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Abstract

The presence of a large number of zero counts is quite common in studies
involving count data. This causes overdispersion. Therefore, di�erent types
of models have been proposed as alternatives and a very frequent practice
is to use the negative binomial model. In 2018, Bonat (2018) considered a
new type of model, based on the Poisson-Tweedie dispersion models, which
can automatically adapt to di�erent degrees of overdispersion in count data.
This article presents a simulation study in order to compare the estimates
derived from the Poisson-Tweedie model for a wide range of overdispersed
data with estimates derived from the negative binomial model. In both
models, the relative percent bias of the estimated coe�cients was very small.
Nevertheless, the Poisson-Tweedie model showed a better performance with
smaller values for the mean squared errors, particularly in scenarios with
more dispersion. Hence, it would be possible to suggest the data analyst
in which situations it would be enough to work with the popular negative
binomial model or when it would be best to use the Poisson-Tweedie family.
Additionally, the comparison between the �t of the negative binomial model
and that of the Poisson-Tweedie family is illustrated by analysing the number
of pediatric consultations of a group of children who receive health care in a
public health center in Rosario, Argentina. Although the results obtained in
both models were similar, the estimates in the Poisson-Tweedie model were
more accurate.
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Resumen

En estudios que involucran el análisis de datos de conteo es común en-
contrar una gran cantidad de ceros. La sobredispersión que ello provoca
ha sido tenida en cuenta en diferentes alternativas de modelización siendo
el modelo binomial negativo la más utilizada. En 2018 se suma la propu-
esta desarrollada por Bonat (2018) ellos consideraron una nueva clase de
modelos, basada en los modelos con dispersión Poisson-Tweedie, los cuales
se adaptan en forma automática a diferentes grados de sobredispersión en
datos de conteo. Este trabajo presenta un estudio por simulación para com-
parar las estimaciones derivadas del modelo Poisson-Tweedie con las del bi-
nomial negativo frente a diferentes niveles de sobredispersión. Se encon-
traron estimaciones de los coe�cientes del modelo con sesgos muy pequeños
para ambos modelos y errores cuadráticos medios levemente menores para el
modelo Poisson-Tweedie, evidenciando su mejor desempeño en los escenarios
de mayor dispersión. Así, sería posible sugerir al analista de datos en qué
situaciones es su�ciente trabajar con el popular modelo binomial negativo o
cuándo es mejor recurrir a la familia Poisson-Tweedie. Además, se ilustra
la comparación del ajuste de estos modelos sobre el número de consultas
pediátricas en un centro de salud de la ciudad de Rosario, Argentina. Si
bien los resultados obtenidos fueron similares, se observó una ganancia en la
precisión de las estimaciones del modelo Poisson-Tweedie.

Palabras clave: Datos de conteo; Exceso de ceros; Modelos Poisson-Tweedie.

1. Introduction

In studies involving count data, �nding an excessive number of zeros is quite
common. This excess of zeros is one of the causes of overdispersion (i.e. greater
variability than expected). In such cases, the paradigmatic regression model for
count data, the Poisson model, turns out to be inappropriate (Hinde & Demétrio,
1998; Zeileis et al., 2008; Agresti, 2015). A very frequent practice is to use the neg-
ative binomial model. These models belong to the well-known class of Generalized
Linear Models (GLMs) introduced by Nelder & Wedderburn (1972).

Di�erent types of models have been proposed as alternatives for the analysis
of data with excessive zeros. Among these, two-part models stand out: hurdle
(Mullahy, 1986; Heilbron, 1989) and zero-in�ated models (Lambert, 1992; Greene,
1994). Both include an additional linear predictor to describe the excess of ze-
ros. However, precisely due to the complexity derived from the inclusion of an
additional predictor, the negative binomial model remains as the most used and
popular alternative.

