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Abstract

This paper presents robust estimators for binary and multinomial circular
logistic regression, where a circular predictor is related to the response. An
extensive Monte Carlo Simulation Study clearly shows the robustness of
proposed methods. Finally, three numerical examples of Botany, Crime and
Meteorology illustrate the application of these methods to Life and Social
Sciences. Although in the Botany data the proposed method showed little
improvement, in the Crime and Meteorological data an increment up to 5%
and 4% of accuracy, respectively, is achieved.
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Resumen

Este artículo presenta estimadores robustos para el modelo de regresión
logística circular binomial y mutinomial. Un estudio de Monte Carlo muestra
la robustez de los métodos propuestos. Finalmente, tres ejemplos numéricos
en botánica, criminalística y meteorología muestran la aplicación de estos
modelos a las Ciencias.
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1. Introduction

In the last years there has been renewed interest in the statistical treatment of
circular data. Circular data can be represented in a circle, and can be expressed
by their angle: in degrees from 0◦ to 360◦ or radians from 0 to 2π. Circular data is
commonly used in Political Sciences. Gill & Hangartner (2010), for instance, ap-
plied circular data to study party preferences over policy issues for all Bundestag
elections in post-World War II in Germany. Note that time data can be considered
as circular data too. In case we have a 24 hour clock or a day of the year (DOY)
calendar, for example, we only need to convert it to angular data. For example,
Kibiak & Jonas (2007) used circular data to detect patterns in time through a
monitoring study where mood and social interactions were assessed for 4 weeks.
On the other hand, Jones & Pewsey (2012), used circular data to study the sud-
den infant death syndrome (SIDS) by taking the monthly totals of SIDS deaths
in England and Wales, Scotland, and Northern Ireland for the years 1983-1998.
Circular data have been also applied to Ecology (SenGupta & Ugwuowo, 2006),
Medicine (Bell, 2008), Biology (Landler et al., 2018) or Meteorology (Abuzaid &
Allahham, 2015).

Recently, Al-Da�aie & Khan (2017) de�ned the circular logistic regression
model to relate a circular predictor to a binary response. Since then, this model
has been widely applied in literature: see Uemura et al. (2021) or Wolpert and
Tallon-Baudry Wolpert & Tallon-Baudry (2021), among many others. However,
this approach assumes a binary response, which can be excesively simple in prac-
tice. On the other hand, the proposed method was based on maximum likelihood
estimator (MLE) which is known for its lack of robustness. This means that the
model may be seriously a�ected by the presence of outliers. However, it is very
common to observe this kind of observations in practice. Therefore, we may be
interested in the development of robust inference for the logistic regression model.
In this line of research, Alshqaq et al. (2021) proposed some new robust estimators
for the binomial model.

This paper is organized as follows. In Section 2 we extend the original model
to the multinomial circular logistic regression model, where a categorical response
is involved. In Section 3 we propose alternative robust divergence-based estima-
tors for both the binomial and multinomial circular logistic regression models.
In Section 4 an extensive Monte Carlo simulation study shows the robustness of
proposed methods. Finally, in Section 5 three numerical examples illustrate the
application of these models to Life and Social Sciences.

2. The Circular Logistic Regression model

2.1. The Binomial Circular Logistic Regression model

Let us consider that we have a binary outcome η ∈ {0, 1} that depends on a
circular explanatory variable u ∈ [0, 2π]. Let π(β, u) be the probability of success
in the response variable, the (binomial) circular logistic regression model is given
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by

π(β, u) =
exp{β0 + β1 cosu+ β2 sinu}

1 + exp{β0 + β1 cosu+ β2 sinu}
, (1)

where β = (β0, β1, β2)
T ∈ R3 is the model parameter vector. In this way, we take

into account the circular nature of the predictor.

We assume that we have n independent observations divided into I groups,
each one with ni observations (n =

∑I
i=1 ni) and associate covariate ui. For the

ith group, the number of successes is denoted by νi. As these observations come
from a binomial distribution, the likelihood is given by

L(β;ν,u) =

I∏
i=1

(
ni

νi

)
π(β, ui)

νi(1− π(β, ui))
ni−νi ,

where ν = (ν1, . . . , νI)
T and u = (u1, . . . , uI)

T . Thus, the log-likelihood is

ℓ(β;ν,u) = logL(β;ν,u) (2)

=

I∑
i=1

{
log

(
ni

νi

)
+ νi log π(β, ui) + (ni − νi) log(1− π(β, ui))

}
.

