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Soil remote sensing image classification is the most difficult in the National Soil Census work. Current soil remote 
sensing image classification methods based on deep learning and maximum likelihood estimation are challenging 
to meet the actual needs. Therefore, this paper combines deep learning with maximum likelihood estimation and 
proposes a maximum likelihood classification method for soil remote sensing images based on deep learning. The 
method is divided into four parts. Firstly, the pretreatment of soil remote sensing image is carried out, including three 
processes: image gray, image denoising, and image correction; secondly, the target of soil remote sensing image 
is detected by deep learning algorithm; thirdly, the maximum likelihood algorithm is used to classify soil remote 
sensing image; finally, the classification performance is tested by an example. The results show that this method 
can effectively segment the remote sensing image of soil, and the segmentation accuracy is high, which proves the 
effectiveness and superiority of the method.

ABSTRACT

Maximum likelihood classification of soil remote sensing image based on deep learning

Clasificación de verosimilitud máxima de imágenes en teledetección del suelo con base en aprendizaje profundo automático

ISSN 1794-6190 e-ISSN 2339-3459         
https://doi.org/10.15446/esrj.v24n3.89750

La clasificación de imágenes de detección remota de suelos es la más difícil en el trabajo del Censo Nacional de Suelos 
en China. Los métodos vigentes de clasificación de imágenes de teledetección del suelo basados en el aprendizaje 
profundo y la estimación de máxima probabilidad no satisfacen las necesidades actuales. Por lo tanto, este documento 
combina el aprendizaje profundo con la estimación de máxima verosimilitud y propone un método de clasificación para 
estas imágenes de teledetección. En primer lugar, se lleva a cabo el preprocesamiento de la imagen de teledetección 
del suelo, lo que incluye tres procesos: imagen gris, eliminación de ruido y corrección de imagen; en segundo lugar, 
el objetivo de la imagen del suelo se detecta mediante un algoritmo de aprendizaje profundo; tercero, el algoritmo de 
máxima verosimilitud se usa para clasificar la imagen de detección remota del suelo; y, finalmente, el rendimiento de 
la clasificación se prueba con un ejemplo. Los resultados muestran que este método puede segmentar efectivamente 
la imagen de detección remota del suelo, y la precisión de la segmentación es alta, lo que demuestra la efectividad y 
superioridad del método.
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Introduction

China has a vast territory and abundant land resources. Its total area 
is about 9.6 million square kilometers, second only to Russia and Canada, 
ranking third globally. Two national soil surveys have been carried out from 
1958 to 1960 and 1979 to 1985 to make better use of land resources and 
develop agriculture in China. The survey contents generally include soil 
formation factors, description of typical soil profiles, classification of soil types, 
determination of soil physical and chemical properties, soil evaluation, and 
low-yield soil improvement planning. However, in the face of such substantial 
land resources and continuous changes, the previous two soil censuses have 
become very difficult, especially in the classification process, it spent a lot of 
time, material, and financial resources. With the emergence and development 
of remote sensing technology, the work of soil survey has become simple. 
However, with the improvement of remote sensing image resolution and the 
increase of data volume, the collected soil images are more diverse and more 
productive, but to a certain extent, it increases the difficulty of classification 
(Chen et al., 2019).

Under the above background, relevant scholars at home and abroad 
have conducted in-depth research on soil remote sensing image classification 
and proposed many methods, such as soil remote sensing image classification 
methods, based on deep learning. It is based on artificial neural network 
architecture, such as convolution neural network, deep neural network, deep 
confidence network, to learn more useful features, thus ultimately realizing 
classification. The advantage of this method is that it has better transfer 
learning property. The disadvantage is that model validation is complicated 
and cumbersome. For example, the principle of a classification method for soil 
remote sensing image based on maximum likelihood estimation is based on 
calculating the probability that a pixel belongs to each class in a pre-set m-class 
data set, and then dividing it into the most probabilistic class. The advantage of 
this method is that it has evident parameter interpretation ability, and is easy to 
fuse with prior knowledge. The algorithm is simple and easy to implement. The 
disadvantage is that it is vulnerable to the distribution of categories in feature 
space and the selection of samples. Once the distribution is discrete, or the 
selected samples are not representative, the classification results will deviate 
significantly from the actual situation (Cheng et al., 2018).

