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Most of the coal mining in China is underground, which will inevitably cause surface deformation and trigger a series 
of geological disasters. Therefore, it is essential to find a suitable method to forecast the ground sinking caused by 
underground mining. The most commonly used prediction model in China is the probability integral model (PIM). 
But when this model is used in the geological condition of mining under thick loose layers, the predicted edge of the 
sinking basin will converge faster than the actual measured sinking situation. A geometric model (GM) with a similar 
model shape as the PIM but with a larger boundary value was established in this paper to solve this problem. Then an 
improved cuckoo search algorithm (ICSA) was proposed in this paper to calculate the GM parameters. The stability 
and reliability of the ICSA were verified through a simulated working face. At last, the ICSA, in combination with 
the GM and the PIM, was used to fit 6 working faces with the geological mining condition of thick loose layers in 
the Huainan mining area. The results prove that GM can solve the above-mentioned PIM problem when it is used in 
geological mining conditions of thick loose layers. And it was obtained through comparative analysis that the GM 
and the PIM parameters can take the same value except for the main influence radius.

ABSTRACT

Research on the establishment of a mining subsidence prediction model under thick loose layer  
and its parameter inversion method

Investigación sobre el establecimiento de un modelo de predicción de subsidencia minera bajo una capa gruesa inestable 
y su método de inversión de parámetros
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La mayor parte de la minería del carbón en China es subterránea, lo que inevitablemente causa deformaciones en 
la superficie y desencadena desastres geológicos. Por lo tanto, es necesario encontrar un método adecuado para 
pronosticar el hundimiento del suelo causado por la minería subterránea. El modelo de predicción más utilizado en 
China es el modelo integral de probabilidad (PIM). Pero cuando este modelo se utiliza en la condición geológica de 
la minería bajo capas gruesas inetables, el borde previsto de la cuenca de hundimiento converge más rápido que la 
situación de hundimiento medida. Para resolver este problema, en este artículo se estableció un modelo geométrico 
(GM) que tiene una forma de modelo similar a la del PIM pero que tiene un valor límite mayor. En este trabajo se 
propuso un algoritmo de búsqueda de cuco mejorado (ICSA) para calcular los parámetros de GM, y se verificó la 
estabilidad y confiabilidad del ICSA a través de una frente de trabajo simulado. Por último, el ICSA en combinación 
con el GM y el PIM se utilizaron para ajustar 6 caras de trabajo con la condición de minería geológica de capas 
gruesas sueltas en el área minera de Huainan. Los resultados demuestran que el GM puede resolver el problema 
de PIM mencionado anteriormente cuando se utiliza en las condiciones de minería geológica de capas gruesas 
inestables. Y se obtuvo mediante análisis comparativo que los parámetros del GM y del PIM pueden tomar el mismo 
valor excepto por el radio de influencia principal.
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Introduction

Although the continuous mining of the coal resources provides a strong 
guarantee for the rapid development of China’s economy. However, on the one 
hand, with the continuous consumption of coal resources and the continuous 
acceleration of urbanization, the amount of the coal seams pressed under 
buildings, railways, and water is increasing. On the other hand, the surface 
subsidence and the massive structure damage caused by underground mining 
have been very serious in China (Xuan & Xu, 2014; Zhao et al., 2016; Li 
et al., 2019; Xu et al., 2019). Therefore, it is very important to predict and 
fully grasp the laws of the ground deformation and its deformation caused 
by underground mining, which can provide guidance for controlling the 
destruction of surface protection objects. However, the process of the surface 
subsidence is complicated and different geological mining conditions will 
cause different surface subsidence laws (Xu et al., 2014). For example, the 
mining subsidence laws under the geological condition of thick loose layers 
have special characteristics compared with thinner loose layers and no loose 
layer. Such as the maximum subsidence value may be greater than the normal 
thickness of the coal seam and it is apparently smaller of the predicted value 
than the measured data at the boundary of the subsidence basin (Zhou et al., 
2016; Zhou et al., 2015).