De�nition 1. Given the circular logistic regression model in (1), the maximum

likelihood estimator (MLE), β̂MLE of the parameter vector β is given by

β̂MLE = arg max
β∈R3

ℓ(β;ν,u), (3)

where ℓ(β;ν,u) is the log-likelihood based in the observed data (2).

Taking into account

∂π(β, ui)

∂β
= (1, cosui, sinui)

Tπ(β, ui)(1− π(β, ui)),

for i = 1, . . . , I, the maximum likelihood equations, which we want to set equal to
zero, are given by

∂ℓ(β;ν,u)

∂β0
=

I∑
i=1

(νi − niπ(β, ui)) ,

∂ℓ(β;ν,u)

∂β1
=

I∑
i=1

(νi − niπ(β, ui)) cosui,

∂ℓ(β;ν,u)

∂β2
=

I∑
i=1

(νi − niπ(β, ui)) sinui.

Following proposition expresses these equations in a matricial form:
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Proposition 1. Given the circular logistic regression model in (1), the MLE,

β̂
MLE

, is obtained by solving the following system of equations

W T (ν − µ(β)) = 03, (4)

where 03 is the null vector of dimension 3, ν was the vector of observed successes,

µ(β) = (n1π(β,u1), . . . , nIπ(β,uI))
T

is the vector of expected successes and

W =


1 cosu1 sinu1

1 cosu2 sinu2

...

1 cosuI sinuI

 .

Theorem 1. Given the circular logistic regression model in (1), the asymptotic

distribution of the MLE, β̂
MLE

, is given by

√
n
(
β̂
MLE

− β∗
)

L−→
n→∞

N
(
03,

(
W T

Diag (δiπ(β
∗,ui)(1− π(β∗,ui))i=1,...,I W

)−1
)
,

where δi = limn→∞
ni

n and β∗ is the true value of the parameter vector.

Proof . It is well known that the asymptotic distribution of the MLE is given by

√
n
(
β̂MLE − β∗

)
L−→

n→∞
N

(
0, I−1

F (β∗)
)
,

where IF (β) is the Fisher information matrix, which in this model is given by

nIF (β) = −E

[
∂2ℓ(β;ν,u)

∂ββT

]
= W TDiag (niπ(β

∗,ui)(1− π(β∗,ui))i=1,...,I W .

Then, the result follows.

MLE can be obtained by applying the Newton-Raphson method. The circular
logistic regression model was �rst considered in Al-Da�aie & Khan (2017) and it
is based on the classical logistic regression model for linear data, �rstly used by
Berkson (1944). However, this model was developed for a binomial response while
in practice, we can have more than two response categories. Here we �rst introduce
the multinomial circular logistic regression model to relate a circular predictor to
a multinomial response.

2.2. The Multinomial Circular Logistic Regression model

Let us consider now that our response variable η has d + 1 categories, η ∈
{0, 1, . . . , d+1} and that this depends again on a circular explanatory variable. Let
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πj(β, u) denote the probability that η belongs to the jth category, the multinomial
circular logistic regression model is given by

πj(βj , u) =
exp{βj0 + βj1 cosu+ βj2 sinu}

1 +
∑d

j=1 exp{βj0 + βj1 cosu+ βj2 sinu}
, j = 1, . . . , d, (5)

and πd+1(β, u) = 1−
∑d

j=1 πj(β, u). Here βj = (βj0, βj2, βj3)
T and β = (βT

1 , . . . ,

βT
d )

T ∈ R3d is the model parameter vector. Considering a sample of n independent
observations, the likelihood function is given by

L(β;ν,u) =

I∏
i=1

d+1∏
j=1

ni!

ν11! . . . νId!
πj(βj , ui)

νij ,

and

ℓ(β;ν,u) = logL(β;ν,u) (6)

=

I∑
i=1

d+1∑
j=1

{
log

(
ni!

ν11! . . . νId!

)
+ νij log πj(βj , ui)

}
.