Given the above situation, this paper combines deep learning with 
maximum likelihood estimation and proposes a maximum likelihood 
classification method for soil remote sensing images based on deep learning. 
The method is divided into two parts. The first part is to detect remote sensing 
image targets by deep learning and extracts classification features of various 
image targets. The second part is to classify soil remote sensing images by 
maximum likelihood estimation algorithm based on the first part and produce 
soil-type maps (Demattê et al., 2017). In the experimental part, a remote sensing 
image of a region is taken as an example to test the classification performance. 
By drawing ROC curves, it is concluded that the combined soil remote sensing 
image has better classification performance. This improvement provides a 
new idea for soil classification and mapping of current remote sensing data, 
facilitates soil census, improves land use rate to a certain extent, and promotes 
agriculture, animal husbandry, and forestry in China.

Maximum Likelihood Classification of Soil Remote Sensing Image based 
on Deep Learning

Soil remote sensing image is a kind of soil remote sensing image obtained 
by various sensing devices (such as radar, camera, scanner, etc.). Its acquisition 
principle process is shown in Figure 1, and the form of the obtained remote 
sensing image is shown in Figure 2.

The obtained soil remote sensing images can accurately identify and 
classify soil types, make soil maps, and analyze soil distribution law, which 
brings great convenience to soil survey. To improve the classification quality 
of soil remote sensing images, this paper studies a more effective classification 
method, which combines deep learning with maximum likelihood estimation to 
make up for each other’s shortcomings (Fitak & Johnsen, 2017).

The research on maximum likelihood classification of soil remote 
sensing images based on deep learning is mainly divided into four stages: the 
first stage is to preprocess the soil remote sensing images acquired by remote 

sensing equipment; the second stage is to detect the targets of remote sensing 
images by using deep learning algorithm and extract the classification features 
of various soil images; the third stage is to classify the soil remote sensing 
images based on the methods mentioned above by using maximum likelihood  
estimation method. In the fourth stage, the performance of maximum  
likelihood classification of soil remote sensing images based on deep learning 
is tested by an example to ensure the effectiveness and practicability of the 
method (Handelman & Chor, 2017).

Figure 1. Principle of soil remote sensing image acquisition

Figure 2. Remote sensing images
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include mean filtering, median filtering, wavelet transform and neighborhood 
averaging. Wavelet transform is a commonly used method at present (Li et al., 
2017). The basic principles are as follows: the multi-scale wavelet transform 
is performed on the noisy signal, and the wavelet coefficients belonging to the  
noise are removed at each scale, and the wavelet coefficients belonging to 
the signal are preserved and enhanced. Finally, the wavelet transform is used  
to restore the original signal, so that denoising is achieved, as shown in Figure 4.

Figure 4. Wavelet denoising

(3) Image correction
In the acquisition process of soil remote sensing image, besides the image 

quality degraded by noise, it will also be affected by the characteristics of the 
sensor itself, the illumination conditions of the ground objects (topography 
and solar altitude angle) and the atmospheric effect, which will lead to the 
inconsistency between the measured values of remote sensing equipment and 
the actual spectral emissivity of the ground objects, i.e., radiation distortion. 
The radiation distortion will then cause the geometric position, shape, size, 
orientation and other features of the original image to deviate from the 
expression requirements in the reference system, that is, geometric distortion 
(Ma et al., 2018). In view of the above two distortion phenomena, it is necessary 
to correct and restore the image.

1) Radiation distortion correction. According to the three causes of 
radiation distortion, i.e. the characteristics of the sensor itself, the illumination 
conditions of the ground objects and the atmospheric effect. The calibration of  
the remote sensor, the solar altitude and the terrain, and the atmospheric 
correction are carried out by these three methods, respectively, as shown in 

Preprocessing of Soil Remote Sensing Images

As shown in Figure 2, the quality of the original soil remote sensing 
image is not high, which is not conducive to the subsequent image classification. 
Therefore, it is necessary to pre-process the image before classification to 
improve the image quality, including image graying, image denoising and 
image correction (He et al., 2018).

(1) Image graying
Grayscale image, commonly speaking, is the conversion of a color image 

to a gray image whose pixel value is between 0 and 255. The whole image is 
composed of different degrees of gray. Its purpose is to reduce the interference 
of color to the target information in the image. There are four main methods of  
gray image processing: component method, maximum method, average 
method, and weighted average method, as shown in Table 1.

(2) Image denoising
Influenced by natural factors such as illumination, cloud, and equipment 

itself, the original remote sensing image collected contains a lot of noise. After 
graying, it can see that there are many white elements on the image. These 
elements are image noise, as shown in Figure 3.

