REVISTA COLOMBIANA DE ESTADÍSTICA

No. 35

WIENER MEASURE ON $P_0(G)$

MYRIAM MUÑOZ DE ÖZAK*

Profesora asociada. Departamento de Matemáticas y Estadística, Universidad Nacional de Colombia, Bogotá, Colombia. e-mail address: mymunoz@ciencias.unal.edu.co or mynumoz@matematicas.unal.edu.co

ABSTRACT Nonstandard methods allow a flat integral representation of de Wiener measure on $P_0(R)$. A representation of the Wiener measure on $P_0(R^d)$ is given, allowing us to give a nonstandard representation of the Wiener measure on $P_0(G)$ by using Ito map.

0. PRELIMINARIES

For a good introduction of nonstandard analysis we can see (Albeverio, S. (1986)).

The main features that we need in our work are the following.

We assume the existence of a set $^*\mathbb{R} \supset \mathbb{R}$, called the set of the nonstandard real numbers and a mapping $*: V(\mathbb{R}) \rightarrow V(^*\mathbb{R})$, (where $V_1(S) = S$, $V_{n+1}(S) = V_n(S) \cup \mathcal{P}(V_n(S))$ and $V(S) = \bigcup_{n \in \mathbb{N}} V_n(S)$) with three basic properties. To state the properties we give the following notions.

An elementary statement is a statement Φ built up from $"=", "\in",$ relations: $u = v$, $u \in v$, the connectives "and", "or", "not", and "implies", bounded quantifiers $(\forall u \in v), (\exists u \in v)$.

An internal object A is an element of $V(^*\mathbb{R})$ such that $A =^* S, S \in V(\mathbb{R})$. A set in $V(^*\mathbb{R})$ which is not internal is called external.

*The author acknowledges partial support from CINDEC (Universidad Nacional de Colombia), COLCIENCIAS (Colombia) and D.A.A.D. (Germany)
(1) **Extension Principle.** \(*R\) is a proper extension of \(R\) and \(* : V(R) \to V(*R)\) is an embedding such that \(*r = r\) for all \(r \in R\).

(2) **The Saturation Property:** Let \(\{R_n : n \in N\}\) be a sequence of internal objects and \(\{S_m : m \in N\}\) be a sequence of internal sets. If for each \(m \in N\) there is an \(N_m \in N\) such that for all \(n \geq N_m\), \(R_n \subseteq S_m\), then \(\{R_n : n \in N\}\) can be extended to an internal sequence \(\{R_\eta : \eta \in *N\}\) such that \(R_\eta \subseteq \cap_m S_m\) for every \(\eta \in *N - N\).

(2') **General Saturation Principle:** Let \(\kappa\) be an infinite cardinal. A nonstandard extension is called \(\kappa\)-saturated if for every family \(\{X_i\}_{i \in I} : \text{card}(I) < \kappa\), with the infinite intersection property, the intersection \(\cap_i X_i\) is nonempty, i.e. this intersection contains some internal object.

(3) **Transfer Principle:** Let \(\Phi(X_1, ..., X_m, x_1, ..., x_n)\) be an elementary statement in \(V(R)\). Then, for any \(A_1, ..., A_m \subseteq R\) and \(r_1, ..., r_n \in R\),

\[
\Phi(A_1, ..., A_m, r_1, ..., r_n)
\]

is true in \(V(R)\) if and only if

\[
\Phi(*A_1, ..., *A_m, *r_1, ..., *r_n)
\]

is true in \(V(*R)\).

\((*R, +, *, \leq)\) extends \(R\) as an ordered field, in general we will omit the * for the operation and the order relation.

In \(R\) we can distinguish three kinds for numbers:
(a) \(x \in \ast \mathbb{R} \) is infinitesimal, if \(|x| < r \) for each \(r \in \mathbb{R}^+ \).

(b) \(x \in \ast \mathbb{R} \) is finite, if there is a real number \(r \in \mathbb{R}^+ \) such that \(|x| < r \).

(c) \(x \in \ast \mathbb{R} \) is infinite number, if \(|x| > r \) for each \(r \in \mathbb{R}^+ \).