De�nition 2. Given the multinomial circular logistic regression model in (5), the

MLE, β̂MLE of the parameter vector β is given by

β̂MLE = arg max
β∈R3d

ℓ(β;ν,u), (7)

where ℓ(β;ν,u) is the log-likelihood based in the observed data (6).

The maximum likelihood equations, which must be equal to zero for each j =
1, . . . , d, are given by

∂ℓ(β;ν,u)

∂βj0
=

I∑
i=1

(
νij − niπj(βj , ui)

)
,

∂ℓ(β;ν,u)

∂βj1
=

I∑
i=1

(
νij − niπj(βj , ui)

)
cosui,

∂ℓ(β;ν,u)

∂βj2
=

I∑
i=1

(
νij − niπj(βj , ui)

)
sinui.

A generalization of Proposition 1 applied to these equations gives us the fol-
lowing result.

Proposition 2. Given the multinomial circular logistic regression model in (5),

the MLE, β̂
MLE

, is obtained by solving the following system of equations

W̃
T
(ν̃ − µ̃(β)) = 03d, (8)
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where ν̃ = (ν11, . . . , ν1d, . . . , νI1, . . . , νId)
T is the (truncated) vector of observed

successes,

µ̃(β) = (n1π̃
T
1 (β), . . . , nI π̃

T
I (β))

T , (9)

is the (truncated) vector of expected successes with π̃i(β) = (π1(β1,ui), . . . ,
πd(βd,ui))

T and

W̃
T
= (W̃

T

1 , . . . , W̃
T

I )3d×Id, (10)

W̃ i = Id ⊗ ωT
i =


ωT

i 0T
3 . . . 0T

3

0T
3 ωT

i . . . 0T
3

...

0T
3 0T

3 · · · ωT
i


d×3d

,

where Id is the identity matrix of dimension d, ωT
i = (1, cosui, sinui) and ⊗

denotes the Kronecker product.

As expected, when taking d = 1 (binomial case), we have the equations in
Proposition 1. We can also compute the asymptotic distribution of the MLE:

Theorem 2. Given the multinomial circular logistic regression model in (5), the

asymptotic distribution of the MLE , β̂
MLE

, is given by

√
n
(
β̂
MLE

− β∗
)

L−→
n→∞

N
(
03d,

(
W̃

T
∆(µ̃(β∗))W̃

)−1
)
,

where µ̃(β) and W̃ are given in (9) and (10), respectively, and

∆(µ̃(β)) = lim
n→∞

1

n
∆(n)(µ̃(β)),

∆(n)(µ̃(β)) = diag(µ̃(β))− µ̃(β)µ̃T (β),

and β∗ is the true value of the parameter vector.

Proof . It can be proved by generalizing the proof of Theorem to the multinomial
case.

3. Minimum phi-divergence estimators

Let us consider the vectors of empirical and predicted probabilities

p̂ =
1

n
ν =

1

n
(ν11, . . . , ν1(d+1), . . . , νI1, . . . , νI(d+1))

T ,

p(β) =
1

n
µ(β) =

1

n
(n1π

T
1 (β), . . . , nIπ

T
I (β))

T ,

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 45�62



Robust Circular Logistic Regression Model and Its Application to Life... 51

respectively, with πi(β) = (π1(β1,ui), . . . , πd+1(βd+1,ui))
T the Kullback-Leibler

divergence between p̂ and p(β) is given by

DKL(p̂,p(β)) =

I∑
i=1

d+1∑
j=1

νij
n

log
νij

niπj(βj , ui)

= K − 1

n

I∑
i=1

d+1∑
j=1

νij log πj(βj , ui), (11)

withK a constant that does not depend on β. For more details about the Kullback-
Leibler divergence one can refer to the pioneer paper by Kullback & Leibler (1951).
One can observe that maximizing the log-likelihood in (6) is equivalent to minimiz-
ing the Kullback-Leibler divergence in (11). Therefore, we can give an alternative
de�nition to the MLE:

De�nition 3. Given the multinomial circular logistic regression model in (5), the

MLE, β̂MLE of the parameter vector β is given by

β̂MLE = arg min
β∈R3d

DKL(p̂,p(β)), (12)

where DKL(p̂,p(β)) is the Kullback-Leibler divergence between p̂ and p(β) in
(11).