Figure 3. Image noise

The existence of image noise will blur the image target and reduce the 
image quality, so it needs to be de-noised. At present, denoising methods 

Table 1. Four methods of image graying

Method Definition Formula Explanation of parameters

Component method

Taking the brightness of three 
components in a color image as the 
gray value of three gray images, a 

gray image can be selected according 
to the application needs.

f i j R i j1 , ,( ) = ( )   

f i j G i j2 , ,( ) = ( )   

f i j B i j3 , ,( ) = ( )   

(1)

f i j kk , , ,( ) =( )1 2 3  is the gray value of 
the converted gray image at (i, j); R, 

G, and B represent color components, 
ranging from 0 to 255

Maximum method
The maximum brightness of three 

components in a color image is taken 
as the gray value of a gray image.

f i j R i j G i j B i j, max , , , , ,( ) = ( ) ( ) ( )   (2)

average method
The three-component brightness of 
the color image is averaged to get a 

gray value. f i j
R i j G i j B i j

,
, , ,( ) =

( ) + ( ) + ( )
3   (3)

weighted average 
method.

According to the importance 
and other indicators, the three 

components are weighted averaged 
with different weights.

f i j R i j G i j B i j, . , . , . ,( ) = ( ) + ( ) + ( )0 30 0 59 0 11   (4)
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Figure 6. Sensor calibration: in order to eliminate the radiation error caused 
by the sensor itself, the dimensionless DN value recorded by the sensor is 
converted into the atmospheric top radiation brightness or reflectance with 
practical physical significance.

Topographic correction: it can mainly reduce the shadows in remote 
sensing images, because it restores spectral information, but because the 
existence of shadows will make the image stereoscopic, which is a visual 
experience. To see whether topographic correction improves image quality, it 
depends on whether spectral information has been corrected. Cosine correction 
and semi-empirical C correction are usually used for topographic correction 
(McCord et al., 2017).

Atmospheric correction is divided into statistical model and physical 
model according to the correction principle. The statistical model is based on 
the correlation between surface variables and remote sensing data, without 
knowing the atmospheric and geometric conditions of image acquisition. It has 
the advantages of simplicity and less parameters. 

2) Geometric distortion correction. Geometric correction refers to the 
elimination or correction of geometric errors in remote sensing images, which 
mainly involves three processes: selection of control points, transformation of 
spatial position (coordinate transformation) and resampling of pixel luminance 
resampling (Pritikin et al., 2018).

Control point selection: Firstly, two remote sensing images are selected, 
one is the reference image and the other is the geometric distortion image, 
as shown in Figure 5. A certain number of control point pairs on the above 
two images are selected. The selection principles are as follows: the selected 
control points should be obvious in the remote sensing image of soil; the objects 
covered by the control points are always fixed; the selected control points have 
the same topographic height on the two images; the control points should be 
evenly distributed in the image; and the number of control points should not 
be less than 5.

(a) base image (b) distorted image
Figure 5. Control point selection

Space position transformation (coordinate transformation): the purpose 
is to find the correct coordinates of the object. There are two main methods at 
present, direct method and indirect method. Direct method, as its name implies, 
calculates the coordinates of each pixel in the image to be corrected in turn 
by the coordinates of the control points on the reference image, as shown in 
Figure 6.

(a) base image (b) distorted image
Figure 6. Direct method

The advantage of the direct method is that the coordinate values of each 
pixel calculated in the image to be corrected will not change. The disadvantage 
of the direct method is that the distribution of pixels will not be uniform.

In contrast to the direct method, the indirect method calculates the 
coordinates of each pixel on the reference image from the image to be corrected. 
The schematic diagram is shown in Figure 7.

(a) base image (b) distorted image
Figure 7. Indirect method

The advantage of the indirect method is that it can ensure the uniform 
distribution of the corrected image pixels in space (Temmer et al., 2017). The 
disadvantage of the indirect method is that the row number of the relocated 
pixels is not an integer relationship with the original image, so the pixel value 
of the original image needs to be re-sampled.

Pixel luminance resampling: resampling refers to assigning the pixel 
value of the original image to the corrected image according to a certain 
relationship. At present, there are three main methods for resampling pixel 
luminance values: nearest neighbor method, bilinear interpolation method and 
cubic convolution method, as shown in Table 2.