Recently, the proposal developed by Bonat et al. (2018) has been included
as another option. This is a new type of model based on the Poisson-Tweedie
family (Jørgensen & Kokonendji, 2016), from which the negative binomial model
constitutes a particular case. This family can automatically adapt to data char-
acteristics. This is helpful to avoid having to �t a great variety of models and
their comparison through tests and goodness-of-�t statistics. Harvey (2020) �tted
the Poisson-Tweedie model over a dataset with excessive zeros and found similar
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results to those from the well-known negative binomial model. It is important to
point out that although this model is covered by the Poisson-Tweedie family, usu-
ally it is not �tted into the framework of this family. In practice, the data analyst
is used to �t it as a conventional GLM. The similarity found led to the following
questions: Are there cases of excessive zeros in which the Poisson-Tweedie family
is the best option? Which are they? In other words, our focus is to suggest the
data analyst in which situations it would be enough to work with the popular
negative binomial model or when it would be best to use the Poisson-Tweedie
family. Thus, the aim of this article is to compare the estimates derived from the
Poisson-Tweedie model for a wide range of overdispersed data due to excessive
zeros with the estimates derived from the negative binomial model.

Section 2 presents a brief review of classical regression models for count data.
In Section 3, Poisson-Tweedie models are de�ned and empirically characterized.
Section 4 presents a simulation study to compare the �tting of a Poisson-Tweedie
model with that of the negative binomial model. Section 5 illustrates the com-
parison between these models through a real dataset. The last Section deals with
concluding remarks and includes proposals for further research.

2. Classical Models for Count Data

GLMs, introduced by Nelder & Wedderburn (1972), extend the classical linear
regression model in order to address non-normal response distributions and non-
linear functions of the mean. It is well-known that they are de�ned by their three
components. For a random sample of n observations (yi,xi), where xi is the
(q × 1) vector of covariates associated with the i-th observation (i = 1, 2, . . . , n),
the systematic component of the model, xi

′β, is related to the expected value of
the random component, E(Yi|xi) = µi, through a monotonic function called link
function g(.), so that

g(µi) = xi
′β (1)

In (1), β = (β1, β2, . . . , βq)
′ is the vector of unknown coe�cients which are

estimated through maximum likelihood using an iterative weighted least squares
procedure.

Regarding the random component, the probability distribution of Y belongs to
the exponential dispersion family. Thus, the density function for n independent
observations yi is

f(yi; θi;ϕ) = a(yi, ϕ) exp

{
yiθi − κ(θi)

ϕ

}
where a(.) and κ(.) are known functions that determine the considered member
of the family (Poisson, binomial, etc.); θi is the canonical or natural parameter
and ϕ is the dispersion parameter. The g function, for which g(µi) = θi, is called
canonical or natural link.
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In general, the mean and the variance are related through κ′′{κ′−1
(µ)} =

v(µ) where v(.) is the so called variance function, which describes the relationship
between the mean and the variance.

The simplest model for count data assumes a Poisson distribution for the ran-
dom component. However, although Zeileis et al. (2008) highlight its usefulness
to describe the means µi, this model also often underestimates the variance, de-
riving in liberal tests. This is so since, in many occasions, count observations
contradict the equality relationship between the mean and the variance, showing
overdispersion.

Another distribution often used is the negative binomial distribution, which
can be considered as mixture model by assuming that

Y | λ ∼ Poisson(λ)

λ ∼ gamma(µ, 1/ϕ)

with E(λ) = µ and V ar(λ) = ϕµ2 (Hinde & Demétrio, 1998; Molenberghs et al.,
2007). The expectation and variance of the negative binomial distribution are
given by E(Y ) = E(λ) = µ and V ar(Y ) = E(λ) + V ar(λ) = µ+ ϕµ2.

It can be observed that the greater the dispersion parameter ϕ is, the greater
the variance becomes in comparison with the Poisson model variance. For sim-
plicity, the dispersion parameter of the GLMs is considered to be constant for the
n observations (Agresti, 2015).

3. Poisson-Tweedie Models

3.1. General Formulation

In order to present the Poisson-Tweedie family, it is necessary to previously
de�ne Tweedie models as members of the so called exponential dispersion models.
Tweedie densities are characterized by power variance functions of the form

vp(µ) = µp para µ ∈ Ωp (2)

where the power parameter p ∈ (−∞, 0] ∪ [1,∞) is the index that determines the
distribution, Ω0 = R, and Ωp = R+ for p ̸= 0.

The common notation to indicate that a Z variable follows a Tweedie dis-
tribution with ϕ and p, dispersion and Tweedie power parameters respectively, is
Z ∼ Twp(µ, ϕ), being µ the mean of Z and the variance V ar(Z) = ϕµp for µ ∈ Ωp.

