregular quadrangles. 
(See Fig. 5) Concerning any irregular quadrangle, ABCD, regular grid 
nodes within the quadrangle are first chosen out, the process of which is 
discussed in detail by Han et al. (2009). Then, based on the information of 
four vertexes, namely A, B, C and D, the traveltime of regular grid nodes 
within them can be interpolated (See Fig. 6).

Figure 6. Sketch map of the vector product method.

Once the position of the target point is determined, its traveltime 
could be calculated by the information of the quadrilateral vertices. As is the 
shown in Figure 7, R is the target point; A, B, C and D are the quadrilateral 
vertices. Oa, Ob, Oc and Od are the virtual sources, which are determined 
the information of  quadrilateral vertices. The traveltime of R can be 
expressed as:
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 Where, VR stands the velocity at point R.

Figure 7. Sketch map of the vector product method.

Principles and realization strategies of joint traveltime calculation 
based on FMM and WFC 

The joint traveltime calculation method is proposed to combine the 
advantages of FMM and WFC. The new method calculates the grid nodes’ 

traveltime with WFC in a small area near the source. The maximum single 
ray tracing distance is chosen between 5% and 10% of the model side 
length. Three aspects were taken into consideration when the scope was 
selected. Firstly, WFC takes relatively more time, so the calculation area 
will influence the computation efficiency of the new algorithm. Secondly, 
when the WFC calculation area becomes larger, it’s easy to appear a blind 
area in the model and may need to insert new rays to satisfy the precision of 
the algorithm, which will further reduce the efficiency of the new method. 
Finally, it can be seen from the accuracy of the analysis below is that the 
calculation accuracy of the technique has been greatly improved when 
WFC is used within that scope.

Though the combination of the two traveltime calculation methods 
can make the best of -both in different model areas, FMM and WFC are 
independent of each other and have little association, so the key to realizing 
the joint traveltime method lies in how to combine the two ways into a 
whole. This process could be realized through the narrow-band technique 
of FMM.

Narrow-band technique plays an essential role in FMM. As the 
wavefront expansion mode of FMM, it endows FMM with robust stability 
and flexibility. Before the use of the narrow-band technique, grid nodes in the 
whole space are divided into three kinds, namely accepted nodes, narrow-
band nodes, and far-away nodes. Accepted nodes refer to grid nodes which 
have been calculated and confirmed. Narrow-band nodes refer to grid nodes 
which have been calculated but have not yet been finally confirmed. Far-
away nodes refer to grid nodes which have not been calculated. Narrowband 
refers to the collection of all narrow-band nodes. In FMM, it is used to stay 
close to the wavefront. The above process of forming the narrow band is 
called narrow-band initialization. In the joint traveltime calculation method 
based on FMM and WFC, the grid nodes’ traveltime calculation sequence 
is: first, WFC is used to finish the traveltime calculation of the area near the 
source; then, FMM is used to calculate traveltime of the remaining area. 
Therefore, the narrow-band initialization in the joint method is a step after 
WFC finishing the traveltime calculation.

As is shown in Figure 8, the imaginary line stands for the length 
of the single ray; the nodes within the enclosed full line graph are grid 
nodes already calculated by WFC. As to the narrow-band initialization in 
the joint method, the grid nodes outside the enclosed full line graph are 
defined as far-away nodes. (See white nodes in Fig. 8) Nodes within the 
enclosed full line graph are a collection of accepted nodes and narrow-band 
nodes. Therefore, they should be further divided. As to grid nodes already 
calculated by WFC, if a grid node’s surrounding (back, front, left and right) 
nodes are all calculated by WFC, it is defined as the accepted node (See 
black nodes in Fig. 8); otherwise, it is the narrow-band node (See gray 
nodes in Fig. 8). Move all narrow-band nodes into the narrow band to finish 
the step of narrow-band initialization in the joint traveltime method.

The completion of the above step means that WFC and FMM finish 
the connection. Below is an introduction of how to use FMM to achieve 
traveltime calculation of the remaining grid nodes. The process is defined 
as the narrow-band expansion, which can generally be divided into the 
following three steps: (1) Choose the minimum traveltime node in the 
narrow band which have been initialized through WFC, and change the 
attribute of the node from the narrow-band node to the accepted node; (2) 
Judge the characteristic of the surrounding nodes of the newly-confirmed 
accepted node. If the node is a far-away node, the finite difference method is 
employed to work out its traveltime and change its attribute to the narrow-
band node. If the node is a narrow-band node, its traveltime value should 
be updated, but its characteristic should be maintained; if the node is an 
accepted node, the attribute and the traveltime value of the node should both 
be maintained; (3) Repeat Step 1 and Step 2 until the narrow band is empty.

Through the above analysis, it can be seen that the key to the joint 
traveltime calculation method lies in the flexible application of the narrow-
band technique. The technique is a bridge to connect FMM and WFC. 

Below is a realization flow diagram of the joint traveltime calculation 
method put forward in this paper (See Fig. 9)
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Figure 8. Graphical description of narrow band’s initialization in the new method.

EXPERIMENTS AND ANALYSIS
This part uses the homogeneous model to analyze the accuracy of the 

joint traveltime calculation method based on FMM and WFC, and multiple 
complex numerical models to verify the stability and adaptability of the 
new approach.