Target Detection of Soil Remote Sensing Image based on Deep Learning

On the basis of the above, this chapter uses a deep learning algorithm 
to detect the target of soil remote sensing image, extract soil characteristics, 
and prepare for subsequent classification. Deep learning belongs to a branch 
of machine learning. It is an algorithm based on an artificial neural network to  
represent data. Therefore, before analyzing deep learning, it is necessary  
to understand artificial neural networks (Wang et al., 2017). Artificial neural 
network (ANN) is an abstract arithmetic model developed to simulate the 
process of processing information by human brain neurons. It consists of a large 
number of nodes (or neurons) connected with each other, as shown in Figure 8.

In Figure 8, a is a signal other than the neuron; w1 to wn is the weight of 
the signal transmitted to the neuron; b is the bias of the signal; f is the excitation 
function, generally a non-linear excitation function such as sgn symbolic 
function or sigmoid type continuous function, and y is the output of the neuron.

Artificial neural networks consist of an input layer, hidden layer and 
output layer. When input layer neurons are stimulated by input signal, the 
activation function of neurons in the hidden layer is stimulated. When a certain 
threshold is reached, neurons are activated and output signal is generated 
through the output layer  (Xu et al., 2017). On the basis of this structure, it is 
proposed that deep learning is a deeper artificial neural network, which consists 
of multiple neurons stacked together, as shown in Figure 9.

There is a special network structure in deep learning, namely convolution 
neural networks. It is a kind of feedforward neural network with deep structure 
including convolution calculation (Zhao et al., 2018). Its structure consists of 
input layer, convolution layer, pool layer, full connection layer and output layer. 
The structure is shown in Figure 10.

The basic principle of convolution neural networks is that the input image 
is convoluted by three trainable filters and additive bias. After convolution, three 
feature mapping maps are generated at layer C1. Then four pixels of each group 
in the feature mapping map are summated, weighted and biased, and three 
feature mapping maps at layer S2 are obtained through a Sigmoid function. 
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These maps are filtered to get layer C3. This hierarchy produces layer S4 again, 
as does layer S2. Finally, these pixel values are rasterized and connected into a 
vector input to the traditional neural network to get the output (Zhu et al., 2019).

Based on the above convolution neural network, the object detection and 
extraction of soil remote sensing images are carried out. The specific process 
is as follows:

(1) Convolutional neural network training
Step 1: Select the remote sensing image of soil for training as the input 

sample of the model.

Step 2: Set the weights between layers, the thresholds of output units and 
hidden units to random values close to 0, and initialize the accuracy control 
parameters and learning rate of the model.

Step 3: Take an input mode X from the training group and add it to the 
network, and give its target output vector D.

Step 4: Calculate an intermediate output vector H and the actual output 
vector Y of the network.

Step 5: Compare the element yK in the output vector with the element dk 
in the target vector, and calculate M output error terms.

Table 2. Resampling method of pixel luminance 

Method Definition Characteristic Sketch Map

KNN

The gray value of the 
nearest neighbor of the 

four adjacent pixels 
around the sampling point 
is taken as the gray value 

of the point.

The method is simple, fast and 
does not change the value of the 
original raster, but the processed 

image is not smooth enough.

Bilinear interpolation

Linear interpolation 
of gray values of four 
adjacent points in two 
directions is used to 
obtain gray values of 
points to be sampled.

The result is smoother than that 
of the nearest neighbor method, 

but it will change the original grid 
value and lose some small features. 

It is suitable for continuous data 
representing the distribution of 

some phenomena and topographic 
surface.

cubic convolution 
interpolation 

Cubic interpolation 
using the gray value of 
the pixels in the larger 

neighborhood around the 
sampling point.

It can make the image smooth 
and have a good visual effect, 
but it will destroy the spectral 
information of the image. This 
method can be used when data 
processing based on spectral 

analysis is no longer needed, but 
only for graphical representation.

https://blog.csdn.net/u010510549/article/details/62427122
https://blog.csdn.net/u010510549/article/details/62427122
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Step 6: Calculate L error terms for hidden elements in the middle layer.
Step 7: Calculate the adjustment formula of each weight value and the 

adjustment formula of threshold value in turn.
Step 8: Adjust weights and thresholds.
Step 9: When k goes through 1 to M, judge whether the index meets the 

accuracy requirement: E≤ε, where E is the total error function. If not satisfied, 
go back to step 3 and continue iterating; if satisfied, go to the next step.