The Tweedie class encompasses known-probability distributions, among which
normal distribution (p = 0), Poisson distribution (p = 1) and Gamma distribu-
tion (p = 2) can be mentioned. One particular case of interest is the compound
Poisson distribution, which corresponds to values of p in the interval (1, 2). This
distribution is often chosen to model non-negative data that has a considerable
probability mass at zero and is highly right-skewed. This class covers both dis-
crete and continuous distributions, according to the value of the associated power
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parameter p. The support of the distribution is given by: the real positive values
for p ⩾ 2, the non-negative real values for 1 < p < 2, the natural values for p = 1
and the real values for p ⩽ 0.

Having the Tweedie models been presented, the Poisson-Tweedie family can be
de�ned by the hierarchical speci�cation

Y | Z ∼ Poisson(Z)

Z ∼ Twp(µ, ϕ)

in which it is required that the power parameter p be greater than or equal to one,
in order to ensure that variable Z ∼ Twp(µ, ϕ) is non-negative.

The probability mass function of Y for p > 1 is given by

f(y;µ, ϕ, p) =

∫ ∞

0

zy exp−z

y!
a(z, ϕ, p) exp

{
zθ − kp(θ)

ϕ

}
dz (3)

Given the fact that the function a(z, ϕ, p) cannot be always written in a closed
form, the integral (3) has no simple expression and generally requires recursive
algorithms for its calculation. One exception is the case of p = 2, which corre-
sponds to a Poisson-Gamma mixture leading to the negative binomial. Despite the
di�culty in the integration, the two �rst moments of the family can be obtained.
Jørgensen & Kokonendji (2016) showed that for each p ⩾ 1, the Poisson-Tweedie
mixture, symbolized as Y ∼ PTp(µ, ϕ), has mean µ, and the variance can be
expressed by

V ar(Y ) = µ+ ϕvp(µ)

= µ+ ϕµp

where vp(µ) is the variance function determined by (2).

When p = 1, the integral (3) is replaced by a sum resulting in a Neyman Type
A distribution, a mixture Poisson-Poisson (Jørgensen & Kokonendji, 2016; Bonat
et al., 2018).

The Tweedie power parameter plays a fundamental role in the Poisson-Tweedie
family since it allows capturing overdispersion due to signi�cant skew to the right
and an important number of zeros counts. The range of values of p which are re-
lated to distributions with a high excess of zeros, according to the results obtained
by Bonat et al. (2018), is (1, 2). The value p = 2 can be considered as the in�ection
point between the mentioned distributions and those in which the skewness has a
dominant role.

The algebraic structure of the GLMs associated to this family is the same as
that of classical GLMs. This paper adopts the log link, although any other func-
tion could potentially be considered. For the implementation of these models, it
should be noted that the Poisson-Tweedie class is based on assumptions about the
moments for estimation and inference. The estimation method resembles Wed-
derburn's quasi-likelihood method (Wedderburn, 1974) and Liang's generalized
estimating equations (Zeger et al., 1988). Therefore, as a full speci�cation of the
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probability mass distribution is not available, Bonat et al. (2018) introduce the
so-called estimating function approach for the estimation of the Poisson-Tweedie
model, where quasi-score estimating functions are adopted for regression param-
eters and Pearson estimating functions, for parameters ϕ and p (Jørgensen &
Knudsen, 2004; Bonat & Jørgensen, 2016). These functions are brie�y de�ned
bellow; see Bonat et al. (2018), Bonat & Jørgensen (2016) and Jørgensen & Knud-
sen (2004) for details.

The quasi-score function for β has the following form:

ψβ(β,λ) =


∑n

i=1

∂µi

∂β1
V ar(Yi)

−1(Yi − µi)

...∑n
i=1

∂µi

∂βq
V ar(Yi)

−1(Yi − µi)


where ∂µi/∂βj = µixij for j = 1, . . . , q and the vector λ = (ϕ, p)′.

The Pearson estimating function for the parameters of the λ vector is given
by:

ψλ(β,λ) =

−
∑n

i=1

∂V ar(Yi)
−1

∂ϕ

[
(Yi − µi)

2 − V ar(Yi)
]

−
∑n

i=1

∂V ar(Yi)
−1

∂p

[
(Yi − µi)

2 − V ar(Yi)
]


Jørgensen & Knudsen (2004) proposed an iterative algorithm to solve the sys-
tem of equations {

ψβ(β,λ) = 0

ψλ(β,λ) = 0

and showed that the asymptotic distribution of the obtained estimators is normal.