Coal seams buried under thick loose layers are widely distributed in 
China. In recent years, most research on mining subsidence under the geological 
condition of thick domestic and foreign scholars has focused on the mechanism 
of rock formation movement. Zhu et al. (2020) confirmed that the transition 
layers of the bedrock layers and the loose layers has a support effect on mining 
subsidence. Liu et al. (2020) found that the thick loose layer formed a bending 
collapse zone, fracture development zone and caving zone during the mining 
process through simulation analysis, and derived a prediction model based on 
elastic mechanics. Xu et al. (2020) studied the movement laws of the overlying 
bedrock while mining shallow buried coal seams under thick loose layers. Yu 
et al. (2020) studied the rock-soil structure above the coal seam which is buried 
under thin bedrock layer and thick loose layer. Wang et al. (2019) analyzed 
the stability of the loose layers and the bedrock layers during mining. Ma et 
al. (2017) discussed the prediction methods for mining subsidence when coal 
pillars are solid backfilled under thick loose layers. Yang & Xia (2013) studied 
the ground deformation laws caused by mining under thick loose layers and 
thin bedrock layers by analyzing measured data. Dai et al. (2011) researched 
the influence of the thickness of the loose layers on mining subsidence through 
numerical simulation. Zhou et al. (2018) proposed a combined prediction model 
based on soil mechanics and random medium theory. Chang et al. proposed a 
mining subsidence prediction model used in subcritical mining under thick loose 
layers with considering the different subsidence and movement mechanisms of 
the bedrock layers and the thick loose layers. 

But the model can only be suitable for subcritical mining under thick 
loose layers (Chang et al., 2015). The advantage of the mining subsidence 
prediction model which is based on the mechanism of rock formation can 
fundamentally find the law of rock formation. It is not easy to establish the 
model and calculate the model parameters in actual application. So they all have 
not been widely used. The most commonly used mining subsidence prediction 
model is always the PIM which is developed from the random medium theory 
(Wang et al., 2020; Zheng et al., 2019; Diao et al., 2016; Fan et al., 2015). 
However, due to the limitation of the shape of the model curve, the problem of 
small boundary value is much more obvious while the PIM is applied to predict 
surface subsidence caused by mining under thick loose layers, and this problem 
cannot be solved by adjusting the model parameters. Therefore, it is necessary 
to establish a model with simple parameters and suitable for surface subsidence 
prediction caused by mining under thick loose layers.

An accurate prediction model is very important to mining subsidence 
prediction, a set of accurate parameters to the model is also important (Sehn et 
al., 2015). At present, the mostly used parameters inversion methods in mining 
subsidence prediction area can be divided into direct optimization methods 
(Shen et al., 2015; Guo & Wang, 2000) and intelligent optimization algorithms 
(Zha et al., 2011; Wang et al., 2018). The most commonly used of direct 
optimization methods is the modular vector method (MVM). The MVM has 
the advantages of easy programming and is suitable for working faces of any 
shape. But it needs a set of initial values of the parameters while using, and use 

them as a basis to follow the valley line or the ridge line to accelerate to the best 
values. The MVM has a strong dependence on the initial value of parameters. 
If the initial value is not accurate, the calculation result will deviate from the 
reasonable range. Since the PIM is an official forecasting method in China, 
many mining faces have a set of PIM parameters. Moreover, the subsidence 
prediction parameters of the working face with similar geological conditions 
are similar, so the PIM parameters of the mined working face with similar 
geological conditions can be used as the initial value of the PIM parameter 
of the working face to be solved. But on the one hand, the initial values of the 
parameters obtained in this way may be unreliable. On the other hand, it is 
difficult to obtain the initial values of the parameters of new prediction models. 
Therefore, the use of the MVM was restricted. The intelligent optimization 
algorithm uses random global search within a certain range by simulating 
the behavioral characteristics of creatures such as foraging and reproduction 
instead of deterministic search of the modular vector method, so it can explore 
the global optimal value without initial value dependence. The most commonly 
used method of intelligent optimization algorithms is the genetic algorithm 
(GA) (Du et al., 2014; Xing et al., 2021; Li et al., 2017). However, the accuracy 
of the GA to calculate the parameters of the mining subsidence prediction 
model is not ideal.