For each finite number \(x \in \ast \mathbb{R} \) we can associate a unique real \(r := st(x) := \ast x \), such that \(x = r + \epsilon \), where \(\epsilon \) is infinitesimal. We say that \(x \) is infinitely closed to \(y \), denoted by \(x \approx y \) if and only if \(x - y \) is infinitesimal.

In general we use capital letters \(H, F, X \), etc. for internal functions and processes, while \(h, f, X \) etc. are used for standard ones. For stopping times we will always use capital letters, and specify whether standard or nonstandard is meant.

For given set \(A \), \(\ast A \) stands for the elementary extension of \(A \), and \(ns(\ast A) \) denotes the nearstandard points in \(\ast A \). If \(s \) is an element in \(ns(\ast A) \), the standard part of \(s \) is written as \(st(s) \), or \(\ast s \). For given function \(f \), \(\ast f \) means the elementary extension of \(f \).

We say that the set \(T \) is \(S \)-dense if \(\{ \ast t : t \in T, \ast t < \infty \} = [0, \infty) \), and \(ns(T) = \{ t \in T : \ast t < \infty \} \). With \(T \) we denote an internal \(S \)-dense subset of \(\ast [0, \infty) \). The elements of \(T \), or more generally, of \(\ast [0, \infty) \), are denoted with \(s, t, u \), etc. The real numbers in \([0, \infty) \) are denoted by \(s, t, u \), etc. We will work with different sets \(T \), so will always specify the definition of such \(T \).

With \(\mathbb{N} \) we denote the set of nonzero natural numbers \(\{1, 2, 3, \ldots\} \), and \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \). Elements of \(\mathbb{N}_0 \) are denoted with \(n, m, l \), etc. while, elements in \(\ast \mathbb{N} - \mathbb{N} \) will be denoted with \(\eta, \mathbb{N}, \) etc.

When we say that \(F : A \rightarrow B \) is an internal function, mean that the domain, the range and the graph of the function are internal concepts.
1. **Definition.** A subset $A \subseteq \ast \mathbb{R}$ which is internal and for which there exists $N \in \ast \mathbb{N}$ and an internal bijection $F : A \rightarrow \{0,1,2,\ldots,N-1\}$ is called hyperfinite set. In such case A is said to have hyperfinite internal cardinality N, and we write $|A| = N$.

Hyperfinite sets are to the nonstandard universe what the finite sets are to the standard one.

2. **Proposition.** Let A and B be hyperfinite sets with internal cardinalities H and N, respectively. Then:

i) $A \times B$ is hyperfinite, with $|A \times B| = HN$

ii) $A^B = \{F : B \rightarrow A : F$ is an internal function$\}$ is a hyperfinite set and its cardinality is H^N.

iii) $A \cup B$, $A \cap B$ are hyperfinite.

iv) If A is hyperfinite and $C \subseteq A$ is an internal set, also C is hyperfinite.

Let $\ast \mathbb{R}^+ = \ast \mathbb{R} \cup \{0, \infty\}$ be the extended nonnegative hyperreals. An internal finitely additive measure on the internal algebra \mathcal{U} is an internal set function $\mu : \mathcal{U} \rightarrow \ast \mathbb{R}^+$, such that

(i) $\mu(\emptyset) = 0$

(ii) For $A, B \in \mathcal{U}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Since μ is internal, the finite additivity extends to hyperfinite unions. Let Ω be a hyperfinite set and let \mathcal{U} be the class of all internal subsets of Ω. Let us define a finitely additive measure $^\circ \mu : \mathcal{U} \rightarrow \ast \mathbb{R}^+$ by $^\circ \mu(A) = ^\circ (\mu(A))$, where $^\circ r = \infty$ when r is an infinitely large element of $\ast \mathbb{R}^+$.
A countable union of sets can be written as a countable disjoint union of sets of the same kind. As have seen in Corollary A2.8 (Muñoz de Özak, M. (1995)), a countable union of disjoint internal sets is not internal. Then, σ is a σ-additive measure on the algebra of internal hyperfinite subsets of Ω. The Loeb measure is basically the extension v of σ to the σ-algebra generated by U by means of the Carathéodory's Extension Theorem.