The Poisson-Tweedie model can be easily adjusted in R through the mcglm

package (Bonat, 2016).

3.2. Characterization

Below, the characteristics of several datasets that can be represented by the
Poisson-Tweedie family with p ∈ (1, 2) are shown through a simulation process.

With the purpose of determining scenarios with di�erent dispersion levels and
in accordance with Bonat et al. (2018), Fisher's dispersion index (DI) was used.
It is de�ned as

DI =
V ar(Y )

E(Y )
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It shows how greater the variance is with respect to the mean (Jørgensen &
Kokonendji, 2016). DI values considered were 2, 5, 10 and 20, leading to low-
dispersion, moderate-dispersion, high-dispersion and very high-dispersion scenar-
ios, respectively. Count values with excessive zeros were randomly generated,
following a Poisson-Tweedie distribution Y ∼ PTp(µ, ϕ), with p values equal to
1.1, 1.3, 1.6 and 1.9, µ �xed at 10 and ϕ determined by index DI through the
following relationship:

DI = 1 + ϕµp−1 (4)

The resulting scenarios allow us to expand the characterization of the Poisson-
Tweedie family created by Bonat et al. (2018) within the (1, 2) range, by incorpo-
rating the values of p 1.3, 1.6 and 1.9 and keeping the values of DI considered by
them.

For the 16 scenarios considered, samples of size 100 000 were generated and em-
pirical probability mass functions were obtained for the respective Poisson-Tweedie
distributions. The data generation algorithm was implemented in software R (R
Core Team, 2019). Initial values were used for generating pseudorandom values so
that results reproducibility could be ensured. Function plot_ ptweedie() (Dunn,
2013) was used to sketch the graphs of the Poisson-Tweedie densities.

In cases with low dispersion (DI= 2), the shape of graphs is quite similar for the
di�erent values of the power parameter. However, when the index DI increases, it
can be seen that smaller values of p correspond to situations with more zeros. It can
be said that, generally, for p = 1.1, overdispersion is fundamentally attributable
to an excess of zeros, whereas for p = 1.9, apart from having a signi�cant excess of
zeros, it is also noticeably skewed to the right, which adds variability (Figure 1).

Another index that makes it possible to explore the �exibility of Poisson-
Tweedie distributions is the zero in�ated index (ZI). It allows to measure zero
in�ation and it is given by

ZI = 1 +
logP (Y = 0)

E(Y )

As it can be seen, the ZI index indicates how many more or how many less
zero counts are present in the data in comparison with what is expected under
Poisson distribution (assumption by which ZI = 0). In this way, ZI < 0 indicates
zero de�ation, ZI = 0 indicates that there is neither zero de�ation nor excess of
zeros and ZI > 0 indicates excess of zeros.
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Figure 1: Poisson-Tweedie empirical probability mass function (grey) and its approxi-
mation by Monte Carlo method (black), according to the values of the dis-
persion index (DI) and the Tweedie power parameter (p)

It was also worth studying the relationship between both indexes and, in turn,
evaluating the potential in�uence that mean values have on them. For such pur-
poses, the scenarios described above were used, considering, in addition, di�erent
values of the parameter µ: 5, 10 and 20. In this case, the dptweedie() function
(Dunn, 2013) was used to calculate the probability of a zero count according to
the di�erent values assumed by distribution parameters.

Figure 2 shows that, for any value of p and µ, the ZI index increases (it gets
closer to its upper bound equal to 1) as the DI index increases. In other words, the
greater the excess of zero counts is, the greater the overdispersion level present in
the data becomes. Furthermore, for the di�erent dispersion levels evaluated, the
ZI index decreases with more or less intensity as the value of the power parameter
p increases and, in turn, its values are smaller in distributions with greater mean
values. That is, the smaller values of p are associated to greater values of ZI, so
they represent situations with more excess of zeros. Additionally, it is also found
that the relationship between ZI and DI is similar throughout the di�erent mean
values considered. Greater ZI values are observed for the smallest value of µ, which
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is to be expected since it is assumed that a large excess of zeros corresponds to
smaller expected values. Finally, it is worth mentioning that the variation range
of ZI is signi�cantly wider for DI = 2, a scenario where even negative values of ZI
are observed when µ = 20, indicating zero de�ation.