At the beginning of this paper, the GM to predict the surface subsidence 
caused by limited coal seams is established. And it is found that by adjusting 
the parameters of the GM, the middle part of its model curve can be basically 
consistent with the PIM, while the boundary value predicted is larger than the 
PIM. Therefore, it is inferred that the shape of the GM curve is more in line 
with the shape of the main section of the subsidence basin which is caused by 
mining under thick loose layers. Then in order to calculate the GM parameters, 
an improved cuckoo search algorithm-ICSA-is proposed, and a simulated 
working surface is used to verify the stability and accuracy of the ICSA. 
Finally, 6 working faces buried under thick loose layers were used to compare 
the accuracy of the GM and the PIM. By comparing the fitting effects of the 
GM and the PIM in 6 working faces, it can be concluded that the GM is more 
suitable than the PIM in predicting surface subsidence caused by mining under 
thick loose layers. and the relationship between the GM parameters and the 
PIM parameters is drawn.

Geometric model

Semi-infinite mining subsidence prediction model

Take the open-off cut of the coal seam as the origin, the direction from 
the origin to the inclination direction of the goaf as the positive direction of the 
y-axis and the direction from the origin to the strike of the goaf as the positive 
direction of the x-axis to establish the calculation coordinate system. Then 
according to the PIM, the sinking value of the point with abscissa x on the 
strike main section of the subsidence basin caused by a semi-infinite mining 
coal seam with the thickness of m and the dip angle of α can be calculated by 
Equation 1.

W x W r exp x s r dsPIM PIM PIM( )=( ) × −( )∫0
0

2/ / )
∞

π � (1)

Put erf x exp u du
x

( )=( )× −( )∫2
0

2/ π  into Equation 1 to get Equation 2:

W x W erf x rPIM PIM( )= × ×( ) ( / ) /0 2 π � (2)

Where W0  represents the max subsidence value and can be calculated 
by W m cos qPIM0 = × ×α , qPIM  is a parameter in the PIM named subsidence 
coefficient whose value is mainly determined by the lithology of the overlying 
rock, and its value is generally less than 1. rPIM  is another parameter in the PIM 
named main influence radius.

It can be seen from Equation 2 that the main section subsidence curve 
caused by a semi-infinite mining coal seam is in the shape of “S”. And the 
shape of function f x x x( )= +/ 1 2  is also “S”. Combined with the function 
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f x x x( )= +/ 1 2  and Equation 2, the new formula to calculate the sinking 
value of the point with abscissa x on the strike main section of the subsidence 
basin caused by a semi-infinite mining coal seam with the thickness of m and 
the dip angle of α is established as Equation 3.

W x W
x r

x r
GM

GM

GM
GM

( )= ×
+( )

+

















( / )
/

/
0 2

2
1

1 � (3)

Where W m cos q
GM GM0 = × ×α , qGM  is the subsidence coefficient of 

the GM. rGM  is the main influence radius of the GM.

Limited mining subsidence prediction model

The sinking value of the point with abscissa x on the strike main section 
of the subsidence basin caused by a limited mining coal seam with the length 
of D3 can be regarded as the superposition of two semi-infinite mining and 
calculated with Equation 4.

W x W W x S W x D SPIM PIM PIM PIM PIM
° ( )= × −( )− − −( ) )0 3 3 4( ] � (4)

Where S PIM3  and S PIM4  are parameters of the PIM named inflection 
point offset to the left and inflection point offset to the right.

From the analysis above, the GM to predict the sinking value of the point 
with abscissa x on the strike main section of the subsidence basin caused by a 
limited mining coal seam with the length of D3 is established as Equation 5.

W x W W x S W x D SGM GM GM GM GM
° ( )= × −( )− − −( ) )0 3 3 4( ]

� (5)= × × ×
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− −
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
( ) /

Where S GM3  and S GM4  are the inflection point offset to the left and the 
inflection point offset to the right of the GM.

Figure 1. The calculation principle of the movement and deformation of the 
inclined main section in limited mining

According to Figure 1, the formula to predict the sinking value of the 
point with coordinate y on the inclined main section of the subsidence basin 
caused by a limited mining coal seam with the width of D1 and depth of H is 
established as Equation 6.
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Where L represents the width for calculation of the coal seam and can be 
calculated by L D S S sin sinGM= − −( )× +( )1 1 2 θ α θ/ , GM , S GM1  and 
S GM2  are parameters of the GM named mining influence propagation angle, 
inflection point offsets in the downhill direction and inflection point offsets in 
the uphill direction.