3. Theorem (Loeb). The extended real valued function $v = L(\mu)$ has a standard σ-additive extension to the smallest (external) σ-algebra M on Ω containing U. For each $B \in M$, the value of this extension is given by $v(B) = \inf_{A \in U, B \subseteq A} \sigma(A)$. This extension is unique if $\mu(\Omega) < +\infty$, in which case, for each $B \in M$, $v(B) = \sup_{A \in U, B \subseteq A} \sigma(A)$ and there is $A \in U$ with $v(B\Delta A) = v((B - A) \cup (A - B)) = 0$.

For the proof see (Loeb, P. (1975)).

We say that A is Loeb measurable if

$$P_{ex}(B) = \inf_{A \in U, B \subseteq A} \sigma(A) = \sup_{A \in U, B \subseteq A} \sigma(A) = P_{in}(B),$$

and we denote this common value by $L(\mu)$. The collection of all measurable sets is denoted with $L(\Omega)$. The collection of all measurable sets is denoted with $L(\Omega)$.

4. Theorem. $(\Omega, L(\Omega), L(\mu))$ is a complete probability space which extends (Ω, U, μ). It is called the Loeb space associated with (Ω, U, μ).

For the proof see A3.2 in the appendix in (Muñoz de Özak, M (1995)).

5. Theorem. (Fubini type) Let (Ω_1, U_1, P_1) and (Ω_2, U_2, P_2) be hyperfinite probability spaces and let $F : \Omega_1 \times \Omega_2 \rightarrow R$ be a Loeb integrable function. Then:

(i) $f(w_1, \cdot)$ is Loeb integrable for almost all $w_1 \in \Omega_1$.

(ii) $g(w_1) = \int f(w_1, w_2) \, dL(P_2)$ is Loeb integrable on Ω_1.

(iii) $\int f(w_1, w_2) \, dL(P_1 \times P_2) = \int (\int f(w_1, w_2) \, dL(P_2)) \, dL(P_1)$.

The proof is due to Keisler. See (Keisler, H.J. (1984)), Theorem 1.14.b)

1. INTRODUCTION

We extend the one dimensional definition of N. Cutland (1990) of the Wiener measure on $P_0(\mathbb{R})$ to $P_0(\mathbb{R}^d)$. This allows to give a nonstandard definition of Wiener measure on Lie algebras. Then by means of Ito’s map, we obtain the notion of a nonstandard representation of the Wiener measure on $P_c(G)$, where G is a Lie group.

2. WIENER MEASURE ON $P_c(G)$

Let

$$P_0(\mathbb{R}) = \{x : [0,1] \rightarrow \mathbb{R} \mid x \text{ is continuous and } x_0 = 0\}$$

and let \mathcal{C} the Borel σ-algebra on $P_0(\mathbb{R})$ ($P_0(\mathbb{R})$ is given with the uniform convergence norm). The Wiener measure μ_0 over $(P_0(\mathbb{R}), \mathcal{C})$ is a probability measure such that, for $0 = t_0 < t_1 < \ldots < t_n = 1$ and $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$,

$$\mu_0(x_t, \leq \alpha_i, 1 \leq i \leq n) = \int \prod_{i=0}^{n-1} \left(2\pi (t_{i+1} - t_i)\right)^{-1/2} \exp \left(-\frac{(y_{i+1} - y_i)^2}{2(t_{i+1} - t_i)}\right) dy$$

where $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, $y_0 = 0$ and dy the Lebesgue measure on \mathbb{R}^n. μ_0 can be also described as a probability on $(P_0(\mathbb{R}), \mathcal{C})$ making the increments $(X_{t_{i+1}} - X_{t_i})_{0 \leq i \leq n-1}$ independent and $N(0, t_{i+1} - t_i)$ distributed. The canonical continuous process given by μ_0 is a Brownian motion.