Figure 2: ZI index by the values of the Tweedie power parameter (p), the mean value
(µ) and the dispersion index (DI)

4. Comparison of the Negative Binomial Model with

the Poisson-Tweedie Model

4.1. Study Design

In order to compare the estimations from a negative binomial regression model
and Poisson-Tweedie regression model, zero-in�ated count data were randomly
generated. The algorithm chosen was that proposed by Bonat et al. (2018); the
data was simulated under Poisson-Tweedie distribution, Yi ∼ PTp(µi, ϕ), with
mean values that comply with the model

log(µi) = β0 + β1x1i + β2x2i (5)

= log(10) + 0.8x1i − x2i

In (5), µi is the mean value of Y for the i-th individual, with i = 1, . . . , n;
x1i is the value of an equally spaced sequence from −1 to 1 and length equal to
the sample size; and x2i is the value of a Bernoulli variable with a probability
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equal to 0.5, both assumed by the i-th individual. The dispersion parameter,
ϕ, was �xed so that the DI index had the following values: 2, 5, 10 and 20,
when µi = 10, in accordance with (4). The chosen simulation scheme allows to
contemplate situations of low, moderate, high and very high-dispersion. According
to the characterization presented in Section 3.2, the values p = 1.1 and p = 1.6
were considered.

In each of the eight scenarios, m = 1000 samples of size n = 100 were generated
and in each of them the negative binomial and Poisson-Tweedie models were �t-
ted. The estimates of the coe�cients as well as the estimates of each distribution
parameters were obtained. These were: dispersion and power parameter in the
Poisson-Tweedie model and dispersion parameter in the negative binomial model
and its standard errors.

The estimators behavior was analyzed through the relative percent bias (RB)
and the mean squared error (MSE), which are de�ned as follows:

RB =

[
1

m

m∑
i=1

Θ̂i −Θ

]
1

Θ
× 100

and

MSE = (Θ̂) =
1

m− 1

m∑
i=1

(Θ̂i −Θ)2 = V ar(Θ̂) +

[
1

m

m∑
i=1

Θ̂i −Θ

]2

where Θ represents the parameter value and Θ̂ is its estimator (Morris et al., 2019).

Con�dence intervals of the analyzed coe�cients were built considering a nom-
inal con�dence level of 95% (CI95%). The coverage rate was calculated as the
percentage of m = 1000 CI95% that covered the real coe�cient value. The average
amplitude of such CI95% was also calculated.

As to the computational implementation, software R (R Core Team, 2019) was
used. Just like in the characterization of Poisson-Tweedie models, initial values for
the generation of pseudo-random values were used. Function rptweedie_reg()

(Bonat, 2018) was implemented to generate Poisson-Tweedie data in accordance
with the simulation model described. The negative binomial model was �tted
by means of function glm.nb() of the MASS package. The Poisson-Tweedie model
was �tted with function mcglm(). The conditional standard error of the dispersion
parameter was estimated by means of function mc_conditional_test. Both func-
tions belong to the mcglm package. Finally, calculations of the di�erent evaluation
measures of the performance of both models were programmed.
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4.2. Results

The estimates obtained for the coe�cients of the Poisson-Tweedie and negative
binomial models result in the empirical distributions presented in Figures 3, 4 and
5. No di�erences between the densities corresponding to the estimates deriving
from both models are observed. In the di�erent scenarios, densities are centered
on the theoretical values with a variability that increases as the DI increases. This
can be quanti�ed by analyzing the RB and MSE.

Figure 3: Distribution of the coe�cient β0 = 2.3 estimates in the Poisson-Tweedie
model (solid black) and in the negative binomial model (dashed grey) by
scenarios, m = 1000

In both models, RBs of the three estimated coe�cients are very small, repre-
senting less than 1% of the value of each of them. Generally, the value of β0 is
underestimated and the values of β1 and β2 are overestimated. In practically all
scenarios RB increases as DI increases and, in turn, its values are almost always
greater in scenarios with p = 1.1. It is di�cult to identify a clear pattern that
systematically favors any of the evaluated models. In some cases, the RB of the
Poisson-Tweedie model is equal to that of the negative binomial model, while in
other cases, the RB is somehow smaller or greater (Table 1).