Parameters analysis

From the analysis above, it can be seen that there needs seven parameters 
to predict mining subsidence with the GM: qGM , rGM , GM , S GM1 , S GM2  , 
S GM3  and S GM4 . Take a working face in Huainan mining area which has the 
length of 770m, width of 205m, depth of 556m, thickness of 3m and dip angle 
of 5°  as an example to compare the model curves of the GM and the PIM. The 
PIM parameters of this working face are as follows: qPIM 1 01.  , rPIM 300 , 
θPIM = °88 , S PIM1 5=− , S PIM2 32=− , S PIM3 19=−  and S PIM4 30 . 
The strike main section predicts the result of using the PIM in combination with 
the above parameters is shown in curve 1 in Figure 2. And the result of using 
the GM in combination with the above PIM parameters is shown in curve 2 in 
Figure 2. By comparing curve 1 and curve 2 in Figure 2, it can be seen that the 
shapes and trends of the GM and PIM model curves are similar under the same 
set of parameters, but the calculated specific subsidence values are different. 
Then adjust the GM parameters to make r rGM PIM / .2 5  and again use the 
GM to predict the subsidence of the strike main section to get curve 3.

Figure 2. Comparison of the shape of the model curve of the GM and PIM

By comparing curve 1 and curve 3 in Figure 2, it can be seen that by 
adjusting the parameter rGM, the middle part of the model curve of the GM can 
be roughly the same as the PIM with the predicted value of the boundary part 
larger than the PIM. Which means the GM may meet the mining subsidence 
laws under the geological condition of thick loose layers better than the PIM. 
So we can infer that the qGM , GM  S GM1 , S GM2 , S GM3 , and S GM4  in the GM 
can take the same value with the qPIM , PIM , S PIM1 , S PIM2 , S PIM3  and S PIM4  
in the PIM except for r rGM PIM / .2 5.

Improved cuckoo search algorithm

In order to further study the characteristics of the GM and establish the 
relationship between the parameters of the GM and the PIM, a suitable algorithm 
to solve the model parameters is needed. The cuckoo search algorithm (CSA) is 
a new kind of heuristic bionic group intelligent optimization algorithm proposed 
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by Professor Xinshe Yang and Susan Deb from the University of Cambridge in 
2009. The biological behaviors used include parasitic reproduction and Lévy 
flights mechanism. The CSA has the advantages of clear theory, few parameters, 
easy to expand, strong global search ability, easy to implement, and so on. It has 
been deeply studied and widely used by scholars in China and abroad.

The CSA

Parasitic reproduction behavior

Parasitic reproduction behavior means cuckoos do not build their own 
nests, they lay their eggs in communal nests or other birds’ nests. So mother 
cuckoos must face the risk that their eggs may be removed from the nests by 
other birds or the host birds. In the long-term evolution process, some cuckoos 
have learned some ways to improve the survival rate of their eggs such as 
pushing the host birds’ eggs out of the nests.

Lévy flights

Studies have shown that the foraging routes of many flying animals, 
including cuckoos, follow the Lévy flights mechanism. The advantage of Lévy 
flights mechanism in solving optimization problems is that it is combined with 
high frequency short step movements and occasionally long step movements. 
The high frequency short step movements make it possible to outcrop the local 
optimal solution and the occasionally long step movements ensure that the 
results will not fall into the local optimal solution.

Basic model

According to the above biological background, make the following 
scenario hypothesis:

•	 The total number of the nests is determined;
•	 The cuckoos lay only one egg in each nest;
•	 The one with the best fitness in the nest group will be retained 

directly to the next generation

When the CSA is used in solving optimization problems, the location 
of each nest represents a set of solutions. After several rounds of elimination, 
evolution and selection, the optimal individual can be selected out. The 
elimination strategy of the CSA was random selection under fixed elimination 
rate. The selection strategy of the CSA was greedy selection, that is, the 
individuals with better fitness will be retained after the new solutions were 
obtained and compared with current solutions. The evolution strategy of the 
CSA adopts two modes: random walking mode and preferred walking mode.

1.	 Random walking mode. Use Equation 7 when current nests’ 
positions need to be updated

x x L i ni
t

i
t+ = + ( ) =1 1 2α λ⊕ , , ,            	 (7)

Where xi
t  and xi

t1  represent the location of the i-th nest of generation 
t and Generation t+1 respectively; α represents the step size controller; 
  is point-to-point multiplication; n is the amount of the nests, that is, the 
amount of the feasible solutions; L λ( )  represents the random search path, 
L q u( ) < ≤−~ ( )λ λ1 3 , where  represents the random step size obtained by 
Lévy flights.