Thus, the MLE can be obtained through the minimization of the Kullback-
Leibler divergence between the observed and the model probability vectors. The
main idea of the proposed approach is the following: Why not to minimize other
divergences, instead of Kullback-Leibler, between both probability vectors in order
to obtain alternative (and maybe more suitable) estimators?

Following this idea, we introduce the Cressie-Read family of minimum phi-
divergences (Cressie & Read, 1984).

dϕλ
(p̂,p(β)) =

1

n

I∑
i=1

d+1∑
j=1

πj(βj , ui)ϕλ

(
νij

niπj(βj , ui)

)
, (13)

where

ϕλ(x) =

{
1

λ(1+λ)

[
xλ+1 − x− λ(x− 1)

]
, λ ∈ R \ {−1, 0}

limυ→λ
1

υ(1+υ)

[
xυ+1 − x− υ(x− 1)

]
, λ ∈ {−1, 0} .

This family of divergences depends on a tuning parameter λ. When λ = 0, we
have the Kullback-Leibler divergence. Other well known divergences are obtained
for λ = −0.5 (Hellinger distance), λ = 2/3 (Cressie-Read divergence) or λ = 1
(Chi-square divergence).

De�nition 4. Given the multinomial circular logistic regression model in (5), the

minimum Cressie Read estimator (MCRE), β̂ϕλ
of the parameter vector β is given

by
β̂ϕλ

= arg min
β∈R3d

dϕλ
(p̂,p(β)), (14)
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where dϕλ
(p̂,p(β)) is the Cressie-Read phi-divergence between p̂ and p(β) in (13).

For the particular case in which λ = 0, we have the MLE.

Theorem 3. Given the multinomial circular logistic regression model in (5), the

asymptotic distribution of the MCRE, β̂ϕλ
, is given by

√
n
(
β̂ϕλ

− β∗
)

L−→
n→∞

N
(
03d,

(
W̃

T
∆(µ̃(β∗))W̃

)−1
)
,

i.e., the asymptotic distribution of the MCRE is independent to the tuning param-
eter λ, particularly, it has the same asymptotic distribution as the MLE (λ = 0).

Proof . The result is straightforward following the theory given in Lindsay (1994).

The main idea to understand this result is that all the estimators have the
same �rst order approximation of the residual adjustment function (RAF). See
the cited paper by Lindsay (1994). This result suggests that the MCRE is asymp-
totically fully e�cient at the model, so the method provides an e�cient estimator
of the model parameters when the model is true. However, it is also known that
negative values of the parameter λ usually yield to more robust estimators, with
an unavoidable loss in e�ciency. In particular, the Hellinger distance (λ = −0.5)
is known in the statistical literature for its robustness properties. Although this
robustness can not be proved through the In�uence Function (Rousseeuw et al.,
2011), as it is based again in the �rst-order approximation, we can empirically
show it through an extensive simulation study.

4. Monte Carlo Simulation Study

We develop a simulation study to evaluate the behaviour of the proposed esti-
mators. We consider both binomial and multinomial responses (three categories,
d = 2). To generate the data we consider three di�erent scenarios: von Misses dis-
tribution (Mardia & Zemroch, 1975) with mean 60◦ and concentration parameters
κ = 4, 8 and Spherical Normal distribution (Hauberg, 2018; Castilla, 2022) with
concentration parameter κ = 6.

For the binomial case, we consider βT = (0, 2, 2) and n ∈ {20, . . . , 100} di�erent
responses, without repeated covariates. The outliers are generated by interchan-
ging a 10% of the responses, selected randomly. In the case of the multinomial
response, we consider βT = (0, 2, 2, 0.2, 2.5, 1.5) and I ∈ {10, . . . , 50} categories
with ni = 5 samples in each one. The outliers are obtained by assigning all
the responses to the third category, the one with less probability. The vector of
parameters β is estimated for each one of 1000 replications.

The mean absolute errors (MAE) of the estimated probabilities (computed
with the estimated vector of parameters) are obtained for di�erent MCRE and
presented in Figure 1 (binomial response) and Figure 2 (multinomial response).
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Figure 1: Binomial case. Results from the Monte Carlo study. Von Misses distribution
with κ = 4 (above), Von Misses distribution with κ = 6 (middle) and Sphe-
rical Normal distribution with κ = 8 (below).