Table 1: Relative percent bias of the estimated coe�cients of the Poisson-Tweedie and
negative binomial models by scenarios, m = 1000

DI

2 5 10 20

Coe�cient p
Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

β0 = 2.3 1.1 -0.143 -0.139 -0.306 -0.251 -0.557 -0.384 -1.640 -1.844

1.6 -0.124 -0.115 -0.322 -0.308 -0.584 -0.612 -1.550 -1.357

β1 = 0.8 1.1 0.785 0.551 1.113 0.963 2.315 3.489 7.703 0.290

1.6 0.101 -0.044 -0.079 -0.075 1.643 1.196 3.370 3.542

β2 = −1.0 1.1 0.672 0.436 1.409 1.071 3.718 3.887 5.480 -0.643

1.6 0.496 0.361 0.560 0.488 0.594 0.020 0.647 0.449
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Figure 4: Distribution of the regression coe�cient β1 = 0.8 estimates in the Poisson-
Tweedie model (solid black) and in the negative binomial model (dashed grey)
by scenarios, m = 1000

Figure 5: Distribution of the regression coe�cient β2 = −1.0 estimates in the Poisson-
Tweedie model (solid black) and in the negative binomial model (dashed grey)
by scenarios, m = 1000

The analysis of MSEs of the three coe�cients shows the same pattern described
for the RBs: MSEs are very small in all scenarios and increase as DI increases
for the three coe�cients. Nevertheless, the Poisson-Tweedie model has a better
performance with smaller values, particularly in scenarios with p = 1.1 (Table 2).
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Table 2: Mean squared error of the estimated coe�cients of the Poisson-Tweedie and
negative binomial models by scenarios, m = 1000

DI

2 5 10 20

Coe�cient p
Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

β0 = 2.3 1.1 0.004 0.004 0.010 0.010 0.022 0.023 0.050 0.053

1.6 0.004 0.004 0.010 0.010 0.018 0.019 0.047 0.047

β1 = 0.8 1.1 0.009 0.010 0.024 0.028 0.047 0.067 0.115 0.119

1.6 0.008 0.008 0.021 0.021 0.039 0.040 0.082 0.083

β2 = −1.0 1.1 0.014 0.014 0.035 0.038 0.078 0.091 0.155 0.160

1.6 0.012 0.012 0.028 0.028 0.051 0.054 0.111 0.117

Concerning the coverage rate of CI95% of both models, the coverage rate of
CIβ0;95% is greater than the nominal value in most scenarios, increasing even up
to 98% when DI is equal to 5 and 10. On the contrary, for regression coe�cients,
coverage rate is, most of the times, lower than the nominal value. In the scenario
where there is more dispersion and a large excess of zeros (p = 1.1; DI= 20),
coverage rates under the negative binomial model are close to 63%, while under
the Poisson-Tweedie model, they are close to 93% in all analyzed coe�cients.
In the remaining scenarios, coverage rates are, in general, slightly lower for the
Tweedie-Poisson model (Table 3).

Table 3: Coverage rate for the coe�cients of the Poisson-Tweedie and negative binomial
models by scenarios, m = 1000

DI

2 5 10 20

Coe�cient p
Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

Poisson-

Tweedie

Negative

binomial

β0 = 2.3 1.1 96.2 96.2 95.4 98.8 93.5 98.6 93.9 63.4

1.6 95.9 95.5 95.2 96.5 94.8 97.8 93.0 97.7

β1 = 0.8 1.1 93.7 93.4 93.2 94.4 93.4 95.4 91.4 62.5

1.6 93.7 94.2 94.2 94.6 93.1 95.4 92.1 96.1

β2 = −1.0 1.1 94.7 92.7 93.7 95.1 92.2 95.3 94.1 62.9

1.6 93.9 94.0 95.1 96.2 93.8 95.4 93.2 96.7

It can be mentioned that the average amplitude of CI95% is smaller in scenarios
with p = 1.6 for both models. In addition, regardless of the p parameter value, the
comparison between the Poisson-Tweedie model and the negative binomial model
shows that the former has more favorable results in scenarios with intermediate
dispersion (DI = 5 and DI = 10), whereas in some cases of the remaining scenarios
the opposite occurs (Table 4).