2.	 Preferred random walking mode. Mimicking the behavior of a host 
bird perceives the cuckoo egg and throws it away, then a new nest is needed. 
The next updating operation is as Equation 8.

x x r x xi
t

i
t

j
t

k
t+ = + −( )1 �� �� �� � (8)

Where x j
t  and xk

t  represent two random solutions of generation t; r is 
a random number satisfying the uniform distribution principle between [0,1].

The ICSA

Practice shows that the CSA is not strong in local search ability. This is 
because each solution is independent of each other in the process of searching 
for the optimal solution, there is no experience learning from better solutions 
and no information exchange. Therefore, the roulette selection strategy was 
adopted instead of the random elimination strategy in the CSA and the average 
operator and crossover operator was added in the updating process to exchange 
the information between nests. The specific operations are as follows: 

The selection strategy.

To select a better individual from the contemporary nests, it is first 
necessary to establish an individual fitness calculation function. According to 
the principle of least squares, for the purpose of making the fitting effect of the 
inverted parameters better, the fitness of solutions are evaluated based on the 
sum of the squares of the difference between the sinking value of predicted and 
observed. The fitness function is constructed as Equation 9. The nest with high 
fitness value is of good quality.

F W W i n j Ni
j

P ri j j
= −( ) = =∑1 1 2 1 2

2
/ , , , , ; , , ,

,
             � (9)

Where � F xi( ) represents the fitness of the i-th group of parameters, Wpi j,
 

represents the predicted subsidence value of the j-th observation point under 
the i-th group of parameters, and Wrj  represents the actual subsidence value 
of the j-th observation point. n is the amount of the nests in one generation, N is 
the amount of the observation points.

The roulette algorithm is used to select individuals with better fitness and 
eliminate those with poor fitness. Its specific operation process is as follows:

1.	 Calculate the fitness of each nest as f xi( ) (i = 1,2... ,n), n is the total 
number of the nests;

2.	 Calculate the probability of being passed on to the next generation of 

each individual as P x f x f xi i
j

M

j( )= ( ) ( )
=
∑/

1
;

3.	 Calculate the cumulative probability of each individual as 

q P xi
j

i

j= ( )
=
∑

1
;

4.	 Generates a uniformly distributed pseudorandom rand  in the 
interval [0,1];

5.	 If rand q 1, then choose the first individual; otherwise, choose 
individual k  to make q rand qk k− < ≤1

6.	 Repeat step 4 and 5 for M times. Save the selected individuals and 
eliminate the unselected

The evolution strategy.

Declare a temporary nest Xk � for communicating information between 
current nests. For any individual Xt  and Xt1, if X Xt t= +1, calculate the 
step length by α =1 2/ t  to generate a new nest Xk . If X Xt t≠ +1, then deal 
them with three different operators: average operator (take the average of 
the parameters in the two nests); crossover operator (randomly exchange the 
parameters in the two nests); and mutation operator (update the nests with Eqs.
(8)). The nest Xk  which has the best fitness can be selected out. Then randomly 
select a nest from all nests and compare it with Xk  to keep the one with the 
better fitness.

Set the total number of the nests as n=200 and each nest represents a set 
of parameters, which is [ q, tan , , S1, S2, S3, S4]T in the GM. The specific 
steps of calculating mining subsidence prediction parameters with the ICSA are 
shown in Figure 3.

Test by simulated working face

A simulated working face is designed so as to test the stability and 
reliability of the ICSA and compare its accuracy with the CSA and the GA,. 
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Its length, width, depth, dip angle and thickness are designed as 900m, 300m, 
400m, 0° and 3m. Its GM parameters are designed as is shown in Table 1. There 
set up an observation line above both the strike main section and inclined main 
section as is shown in Figure 4. The spacing and total number of the observation 
points are 30m and 88. Take the value calculated by the GM with designed 
parameters as true subsidence value. Then add random errors with median error 
of 5m, 10mm and 15mm into the true subsidence value to generate three sets 
of designed observations. In order to test the stability of the ICSA, calculate 
100 sets of the GM parameters of the designed working face with the above 
designed observations and the comparison of the parameter inversion effect of 
the ICSA while the designed observation data has different degrees of median 
error are shown in Table 2. In order to test the precision of the ICSA, use the 
GA, the CSA and the ICSA to calculate 50 sets of the GM parameters of the 
designed working face with the above designed observations. Take “q” as an 
example, the error comparison between true value and values inversed by the 
GA, CSA and ICSA are shown in Table 3.