Step 10: At the end of the training, save the weights and thresholds in the 
file. At this time, it can be considered that the weights have been stabilized and 
classifiers have been formed. When training again, the weights and thresholds 
are directly derived from the file for training without initialization.

(2) Realization of soil remote sensing image detection
Step 1: Use the trained convolution neural network to extract image 

texture features, and convolution calculation is carried out to obtain  
image feature map.

Step 2: Make sampling of the feature map of soil remote sensing image 
by using adaptive pooling model

Step 3: Merge the feature map into a column of feature vectors, and input 
to the full connection layer. Update the weights of the network filter through 
label data back propagation algorithm.

Step 4: Finally, the feature column vectors are input into softmax to 
complete the object extraction of soil image.

Figure 8. Artificial neural network

Figure 9. Deep artificial neural network

Figure 10. Convolutional neural network
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Classification of Soil Remote Sensing Image based on Maximum Likeli-
hood Estimation

Maximum Likelihood Classification (MLC) has a rigorous theoretical 
basis. It is easy to establish a class discriminant function with normal 
distribution. It combines the mean, variance and covariance of each category 
in each band. It has good statistical characteristics and has been considered as a 
more advanced classification method.

In traditional remote sensing image classification, maximum likelihood 
method is widely used. This method obtains the mean and variance of each 
category by statistics and calculation of the interested region, and then 
determines a classification function. Then each pixel in the image to be 
classified is substituted into the classification function of each category, and the 
category with the largest return value of the function is regarded as the category 
of the scanned pixels, so as to achieve the classification effect. Its basic principle 
process is as follows:

Step 1: Determine the area to be classified and the number of bands 
and feature classifications to be used, and check whether each band or feature 
component has been positioned with each other.

Step 2: According to the ground condition of the typical area, choose the 
training area on the image.

Step 3: Calculation of the parameters. Calculate and determine the prior 
probability according to the image data of the selected training areas.

Step 4: Classification. Substitute the image pixels outside the training 
area into the formula one by one. For each pixel, it is calculated several times 
in several categories. Finally, the size is compared, and the largest category is 
selected.

Step 5: Generate a classification map and specify a value for each 
category. If each category is divided into 10 categories, it is determined that 
each category is 1, 2, ..., 10. The classified pixel values are replaced by category 
values. The final classified image is thematic image. Because the maximum 
gray value is equal to the number of categories, it needs to add different colors 
to all kinds, when displaying on the monitor.

Step 6: If there are many errors in the classification, it needs to re-select 
the training area and do the above steps until the results are satisfactory.

Based on the principle of maximum likelihood method, the process of 
soil remote sensing image classification is as follows:

Step 1: Preprocess the image;
Step 2: Initialize the number of classifications and training parameters to 

determine the number of data blocks and threads;
Step 3: Establish and initialize grid threads and the amount of data to be 

computed by each thread.
Step 4: Detect the connectivity of the network and grid nodes, and add a 

grid computing thread model to the grid;
Step 5: Each thread carries out cyclic grid calculation according to the  

sample’s subset data, and all data in the grid unit are computed to get  
the category and stored to this node.

Step 6: Transfer the results from each grid site to the host computer, and 
merge the grid results.

Step 7: Release grid resources and output classification results to files.

Example Analysis

General Situation of Test Area

Lindian County is located in the western part of Heilongjiang Province, 
the hinterland of Songnen Plain, with an area of about 3 500 km2. It belongs 
to Daqing City, Heilongjiang Province. It has a continental monsoon climate 
in the middle temperate zone. It is rainy and warm in summer, dry and  
cold in winter. Its geological structure belongs to the paleo-Asian tectonic 
domain. It has abundant wetland resources and natural rivers such as Uyur 
River and Shuangyang River. The elevation is low and terrain is flat, but micro-
topography is more complex and low-lying leads to difficult drainage, which 
is easy to form marshes. According to the data of the second national soil 
census, most of the parent materials of the soils in Lindian County are loess-
like deposits (Palagan & Geetha, 2016). There are four main soil types (By the 
second national soil census). They are chernozem, meadow soil, marsh soil and 
aeolian sandy soil. Among them, chernozem accounts for more than 60% of the 

total soil. Chernozem is also an important part of black soil resources, and its 
organic matter content is high. Soil fertility is large, which is a very suitable soil 
type for grain production. The Landsat 8 OLI image of Lindian area on May 3, 
2014 is selected for this test. The study area in the image is almost covered by 
clouds. In May, it is bare soil period. There is neither a large area of vegetation 
nor snow. It meets the research requirements of this paper for bare soil period, 
as shown in Figure 11.