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 45�62



54 Elena Castilla

●
●

●
●

● ● ●
● ●

10 20 30 40 50

0.
04

0.
08

Pure data

I

M
A

E

●

●

●
●

●
● ●

● ●

10 20 30 40 50

0.
08

0.
12

0.
16

Contaminated data

I

M
A

E
●

●
●

● ●
●

● ● ●

10 20 30 40 50

0.
04

0.
08

0.
12

I

M
A

E

●

●
●

● ● ●
● ●

●

10 20 30 40 50

0.
08

0.
12

0.
16

I

M
A

E

●

●
●

●

●
●

●

●
●

10 20 30 40 50

0.
04

0.
08

I

M
A

E

●
●

●
●

● ●
●

● ●

10 20 30 40 50

0.
08

0.
12

0.
16

I

M
A

E

● −0.5 −0.2 0 0.1 0.3

Figure 2: Multinomial case. Results from the Monte Carlo study. Von Misses distri-
bution with κ = 4 (above), Von Misses distribution with κ = 6 (middle) and
Spherical Normal distribution with κ = 8 (below).
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MAEλ(π) =
1

Id

I∑
i=1

d∑
j=1

|πij(β̂ϕλ
)− πij(β)|.

In both cases, minimum phi-divergence estimators with negative tuning param-
eter outperforms the MLE (λ = 0) and minimum phi-divergence estimators with
positive tuning parameter when considering a contaminated scenario. MCREs
with negative tuning parameter are sometimes a more e�cient alternative to MLE
in case of pure data.

5. Application to Life and Social Sciences

In this section, we present three numerical examples to illustrate the applica-
bility of the proposed methods. In order to evaluate the performance of them, we
compute the accuracy of the estimations, i.e., the proportion of events that are
classi�ed correctly.

Example 1 (Botany data). Let us consider the dataset of leaf inclination angle
measurement recorded in Chianucci et al. (2018) and also analyzed in Alshqaq
et al. (2021). This dataset contains the leaf inclination angles of 138 plant species.
In particular, we want to classify the species Betula pendula and Aesculus hip-
pocastanum by the angle inclination of their bottom canopy. We �rst split the
dataset into training and testing sets assigning a random 70% of data points to
the former and the remaining 30% to the latter. We apply the circular logistic
regression to the training set (see Figure 3, top left), and evaluate the �tted model
with the test set. Results for di�erent values of the tuning parameter λ are shown
in Table 1. Although there is not a huge di�erence among MCREs, estimators
with λ < 0 outperform the classical MLE. This suggests presence of outliers in our
data, which is in concordance with Figure 3.

Note 1. The use of divergence-based estimators in our data may have two di�erent
utilities: (1) develop a more robust inference than that based on MLE and (2)
detect the presence of outliers in our data, as happened in Example 1.

Example 2 (Crime data). Let us consider a data set obtained from The Crime
Open Database (CODE) (Ashby, 2019), a service that records crime data from
multiple US cities. In particular, we randomly select 250 motor vehicle thefts and
250 fraud o�enses (except counterfeiting/forgery and bad checks) commited in the
city of Chicago during 2020. We split again the dataset into training and testing
sets (70% and 30% of data points, respectively) and we wonder if the time of
crime is able to predict the crime commited. See top right part of Figure 3. We
apply a circular logistic model taking as explanatory variable the time of crime,
illustrating how time can be treated as circular data. In this case, the proportion
of crimes that are estimated correctly is not excessively high, not exceeding a 70%,
as it can be seen in Table 2. However, MCRE with λ < 0 may improve a 5% the
prediction via MLE.
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Example 3 (Meteorological data). Finally, let us illustrate the multinomial
circular logistic regression model here presented. We take data from the �Portale
Open Data della Regione Siciliana� which contains meteorological data from Sicilia
(Italy) (Open Data, 2019). In particular, we take the temperature of wind at two
metters of height in June 2016 in the region of Palermo (see Figure 3, below). We
divide the temperature in three different groups (less than 20, between 20 and 27, and
more than 27 which correspond to the terciles of the variable temperature). MCREs
can improve MLE a 4% with good performance results, as seen in Table 3.

Table 1: Botany data: proportion of plants that are classi�ed correctly.