Table 1. Designed GM parameters of the simulated working face

parameters qGM tanβGM θGM(°) S1GM 
(m)

S2GM 
(m)

S3GM 
(m)

S4GM 
(m)

value 0.7 5.0 88 20 20 20 20

1 tan H rGM GMβ = / , where H represents the depth of the coal seam.

Table 2. Comparison of the parameter inversion effect of the ICSA while the 
designed observation data has different degrees of median error

5mm 10mm 15mm

Mean
|∆|

Mean
|∆|/L0 
(%)

Mean
|∆|

Mean
|∆|/L0 
(%)

Mean
|∆|

Mean
|∆|/L0
(%)

qGM 0.028 4.00 0.035 5.00 0.037 5.29 

tan  0.075 1.2 0.084 1.7 0.096 2.0

GM 0.315 0.36 0.332 0.38 0.328 0.37 

S
GM1 7.12 35.60 8.95 44.75 7.98 39.90 

S
GM2 6.37 31.85 7.82 39.10 8.15 40.75 

S
GM3 9.05 45.25 9.22 46.10 9.64 48.20 

S
GM4 9.12 45.60 8.99 44.95 9.42 47.10 

δ 14.4 22.5 30.9

1 Mean L L T∆ = − 0 / , where  represents the absolute error 
between the true value L0  and the inversed value L; T represents the inversion 
times, which equals 100 in this paper;

2 Mean L L L L n
n

∆ / / / %0 0 0 100= −( ) ×∑ ;

3 δ =  ( )sqrt n∆2 / , where n represents the total number of the 
observation points, which equals 88 in this paper.

Table 3. Precision comparison of the GA, CSA and ICSA
Mean|∆q | Mean|∆q |/L0(%) δ

GA 0.037 5.3 31.2
CSA 0.108 15.4 40.2
ICSA 0.035 5.0 22.5

We can draw the following conclusions from Table 2 and Table 3: 
1.	 the relative errors of qGM , tan GM  and GM  inversed by 

the ICSA are all less than 6%, and the errors of S
GM1 , S

GM2 , S
GM3  and S

GM4  
are all less than 10mm. Indicating that the errors of the parameters inversed 
by the ICSA are all within the normal range. The average values of the errors 
of qGM , tan GM  and GM  are all less than 1, indicating that the results 
calculated by the ICSA are stable and reliable.

2.	 as the medium error of the random error in the observation data 
increases, the medium error of the inversed parameters has a tendency to 
increase. Indicating that the quality of the observation value will directly affect 
the accuracy of the parameters inversed by the ICSA.

3.	 the average error of qGM  inversed by the ICSA is 0.035, and its 
relative error is 5.0%, which is similar to the GA and significantly higher than 
the CSA, indicating that the stability of the ICSA is higher than the CSA and 

Figure 3. Flow Chart of the ICSA

Figure 4. Schematic diagram of the designed observation points of the simulated 
working face
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comparable to the GA. Compared with the other two methods, the error in the 
fitting of the parameters calculated by the ICSA is the smallest, indicating that 
the reliability of the parameters calculated by the ICSA is the highest.

Case analysis

(1) The working face 1111 (1) of the Zhujidong coal mine in Huainan 
Panji mining area has a length of 1584m, width of 220m, average depth of 
920m, average thickness of 1.8m, and average dip angle of 3°. It is buried under 
the loose layer with an average thickness of 278m. Its coal mining method and 
roof management method are the comprehensive mechanized method with a 
full height mining at one time and the total collapse method respectively.

Using the ICSA combined with the last observation data of the working 
face to calculate the PIM parameters and the GM parameters. The calculated 
model parameters are shown in Table 10. The comparison between the 
observations and the subsidence value fitted by the GM and the PIM are shown 
in Figure 5 and Table 4.