The size of the homogeneous model is 601×601; the grid spacing 
is 10m×10m; the velocity is 1,000m/s. In the joint traveltime calculation 
method, the maximum length of the single ray is 500m. Figures 10a, 10b 
and 10c show the relative error of the first-order FMM, the second-order 
FMM, and the FMM and WFC joint traveltime calculation method on the 
model. (The FMM used in the joint traveltime calculation method is the first 
order.) It can be seen that the calculation accuracy of the FMM and WFC 
joint traveltime calculation method has greatly improved compared with the 
first-order FMM, and is even higher than that of the second-order FMM.

(a)

(b)

(c)
Figure 10. Homogeneous medium relative error schematic diagram: first-order 

FMM relative error (a); second-order FMM relative error (b); FMM and WFC joint 
traveltime calculation method relative error (c).Figure 9. Flow diagram of joint traveltime calculation program..
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Table 1 shows the calculation accuracy of the joint traveltime 
calculation method put forward in this paper in different areas. The 
traveltime calculated by the joint method can be divided into two parts: one 
part is traveltime obtained through WFC, and the collection of the regular 
grid nodes in the area is called A; the other part is traveltime obtained 
through FMM, and the group of nodes of this part is called B. Table 1 shows 
that the average relative error of the three methods in Part A, Part B, and 
all grid nodes. Regarding velocity models of different sizes, the ratio of 
the maximum ray tracing length to the model’s unilateral length is 1:12. In 
this way, the number of grid nodes in Part A steadily accounts for around 
1.1% of the total. From Table 1, it can be seen that the accuracy of the 
joint traveltime calculation method based on the first-order FMM and WFC 
registers an obvious improvement compared with the first-order FMM. The 
joint way improves the calculation accuracy not only in the area of Part A 
through WFC, but also in the area of Part B. Though Part B is calculated 
through the first-order FMM, it can be seen that, due to the improvement 
of the traveltime calculation accuracy in Part A, the calculation accuracy of 
the first-order FMM in Part B is higher than that of the second-order FMM.

In the former part, the calculation of the joint traveltime calculation 
method is analyzed. The following section is an analysis of the new method’s 
calculation efficiency. Table 2 shows the time consumed by the calculation 
of homogenous models of different sizes through the first-order FMM, the 
second-order FMM, and the joint traveltime calculation method. It can be 
found the calculation efficiency of the new approach is a little lower than 
that of the first-order FMM but is far higher than that of the second-order 
FMM. Generally speaking, the FMM and WFC joint traveltime method has 
good accuracy and efficiency.

Complex models are adapted to verify the stability and adaptability of the 
FMM and WFC joint traveltime calculation method. Figure 11a is the isochronal 
graph of the gradient model, whose model size is 401 x 401; the grid spacing 
is 10m x 10m ; the velocity distribution is v = 1000m + 0.4z. Figure 11b is a 
layered medium, whose model size is 801 x 601; grid spacing is 10m x 10m; the 
up-down layer velocity is 1500m/s, 2000m/s and 2500m/s, respectively. Figure 
11c is the isochronal graph of Marmousi model, whose model size is 2085 x 
603; grid spacing is 5m x 5m. Figure 11d is the isochronal graph of Sigsbee 
model, whose model size is 3210 x 1201; grid spacing is 25m x 25m. 

Based on the calculation results of Figure 11, it can be found that the 
new method can obtain the traveltime results met the laws of seismic wave 
propagation and boast good stability and adaptability to complex models.

(a)

(b)

Table 1. The average relative error comparison between Fast Marching Methods and the method combining the Fast Marching Method with the Wavefront Construction 
Method.

Model
size

Average relative error(%)

Region A Region B Entire model

1st order 
FMM

2nd order 
FMM New method 1st order 

FMM
2nd order 

FMM New method 1st order 
FMM

2nd order 
FMM New method

401×401 2.411 0.659 0.002 0.471 0.078 0.054 0.493 0.085 0.040

501×501 2.110 0.554 0.002 0.396 0.062 0.043 0.415 0.068 0.038

601×601 1.899 0.481 0.002 0.344 0.053 0.036 0.360 0.057 0.036

701×701 1.717 0.421 0.001 0.304 0.045 0.031 0.320 0.049 0.033

801×801 1.576 0.376 0.001 0.273 0.040 0.027 0.288 0.043 0.031

Table 2. The computational cost(s) of different methods

Model Size
Computational cost(s)

1st order
FMM

2nd order
FMM

New
method

1001×1001 0.718 2.187 0.824

2001×2001 2.649 9.962 3.033

3001×3001 6.168 21.006 7.057

4001×4001 9.812 36.763 11.217
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(c)

(d)
Figure 11. Traveltime results of different models: Isochronal graph of the gradient 

model (a); Isochronal graph of the layered model (b); Isochronal graph of the 
Marmousi model (c); Isochronal graph of the Sigsbee model (d).

Conclusions
FMM boasts  high stability and efficiency while calculating the 

seismic traveltime, but the calculation accuracy near the source is low, which 
might influence the accuracy of the whole calculation method. In response 
to the problem, this paper puts forward a joint traveltime calculation method 
based on FMM and WFC. The core idea of the new way is to calculate the 
small area near the source with WFC and calculate the major remaining area 
with FMM. The calculation accuracy and calculation efficiency of the joint 
calculation method are analyzed, and the complex geological models are 
adapted to verify that the joint traveltime calculation method put forward 
in this paper is a seismic traveltime calculation method accommodating 
to both calculation efficiency and accuracy and boasting strong stability 
and adaptability. The new approach can serve as a powerful traveltime 
calculation tool for seismic exploration techniques, such as migration, de-
migration, and tomography. 
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