Accuracy

λ β̂0,ϕλ
β̂1,ϕλ

β̂2,ϕλ
Trainig set Test set

0 (MLE) 9.3925 -9.9489 -2.8964 0.7274 0.7454

-0.7 38.2534 -39.5737 -13.0746 0.7290 0.7491

-0.5 24.1549 -24.8110 -8.4341 0.7290 0.7491

-0.2 13.6915 -14.1959 -4.6150 0.7274 0.7491

0.2 68.169 -7.3941 -1.8710 0.7227 0.7380

0.3 59.480 -6.5211 -1.5381 0.7211 0.7343

0.5 47.246 -5.2731 -1.0936 0.7242 0.7343

Table 2: Crime data: proportion of crimes that are classi�ed correctly.

Accuracy

λ β̂0,ϕλ
β̂1,ϕλ

β̂2,ϕλ
Trainig set Test set

0 (MLE) 0.0737 0.6786 -0.2708 0.6314 0.6200

-0.7 2.9454 6.7962 0.3494 0.6686 0.6733

-0.5 0.3267 1.5944 -0.3707 0.6400 0.6333

-0.2 0.1063 0.8718 -0.3254 0.6314 0.6333

0.2 0.0583 0.5671 -0.2328 0.6314 0.6200

0.3 0.0527 0.5223 -0.2164 0.6314 0.6200

0.5 0.0444 0.4513 -0.1894 0.6314 0.6200

Table 3: Meteorological: proportion of temperatures that are classi�ed correctly.

Accuracy

λ β̂10,ϕλ
β̂11,ϕλ

β̂12,ϕλ
β̂20,ϕλ

β̂21,ϕλ
β̂22,ϕλ

Trainig set Test set

0 (MLE) 0.3782 5.5019 1.4715 21.061 2.7386 0.4274 0.6302 0.7037

-0.7 -0.8461 14.1766 4.3646 41.744 5.8311 0.7724 0.6362 0.7407

-0.5 0.0320 9.4926 2.7134 32.253 4.2988 0.6020 0.6362 0.7407

-0.2 0.3155 6.6638 1.7906 24.592 3.2197 0.4747 0.6362 0.7407

0.2 0.4067 4.7189 1.2791 18.583 2.4037 0.3977 0.6302 0.7037

0.3 0.4139 4.3822 1.2009 17.484 2.2563 0.3850 0.6362 0.7407

0.5 0.4165 3.8294 1.0765 15.620 2.0087 0.3634 0.6322 0.7269

6. Conclusions and future lines of research

In this paper, we develop robust inference for the circular logistic regression,
introducing the multinomial circular logistic regression as well. The simulation
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Figure 3: Botany data (top left), Crime data (top right) and Meteorological data (bot-
tom).
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studies show the robustness of proposed estimators. Finally, three numerical exam-
ples of Botany, Crime and Meteorology illustrate the application of these methods
to Life and Social Sciences. Although in the Botany data the proposed method
showed very little improvement, in the Crime and Meteorological data an incre-
ment up to 5% and 4% of accuracy, respectively, is achieved. Results also suggest
the presence of outliers in our data sets.

A more extended model may consider more than one predictor variables, and
may also combine linear and circular predictors. Without loss of generality, let us
consider a binary response variable η, η ∈ {0, 1} and that this depends on R circular
explanatory variables u1, . . . , uR and S linear explanatory variables x1, . . . , xS. The
(binomial) linear-circular logistic regression model would be given by

π(β,u,x) =
exp

{
β0 +

∑R
r=1(β

(r)
1 cosur + β

(r)
2 sinur) +

∑S
s=1 β

(s)
3 xs

}
1 + exp

{
β0 +

∑R
r=1(β

(r)
1 cosur + β

(r)
2 sinur) +

∑S
s=1 β

(s)
3 xs

} ,

(15)

where βT = (β0, β
(1)
1 , β

(1)
2 , . . . , β

(R)
1 , β

(R)
2 , β

(1)
3 , . . . , β

(S)
3 ) ∈ R1+2R+S is the model

parameter vector. In a similar manner as done in Section 2.2, we can extend model
(15) to the multinomial response case. We may also consider a complex set-up, see
Morel (1989), Skinner et al. (1992) and Castilla & Chocano (2022) for more details.[
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Appendix. Tables of Results of the Monte Carlo

Simulation Study

In this Appendix, we present the tables of results of the simulation study for
each case, which can also be found in Figures 1 and 2.