Table 4. Fitting effect comparison of the GM and the PIM for the 1111(1) 
working face

Median 
error overall

Median error 
of edge area

Relative error 
overall(%)

Relative error  
of edge area (%)

GM 9.1 9.2 19.0 25.2
PIM 17.9 19.8 42.0 56.5

Figure 5. Comparison of the fitting effect of the GM and PIM for 1111(1) 
working face

(2) The working face 12326 of the Gubei coal mine in Huainan Xieqiao 
mining area has the length of 770m, width of 205m, average depth of 537m, 
average thickness of 2.55m, and average dip angle of 5°. It is buried under the 
loose layer with an average thickness of 448m. Its coal mining method and roof 
management method are the comprehensive mechanized method with a full 
height mining at one time and the total collapse method respectively.

Using the ICSA combined with the last observation data of the working 
face to calculate the PIM parameters and the GM parameters. The calculated 
model parameters are shown in Table 10. The comparison between the 
observations and the subsidence value fitted by the GM and the PIM is shown 
in Figure 6 and Table 5.

Table 5. Fitting effect comparison of the GM and the PIM for the 12326 
working face

Median error 
overall

Median error 
of edge area

Relative error 
overall(%)

Relative error 
of edge area 

(%)
GM 64.8 42.1 37.0 50.8
PIM 140.1 125.2 46.7 63.0

Figure 6. Comparison of the fitting effect of the GM and PIM for 12326 
working face

(3) The working face 1613 (1) of the Guqiao coal Mine in Huainan 
Xieqiao mining area has a length of 1528m, width of 251m, average depth of 
668m, average thickness of 2.8m, and average dip angle of 3°. It is buried under 
the loose layer with an average thickness of 420m. Its coal mining method and 
roof management method are the comprehensive mechanized method with a 
full height mining at one time and the total collapse method respectively.

Using the ICSA combined with the last observation data of the working 
face to calculate the PIM parameters and the GM parameters. The calculated 
model parameters are shown in Table 10. The comparison between the 
observations and the subsidence value fitted by the GM and the PIM is shown 
in Figure 7 and Table 6.

Table 6. Fitting effect comparison of the GM and the PIM for the 1613(1) 
working face

Median 
error overall

Median error 
of edge area

Relative error 
overall(%)

Relative error  
of edge area (%)

GM 28.4 29.4 17.5 23.2
PIM 57.1 63.7 42.9 57.1

Figure 7. Comparison of the fitting effect of the GM and PIM for 1613(1) 
working face

(4) The working face 1414(1) of the Guqiao coal Mine in Huainan 
Xieqiao mining area has a length of 2120m, width of 251m, average depth of 
735m, average thickness of 2.7m, and average dip angle of 5°. It is buried under 
the loose layer with an average thickness of 411m. Its coal mining method and 
roof management method are the comprehensive mechanized method with a 
full height mining at one time and the total collapse method respectively.

Using the ICSA combined with the last observation data of the working 
face to calculate the PIM parameters and the GM parameters. The calculated 
model parameters are shown in Table 10. The comparison between the 
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observations and the subsidence value fitted by the GM and the PIM is shown 
in Figure 8 and Table 7.

Table 7. Fitting effect comparison of the GM and the PIM for the 1414(1) 
working face

Median 
error overall

Median error 
of edge area

Relative error 
overall(%)

Relative error 
of edge area (%)

GM 12.5 9.1 12.0 14.8
PIM 48.6 53.6 68.6 86.2

Figure 8. Comparison of the fitting effect of the GM and PIM for 1414(1) 
working face

(5) The working face 1252(1) of the Panyidong coal mine in Huainan 
Panji mining area has the length of 1148m, width of 262m, average depth of 
802m, average thickness of 2.7m, and average dip angle of 6°. It is buried under 
the loose layer with an average thickness of 165m. Its coal mining method and 
roof management method are the comprehensive mechanized method with a 
full height mining at one time and the total collapse method respectively.

Using the ICSA combined with the last observation data of the working 
face to calculate the PIM parameters and the GM parameters. The calculated 
model parameters are shown in Table 10. The comparison between the 
observations and the subsidence value fitted by the GM and the PIM is shown 
in Figure 9 and Table 8.