Let $T = \{0, \Delta t, 2\Delta t, \ldots, 1\}$ be the hyperfinite unit interval. Following Cutland
we can make a nonstandard construction of the Brownian motion that gives us an adequate definition of the Wiener measure on \((P_\circ (\mathbb{R}), \mathcal{C})\) as follows:

Fix an internal probability space \((\Omega, \mathcal{U}, \mathcal{P})\) carrying independent \(N(0, t)\) random variables \((\eta_t)_{t \in T}\). Define a process \(B : T \times \Omega \rightarrow \ast \mathbb{R}\) by

\[
B(0, w) = 0
\]

\[
\Delta B(t, w) = B(t, w) - B(t - \Delta t, w) = \eta_t, \quad t \in T.
\]

Let \(P = L(P)\). Cutland obtains the following result:

(i) For \(P\)-a.a. \(w\), \(B(\cdot, w)\) is \(S\)-continuous.

(ii) The process \(b(\cdot, w) = \circ B(\cdot, w)\) is a brownian motion.

Cutland also shows that this construction of \(b\) gives rise to a construction of the Wiener measure that can be expressed as follows: Let \(\Gamma\) be the internal measure on \(\ast \mathbb{R}^T\) induced by \(B\), i.e., for \(A \in \mathcal{D}\), where \(\mathcal{D}\) is the Borel \(\sigma\)-algebra in \(\ast \mathbb{R}^T\),

\[
\Gamma(A) = \mathcal{P}(B(\cdot, w) \in A)
\]

\[
= (2\pi \Delta t)^{-N/2} \int_A \prod_{i \in T} \exp \left(-\frac{(X_{i - 1} - X_{i - \Delta t})^2}{2\Delta t} \right) dX_{\Delta t} dX_{2\Delta t} \cdots dX_1
\]

with \(dX_i\) denoting the \(\ast\)Lebesgue measure over \(\ast \mathbb{R}\). Writing \(dX\) for the \(\ast\)Lebesgue measure on \(\ast \mathbb{R}^T\), and

\[
\dot{X}_t = \frac{X_{t - 1} - X_{t - \Delta t}}{\Delta t} = \frac{\Delta X_{t - 1}}{\Delta t},
\]

we have

\[
\Gamma(A) = (2\pi \Delta t)^{-N/2} \int_A \exp \left(-\frac{1}{2} \sum_{i \in T} \dot{X}_t^2 \Delta t \right) dX
\]
and is follows that, with respect to $L(\Gamma)$, X is S-continuous for almost all $X \in \mathcal{R}^T$.

and the Wiener measure on $(P_0(\mathcal{R}), \mathcal{C})$ is given by

$$
\mu_0(D) = L(\Gamma)(st^{-1}(D)), \quad D \in \mathcal{C},
$$

where $st^{-1}(D) = \{X \in \mathcal{R}^T : {}^0X \in D\}$.

Now consider

$$
P_0(\mathcal{R}^d) = \{x : [0,1] \to \mathcal{R}^d | x \text{ continuous and } x_0 = 0\}
$$

and denoted with \mathcal{C}^d the Borel σ-algebra on $P_0(\mathcal{R}^d)$. The Wiener measure on $(P_0(\mathcal{R}^d), \mathcal{C}^d)$ is defined by

$$
\mu_0(x_t, \in A_i, 1 \leq i \leq n) =
\int_{A_1} \cdots \int_{A_n} \prod_{i=0}^{n-1} (2\pi(t_{i+1} - t_i))^{-d/2} \exp \left(-\frac{||y_{i+1} - y_i||^2}{2(t_{i+1} - t_i)} \right) dy_1 \cdots dy_n
$$

where $\{t_i : 1 \leq i \leq n\}$ is a partition of $[0,1]$, $A_i \in \mathcal{B}(\mathcal{R}^d)$, $||\alpha||$ is the length of α and dy_i is the Lebesgue measure on \mathcal{R}^d.