Figure 11. Test zone

Experimental Environment and Methods

In this paper, Tensor Flow machine learning framework under Linux 
is used, and python language is used for programming. The hardware 
environment is Intel (R) Xeon (R) E5-2630 CPU, Nvidia Tesla M40 UPU and 
12 GB memory. In order to verify the effectiveness of the proposed method, 
three groups of experiments are set up. The first group of experimental data 
uses the proposed method to classify soil remote sensing images, the second 
group uses deep learning-based methods to classify soil remote sensing images, 
and the third group uses maximum likelihood estimation to classify soil remote 
sensing images.

Sample Training

Samples are divided into four categories: chernozem, meadow soil, 
marsh soil and aeolian sandy soil. There are 10 samples in each category 
and 80 samples in total. 40 samples are used for experimental training and 
the remaining 40 samples are used for testing. The parameters of the trained 
convolutional neural network are shown in Table 3.

Test Verification

In the trained model, the remaining sample data sets are input for a 
performance test, and the experimental results are expressed in the form of 
confusion matrix. Confusion matrix, also known as error matrix, is a standard 
format for accuracy evaluation, which is expressed in the matrix form of n 
rows and n columns. Specific evaluation indicators include overall accuracy, 
mapping accuracy, user accuracy and so on. These accuracy indicators reflect 
the accuracy of image classification from different aspects (Sato, 2012; Zhu, 
2016). Each column of confusion matrix represents the prediction category, and 
the total number of each column represents the number of data predicted for 
that category; each row represents the true belonging category of data, and the 
total number of data in each row represents the number of data instances in 
that category. The sum of each row represents the true number of samples for 
the category, and the sum of each column represents the number of samples 
predicted for the category. 

There are 40 test sample data in this experiment, which are predicted to be 
four types (chernozem, meadow soil, marsh soil and aeolian sandy soil), each 
of which has 20 samples. After the three methods are classified, the confusion 
matrix is shown in Tables 4, 5 and 6.
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Table 4. Confusion matrix of the classification results of the proposed 
method

Project

Prediction classification

Black 
Calcium 

Soil

Meadow 
Soil

Swamp 
Soil

Aeolian 
Sand 
Soil

Actual 
classification

Chernozem 20 0 0 0

Meadow 
soil 0 20 0 1

Marsh soil 0 0 20 0

Aeolian 
sandy soil 0 0 0 19

Table 5. Confusion matrix of classification results of soil remote sensing 
image classification method based on deep learning

Project

Prediction classification
Black 

Calcium 
Soil,

Meadow 
Soil

Swamp 
Soil

Aeolian 
Sand 
Soil

Actual 
classification

Chernozem 17 2 1 0

Meadow soil 0 15 1 1

Marsh soil 2 2 16 3

Aeolian 
sandy soil 1 1 2 14

Table 6. Confusion matrix of classification results of soil remote sensing 
image classification method based on maximum likelihood estimation

Project

Prediction classification
Black 

Calcium 
Soil

Meadow 
Soil

Swamp 
Soil

Aeolian 
Sand 
Soil

Actual 
classification

Chernozem 18 2 1 1
Meadow soil 0 14 1 1
Marsh soil 1 3 18 3

Aeolian 
sandy soil 1 1 0 15

Comparing Tables 4, 5 and 6, it can be seen that after the proposed 
method is used to classify, 20 samples in the first, second and third rows of the 
confusion matrix established according to the results correspond to the first, 
second and third categories respectively, indicating that the samples are all 
correctly predicted, and only one sample belonging to the fourth category in the 
fourth row is misclassified into the second category. This result is much better 
than the other two methods, which shows that the performance of the proposed 
method is better.

Conclusions

In summary, in order to give full play to the advantages of the maximum 
likelihood method, a classification method for making best use of the advantages 
and bypass the disadvantages is designed, that is, the maximum likelihood 
classification method for soil remote sensing images based on deep learning. 
Firstly, deep sensing is used to detect remote sensing image targets and extract 
the target classification features of multiple kinds of images; then using the 
maximum likelihood estimation algorithm, soil remote sensing images are to 
classify. Finally, the experimental results show that the proposed method not 
only can realize the classification of remote sensing data, but also has a higher 
overall classification accuracy. Compared with the two single classification 
methods, the classification results obtained by the proposed method are more 
accurate.
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