Table 8. Fitting effect comparison of the GM and the PIM for the 1252 (1) 
working face

Median 
error overall

Median error 
of edge area

Relative error 
overall(%)

Relative error  
of edge area (%)

GM 22.6 22.7 20.1 21.3
PIM 48.4 45.8 51.4 54.7

Figure 9. Comparison of the fitting effect of the GM and PIM for 1252(1) 
working face

(6) The working face 1312 (1) of Gubei coal mine in Huainan Xieqiao 
mining area has the length of 629m, width of 205m, average depth of 528m, 
average thickness of 3.6m, and average dip angle of 5°. It is buried under the 
loose layer with an average thickness of 439.7m. Its coal mining method and 
roof management method are the comprehensive mechanized method with a 
full height mining at one time and the total collapse method respectively.

Using the ICSA combined with the last observation data of the working 
face to calculate the PIM parameters and the GM parameters. The calculated 
model parameters are shown in Table 10. The comparison between the 
observations and the subsidence value fitted by the GM and the PIM is shown 
in Figure 10 and Table 9.

Table 9. Fitting effect comparison of the GM and the PIM for the 1312(1) 
working face

Median 
error overall

Median error 
of edge area

Relative error 
overall(%)

Relative error  
of edge area (%)

GM 114.8 32.5 15.5 23.7
PIM 123.1 122.6 41.5 77.8

Figure 10. Comparison of the fitting effect of the GM and PIM for 1312(1) 
working face

Table 10. Summary of the model parameters of the GM and PIM calculated by 
the ICSA

q r  S1 / S2 / S3 / S4

1111(1)
GM 0.43 242.1 87.1 5.5/-18.7/100.5/-19.5
PIM 0.40 575.0 88.9 4.5/3.5/108.0/-11.7

12326
GM 1.20 131.0 89.5 -9.5/-11.5/46.5/70.5
PIM 1.08 537/1.6 89.9 -1.7/-17.8/-68.5/-10.5

1613(1)
GM 1.13 335.6 84.8 35.5/-5.5/-52.3/-26.3
PIM 1.01 392.9 84.7 33.0/-4.3/59.0/35.3

1414(1)
GM 1.15 183.8 88.0 37.0/-5.5/69.0/48.0
PIM 0.90 459.4 87.5 26.0/75.5/120.4/109.5

1252(1)
GM 0.90 222.8 88.0 29.5/90.5/123.5/114.5
PIM 0.82 534.7 87.3 -30.7/7.0/43.5/34.5

1312(1)
GM 1.36 125.7 87.6 -27.5/-5.5/73.0/19.5
PIM 1.28 277.9 88.0 -42.5/-13.6/59.5/11.5

The six working faces selected in this article all buried under a thick 
loose layer. We can draw the conclusion from the above calculation results 
that the GM fitted better than the PIM at the boundary of the subsidence 
basin. Taking 1613 (1) as an example, the median error at the boundary of 
the subsidence basin fitted by the PIM is 63.7, while fitted by the GM is 
29.4, which is a reduction of 34.3; The relative error at the boundary of the 
subsidence basin fitted by the PIM is 57.1%, while fitted by the GM is 23.2 
%, which is a reduction of 33.9%. The fitting effect of the GM at the boundary 
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of the subsidence basin is significantly optimized compared with the PIM in 
predicting the subsidence value caused by mining under thick loose layers. 
By comparing the GM parameters and the PIM parameters in Table 9, it is 
confirmed that the values of the two models parameters are basically the same 
except for � rGM  and rPIM . By comparing their values in Table 9, it can be 
seen that rPIM  is about 2.5 times that of �rGM .

Results and discussion

(1) Through comparison, it is proved that the value at the boundary of the 
GM’s function curve is larger than that of the PIM. Which makes the GM more 
suitable than the PIM for predicting surface subsidence caused by mining under 
thick loose layers.

(2) In this paper, the ICSA was established by adding operations to 
increase the information exchange between individuals on the basis of the 
CSA. And through a simulated working face, it is proved that the stability and 
accuracy of the ICSA can meet the requirements of coal mining subsidence 
prediction parameters inversion.

(3) 6 working faces buried under thick loose layers in Huainan mining 
area were selected in this paper to compare the fitting effect of the PIM and the 
GM using the ICSA. The results show that the GM has a better fitting result 
than the PIM at the boundary of the subsidence basin. Further confirmed that 
the GM is more suitable than the PIM for predicting surface subsidence caused 
by mining under thick loose layers. And the parameters of the GM and the PIM 
can take the same value except for r rGM PIM / .2 5 . This result helps the GM 
to be used in actual engineering
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