It is interesting to mention some issues related to the estimates of the Poisson-
Tweedie power parameter and dispersion parameters of both models.

Regarding the estimate of the power parameter, in a signi�cant percentage of
samples, the estimates obtained fall outside their parameter space. This occurs
especially in the scenarios with p = 1.1, in which such percentage varies between
33 and 43%, while when p = 1.6, percentages are smaller: they vary between 4 y
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Table 4: Average amplitude of the CI95% for the coe�cients of the Poisson-Tweedie and
negative binomial models by scenarios, m = 1000

DI
2 5 10 20

Coe�cient p
Poisson-
Tweedie

Negative
binomial

Poisson-
Tweedie

Negative
binomial

Poisson-
Tweedie

Negative
binomial

Poisson-
Tweedie

Negative
binomial

β0 = 2.3 1.1 0.257 0.264 0.398 0.521 0.555 0.915 0.798 0.818
1.6 0.251 0.252 0.386 0.426 0.535 0.645 0.762 1.012

β1 = 0.8 1.1 1.012 0.365 0.570 0.666 0.793 1.132 1.131 1.021
1.6 0.356 0.352 0.531 0.555 0.724 0.812 1.014 1.247

β2 = −1.0 1.1 0.459 0.433 0.705 0.779 0.983 1.325 1.409 1.203
1.6 0.434 0.419 0.637 0.648 0.863 0.948 1.207 1.458

16%. Clearly, �xing scenarios with a power parameter value which is quite close
to the border of its parameter space implies a big number of situations presenting
estimation problems. In this sense, it should be added that cases in which p̂ is
smaller than 1 arise because of estimation problems due to non-signi�cant covari-
ates. More speci�cally, given that the power parameter p is estimated based on
the mean-variance relationship, when covariates are not signi�cant, the mean is
constant and, therefore, information to estimate such parameter is not available
(Bonat, 2018).

Despite the mentioned di�culty, because of the importance attributed to the
power parameter when determining the distribution within the family, its behavior
is nonetheless described. Figure 6 presents, for each scenario, the empirical densi-
ties corresponding to the valid estimates, that is, p̂ > 1. It can be noted that such
estimates are centered on the real value of p (or on a very close value) and that the
variability of each scenario is di�erent; scenarios with less dispersion seem to have
more variability, whereas scenarios with intermediate dispersion (DI = 5 and DI
= 10) show little variability, which increases again when DI = 20. Furthermore,
it can also be observed values of p̂ that are greater than 2, corresponding to sam-
ples highly skewed and that have excessive zeros. In accordance with theoretical
values of the power parameter, there are not many cases of this type in scenarios
with p = 1.1 (they represent less than 2%). On the contrary, in those cases where
p = 1.6, the percentage is greater, between 5 and 16%. Evidently, these samples
are highly right-skewed, a characteristic that prevails over the excess of zeros.

RBs of the p parameter estimate are small for scenarios with p = 1.6, which
represents a maximum of 3% of such theoretical value, while they increase their
value when p = 1.1 and DI= 2. In such scenario, they rise up to 18%. In contrast,
MSEs are greater in scenarios where p = 1.6, which means that an ideal situation
where RB and MSE are simultaneously small cannot be found.

Finally, it is important to make some comments about dispersion parameters
since di�culties arose when estimating them due to di�erent reasons. As to the
Poisson-Tweedie model, because of the existing link between the power parameter
and the dispersion parameter ϕ, cases in which the power parameter estimates are
outside the parameter space lead to dispersion parameter estimates that are not
valid either. In other words, even if the software provides a result, it cannot be
considered as a correct value. In the negative binomial model, there are samples
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Figure 6: Distribution of the power parameter estimates in m samples with p̂ > 1 by
scenarios

where the iterative procedure does not converge and, consequently, the standard
error estimates cannot be found. Although in most scenarios such samples do not
represent a high percentage, in the scenario that corresponds to the case with the
greatest overdispersion and a big number of zero counts (p = 1.1; DI= 20), the
percentage rises to 56%. In this scenario, in the Poisson-Tweedie model, there are
di�culties in a lower percentage: 34% of cases.