Table A1: Binomial case and Pure data. Results from the Monte Carlo study.

MAEs

λ ni = 25 50 75 100 125 150 175 200

Von Misses distribution (κ = 4)

-0.5 0.0913 0.0849 0.082 0.0843 0.0806 0.0791 0.0784 0.0803

-0.2 0.0806 0.0596 0.0517 0.0494 0.0456 0.0442 0.0424 0.0418

0(MLE) 0.0834 0.0556 0.0437 0.0396 0.0344 0.0311 0.0282 0.0272

0.1 0.0886 0.0594 0.0501 0.0425 0.0369 0.0367 0.0333 0.0314

0.3 0.1021 0.0758 0.0663 0.0597 0.0571 0.0557 0.0551 0.0556

Von Misses distribution (κ = 6)

-0.5 0.0732 0.0600 0.0634 0.0683 0.0672 0.0656 0.0684 0.0675

-0.2 0.0700 0.0506 0.0449 0.0415 0.0406 0.0389 0.0370 0.0369

0(MLE) 0.0770 0.0520 0.0411 0.0351 0.0333 0.0293 0.0258 0.0246

0.1 0.0847 0.0587 0.0454 0.0409 0.0355 0.0329 0.0313 0.0298

0.3 0.1013 0.0765 0.0649 0.0593 0.0567 0.0542 0.0540 0.0540

Spherical Normal distribution (κ = 8)

-0.5 0.0751 0.0710 0.0676 0.0714 0.0708 0.0691 0.0685 0.0696

-0.2 0.0726 0.0527 0.0469 0.0414 0.0407 0.0399 0.0384 0.0363

0(MLE) 0.0792 0.0514 0.0425 0.0367 0.0316 0.0292 0.0281 0.0259

0.1 0.0843 0.0600 0.0475 0.0415 0.0362 0.0346 0.0303 0.0300

0.3 0.1013 0.0764 0.0652 0.0615 0.0556 0.0545 0.0519 0.0535
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Table A2: Binomial case and Contaminated data. Results from the Monte Carlo study.

MAEs

λ ni = 25 50 75 100 125 150 175 200

Von Misses distribution (κ = 4)

-0.5 0.0808 0.0686 0.0642 0.0598 0.0569 0.0533 0.0530 0.0507

-0.2 0.0890 0.0684 0.0565 0.0544 0.0491 0.0488 0.0454 0.0462

0(MLE) 0.1074 0.0985 0.0899 0.0913 0.0870 0.0882 0.0851 0.0864

0.1 0.1174 0.1161 0.1055 0.1078 0.1031 0.1086 0.1047 0.1055

0.3 0.1387 0.1447 0.1351 0.1405 0.1367 0.1394 0.1362 0.1399

Von Misses distribution (κ = 6)

-0.5 0.0709 0.0565 0.0530 0.0466 0.0473 0.0429 0.0434 0.0422

-0.2 0.0834 0.0655 0.0526 0.0537 0.0464 0.0482 0.0457 0.0454

0(MLE) 0.1039 0.0983 0.0870 0.0896 0.0862 0.0888 0.0855 0.0875

0.1 0.1147 0.1143 0.1032 0.1096 0.1039 0.1079 0.1044 0.1071

0.3 0.1400 0.1454 0.1368 0.1432 0.1405 0.1419 0.1404 0.1423

Spherical Normal distribution (κ = 8)

-0.5 0.0706 0.0592 0.0552 0.0508 0.0488 0.0476 0.0455 0.0439

-0.2 0.0841 0.0698 0.0562 0.0528 0.0493 0.0485 0.0453 0.0456

0(MLE) 0.1054 0.0980 0.0881 0.0912 0.0859 0.0884 0.0857 0.0871

0.1 0.1158 0.114 0.1052 0.1083 0.1047 0.1076 0.1052 0.1068

0.3 0.1394 0.1443 0.1377 0.1435 0.1395 0.1413 0.1387 0.1415

Table A3: Multinomial case and Pure data. Results from the Monte Carlo study.