Generalizing Cutland's constructions for the Brownian motion, we can construct d independent $B^i(\cdot, w)$ processes such that $b^i(\cdot, w) = {}^0B^i(\cdot, w)$. Then

$$
{}^0B(\cdot, w) = (b^1(\cdot, w), \ldots, b^d(\cdot, w))
$$

is an \mathcal{R}^d valued Brownian motion. Similarly as for the one dimensional Brownian
motion, we can construct a Wiener measure that can be expressed as follows:

\[
\Gamma^d (D) = \tilde{\mathcal{P}} (B (\cdot, w) \in D)
\]

\[
= (2\pi\Delta t)^{-Nd/2} \int_D \exp \left(-\frac{1}{2} \sum_{t \in T} \left\| \dot{X}_t \right\|^2 \Delta t \right) dX_{\Delta t} dX_{2\Delta t} \ldots dX_1
\]

Where \(D \in D \times \cdots \times D \) (d-times), \(dX_t \) denotes the *Lebesgue measure over \(*R^d*, and

\[
\dot{X}_t = \frac{\Delta X_t}{\Delta t} \in *R^T.
\]

Now let \(D = D_1 \times \cdots \times D_d \), where \(D_i \) is an internal Borel set in \(*R^T*. For

\(i = 1, \ldots, d \). This class of sets generates \(D^d \). For \(X \in (R^d)^T, X = (X^1, \ldots, X^d) \),

with \(X_i \in *R^T, i = 1, \ldots, d \). Applying Theorem 5. (Keisler-Fubini Theorem) we

have

\[
\Gamma (D_1) \cdots \Gamma (D_d) = (2\pi\Delta t)^{-Nd/2} \left[\int_{D_1} \exp \left(-\frac{1}{2} \sum_{t \in T} \left(\dot{X}_t^1 \right)^2 \Delta t \right) dX_{\Delta t}^1 dX_{2\Delta t}^1 \ldots dX_1^1 \right] \cdots
\]

\[
= (2\pi\Delta t)^{-Nd/2} \left[\int_{D_1} \ldots \int_{D_d} \exp \left(-\frac{1}{2} \sum_{t \in T} \left(\dot{X}_t^d \right)^2 \Delta t \right) dX_{\Delta t}^d dX_{2\Delta t}^d \ldots dX_1^d \right]
\]

\[
= (2\pi\Delta t)^{-Nd/2} \left[\int_{D_1} \ldots \int_{D_d} \exp \left(-\frac{1}{2} \sum_{t \in T} \left\| \dot{X}_t \right\|^2 \Delta t \right) \right] dX_{\Delta t}^1 \cdots dX_1^1
\]

so that for \(D = D_1 \times \cdots \times D_d, D_i \in D \),

\[
\Gamma^d (D) = \Gamma (D_1) \cdots \Gamma (D_d)
\]
and for $A = A_1 \times \cdots \times A_d$, with $A_i \in C$, $i = 1, 2, \ldots, d$,

$$\mu_0^d (A) = \mu_0 (A_1) \cdots \mu_0 (A_d) = L (\Gamma) (s^{-1} (A_1)) \cdots L (\Gamma) (s^{-1} (A_d))$$

Since the sets $A = A_1 \times \cdots \times A_d$, with $A_i \in C$, $i = 1, 2, \ldots, d$, generate the Borel σ-algebra C^d, we can extend the definition of μ_0^d to C^d.

Let G be a compact, connected Lie group, and let g be the corresponding Lie algebra. Let us take an Euclidean metric on g which is $Ad(g)$ invariant. This metric induces a Riemannian metric on G. Suppose $\dim G = d$. Using and orthonormal basis,

$$P_0 (g) = \{ x : [0, 1] \rightarrow g | x \text{ is continuous and } x_0 = 0 \}$$

is isomorphic to $P_0 (\mathbb{R}^d)$. Let $P_e (G)$ be the set of $x : [0, 1] \rightarrow G$ which are continuous, $x_0 = e$ and x_t is invertible with respect to the group operation for all $t \in [0, 1]$. From Wiener's Theorem we can assume the existence of a Wiener measure on $(P_e (G), \mathcal{B} (P_e (G)))$, where $\mathcal{B} (P_e (G))$ is the Borel σ-algebra on $P_e (G)$, we want to give a nonstandard construction of this Wiener measure.