MAEs

λ I =10 15 20 25 30 35 40 45 50

Von Misses distribution (κ = 4)

-0.5 0.1047 0.096 0.079 0.0725 0.0656 0.0634 0.0628 0.0561 0.0557

-0.2 0.0973 0.0808 0.0686 0.0652 0.0555 0.0515 0.0495 0.0458 0.0437

0(MLE) 0.0957 0.0737 0.0659 0.0610 0.0530 0.0484 0.0463 0.0422 0.0405

0.1 0.0906 0.0752 0.0633 0.0613 0.0493 0.0448 0.0445 0.0406 0.0412

0.3 0.0886 0.0687 0.0612 0.0589 0.0502 0.0458 0.0441 0.0398 0.0398

Von Misses distribution (κ = 6)

-0.5 0.1133 0.0853 0.0765 0.0715 0.0711 0.0654 0.0572 0.054 0.0496

-0.2 0.0972 0.0799 0.0727 0.0585 0.0565 0.0551 0.0495 0.0450 0.0442

0(MLE) 0.0913 0.0738 0.0667 0.0561 0.0522 0.0511 0.0466 0.0427 0.0413

0.1 0.0933 0.0729 0.0642 0.0559 0.0534 0.0482 0.0446 0.0410 0.0412

0.3 0.0902 0.069 0.0621 0.0545 0.0505 0.0474 0.0418 0.0407 0.0399

Spherical Normal distribution (κ = 8)

-0.5 0.1062 0.0941 0.0885 0.0744 0.0605 0.0679 0.0623 0.0492 0.0578

-0.2 0.0966 0.0790 0.0673 0.0627 0.0555 0.0545 0.0475 0.0472 0.0455

0(MLE) 0.0895 0.0763 0.0675 0.0594 0.0527 0.0485 0.0489 0.0409 0.0390

0.1 0.0907 0.0771 0.0636 0.0559 0.0470 0.0468 0.0453 0.0399 0.0393

0.3 0.0827 0.0731 0.0672 0.0532 0.0486 0.0449 0.0437 0.0390 0.0386
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Table A4: Multinomial case and Contaminated data. Results from the Monte Carlo
study.

MAEs

λ I =10 15 20 25 30 35 40 45 50

Von Misses distribution (κ = 4)

-0.5 0.1411 0.1236 0.1054 0.0972 0.0871 0.0799 0.0773 0.0703 0.0734

-0.2 0.1366 0.1156 0.1075 0.1025 0.0953 0.0910 0.0917 0.0870 0.0865

0(MLE) 0.1400 0.1185 0.1155 0.1101 0.1057 0.1027 0.1013 0.1000 0.0996

0.1 0.1392 0.1213 0.1178 0.1129 0.1111 0.1074 0.1075 0.1065 0.1052

0.3 0.1441 0.1266 0.1245 0.1210 0.1204 0.1181 0.1169 0.1165 0.1156

Von Misses distribution (κ = 6)

-0.5 0.1339 0.1161 0.1068 0.0891 0.0866 0.0842 0.0768 0.0761 0.0703

-0.2 0.1355 0.1201 0.1107 0.0989 0.0968 0.0945 0.0902 0.0881 0.0874

0(MLE) 0.1389 0.1227 0.1153 0.1090 0.1058 0.1038 0.1035 0.1014 0.1006

0.1 0.1417 0.1269 0.1173 0.1142 0.1106 0.1096 0.1078 0.1070 0.1069

0.3 0.1442 0.1318 0.1244 0.1226 0.1194 0.1197 0.1184 0.1171 0.1171

Spherical Normal distribution (κ = 8)

-0.5 0.1358 0.1237 0.1088 0.0987 0.0857 0.0865 0.0807 0.0739 0.0703

-0.2 0.1378 0.1190 0.1090 0.1019 0.0948 0.0937 0.0908 0.0880 0.0874

0(MLE) 0.1404 0.1241 0.1161 0.1095 0.1054 0.1043 0.1021 0.1011 0.1002

0.1 0.1429 0.1264 0.1192 0.1139 0.1107 0.1095 0.1069 0.1077 0.1064

0.3 0.1458 0.1304 0.1267 0.1212 0.1206 0.1189 0.1171 0.1182 0.1169

dddddddd ccccccccc
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