Following P. Malliavin and M. Malliavin (1990), given $x \in P_0 (g)$ and a partition $S = \{ t_0, \ldots, t_n \}$ of $[0, 1]$, we define $exp_s (x) = \gamma$ as follows:

$$\gamma (0) = e$$

$$\gamma (t) = \gamma (t_{j-1}) \exp \left(\left(\frac{t-t_{j-1}}{t_j-t_{j-1}} \right) (x (t_j) - x (t_{j-1})) \right), \quad t \in [t_{j-1}, t_j]$$

It is known that when the mesh of S tends to zero μ_0^d a.e., then, the following limit
exists in the metric space $P_e(G)$:

$$\lim \exp_p(x) = I(x)$$

The map $x \to I(x)$ is called the Ito map and is a measurable map.

Now consider the space $^*g^T$. We know that the nearstandard elements of this space are the S-continuous functions, and also that with respect to $L(\Gamma^\mathcal{G})$, X is S-continuous for almost all $X \in ^*g^T$. With no loss of generality we can assume that for all $X \in ^*g^T$, X is S-continuous.

For $X \in ^*g^T$ define the internal function $Y \in ^*G$ as follows:

$$Y(0) = e$$

$$Y(t) = \prod_{j=0}^{k-1} \exp \left(X_{t_{j+1}} - X_{t_j} \right)$$

where, $t = t_k = k\delta t$, $t \in T_\eta = T$. Considering $^*\gamma$, the elementary extension of γ, defined above, we see that $^*\gamma|_T = Y$; and since $^*\gamma$ is S-continuous, then Y is S-continuous and so $Y \in ^*G^T$. Thus, Y is nearstandard in $^*G^T$. Also $Y(t)$ is invertible for all $t \in T$, and we can define a map $\overline{I} : ^*g^T \to ^*G^T$, such that $\overline{I}(X) = Y$.

From the above nonstandard construction of the Wiener measure on $P_e(\mathbb{R}^d)$ and the \mathbb{R}^d valued Brownian motion, we have that

$$^*\overline{I}(B(\cdot, w)) = \mathcal{E}(^*B(\cdot, w)) = I(b(\cdot, w)),$$

where \mathcal{E} is the stochastic exponential function defined in Theorem 1.3.8 in (Muñoz de Ózak, M. (1995)). Since I is a measurable map, \overline{I} is a *Borel measurable map. We
can define an internal measure on \((^*G^T, B (^*G^T))\) by

\[
\nu(A) = \Gamma^d \left(\overline{T}^{-1}(A) \right)
\]

for \(A\) Borel subset of \(^*G^T\).

6. **Theorem.** For a Borel set \(B\) in \(P_e(G)\), we can define the Wiener measure \(\mu_{P_e(G)}(B)\) as

\[
\mu_{P_e(G)}(B) = L(\nu)(st^{-1}(B)).
\]

proof. For \(B\) a Borel set in \(P_e(G)\) we have

\[
st^{-1}(I^{-1}(B)) = \{X \in ^*g^T : \circ X \in I^{-1}(B)\}
\]

\[
= \{X \in ^*g^T : I(\circ X) \in B\}
\]

and

\[
\overline{T}^{-1}(st^{-1}(B)) = \overline{T}^{-1}(\{Y \in ^*G^T : \circ Y \in B\})
\]

\[
= \{X \in ^*g^T : \circ \overline{T}(X) \in B\}
\]

\[
= \{X \in ^*g^T : I(\circ X) \in B\}
\]

so that, \(st^{-1}(I^{-1}(B)) = \overline{T}^{-1}(st^{-1}(B))\). Since \(\mu_{P_e(G)}(B) = \mu_0^d(I^{-1}(B))\) from the nonstandard definition of \(\mu_0^d\), we then have

\[
\mu_{P_e(G)}(B) = \mu_0^d(I^{-1}(B)) = L(\Gamma^d)(st^{-1}(I^{-1}(B)))
\]

\[
= L(\Gamma^d)\left(\overline{T}^{-1}(st^{-1}(B))\right) = L(\nu)(st^{-1}(B))
\]

\(\square\)
REFERENCES