5. Illustration

The comparison between the �t of the negative binomial model and that of the
Poisson-Tweedie model is illustrated by analysing the number of pediatric visits
of 446 children enrolled in a health center in the city of Rosario, Argentina during
the year 2019. Data was provided by the Public Health Department of Rosario
City Hall.

The purpose is to assess the e�ect of children's age (between 0 and 4 years
old) and the number of visits carried out in the pediatric o�ces on the demand
of consultations in the emergency room of a health center. The marginal dis-
tribution of the number of consultations in the emergency room is right-skewed,
with a big number of zero counts (44.4%) (Figure 7). Clearly, the dataset has
overdispersion: mean equals 1.64 and variance equals 6.04, which is why the use
of the Poisson model is discarded from the beginning. Moreover, in this dataset
the empirical DI is 3.68. When analyzing conditional distributions, it seems that
there is a smaller number of visits in 3 and 4-year-old children, in comparison with
those who are younger, as well as a slightly positive correlation between the num-
ber of consultations in the pediatric emergency room and in the pediatric o�ce
(Figure 8).
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Figure 7: Number of consultations in the pediatric emergency room

Figure 8: Number of consultations in the pediatric emergency room by the number of
visits in the pediatric o�ce (above) and children's age (below)

Poisson-Tweedie and negative binomial models are �tted. The number of vis-
its in the pediatric o�ce is included in the linear predictor in its original scale,
whereas for children's age, design variables are de�ned taking as reference children
younger than 1 year old. In the Poisson-Tweedie model, the power parameter
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estimate falls in the interval (1, 2), being p̂ = 1.525, as it was expected given the
observed excessive zeros. The overdispersion present in the data is evidenced by
the signi�cance of the dispersion parameter. Under this model, the mean number
of consultations made in the pediatric emergency room is reduced as children are
older. It is particularly signi�cant the decrease in the number of consultations
when comparing 3 and 4-year-old children with babies younger than 1 year old.
In addition, there is a direct association with the number of visits carried out in
pediatric o�ces, regardless of children's age (Table 5).

If instead of resorting to the Poisson-Tweedie family, the classical negative
binomial GLM is �tted, the results are very similar regarding both the signi�cance
of their e�ects and their interpretation. It can be observed that estimates become
more accurate when searching for the best value of p within the family instead of
�tting the negative binomial GLM (Table 5). This results were to be expected
based on those found in Section 4.2.

Table 5: Parameter estimates and standard errors (SEs) for Poisson-Tweedie and neg-
ative binomial models and ratios between them

Estimates (SEs)

Parameter Poisson-Tweedie Negative binomial Ratio

Intercept 0.538 (0.186)∗ 0.531 (0.193)∗ 1.013 (0.964)

Age (1 vs 0) 0.093 (0.211) 0.119 (0.222) 0.782 (0.950)

Age (2 vs 0) -0.271 (0.234) -0.257 (0.238) 1.054 (0.983)

Age (3 vs 0) -0.600 (0.227)∗ -0.588 (0.227)∗ 1.020 (1.000)

Age (4 vs 0) -0.519 (0.238)∗ -0.508 (0.238)∗ 1.022 (1.000)

Number of visits 0.129 (0.033)∗ 0.125 (0.036)∗ 1.032 (0.917)

p 1.525 (0.311) - -

ϕ 1.731 (0.413) 1.327 (0.162) -

∗ Statistically signi�cant at 0.05 level.

6. Concluding Remarks

Upon modeling count data, it is very common to �nd situations where the
number of null results exceeds the expected one in regression models generally
used. This work has explored the newest alternative to deal with data with ex-
cessive zeros, the Poisson-Tweedie models. It provides a uni�ed framework to
handle count data with di�erent characteristics. Special attention has been given
to characterize, through a simulation study, Poisson-Tweedie family with power
parameter values p which are suitable to capture the excess of zeros. In this sense,
the characterization presented by Bonat et al. (2018) was studied in further detail,
focusing on the distributions with p ∈ (1, 2). Among the conclusions obtained, it
can be highlighted that the Poisson-Tweedie distribution with p = 1.1 represents
the situations with the highest excess of zero counts, in accordance with large
values of the ZI index. Power parameter values which are close to 2 correspond to
situations where not only is the excess of zeros signi�cant, but that also exhibit
important skew to the right, adding variability.
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In the regression model context, the incorporation of the Poisson-Tweedie
model raised the interest to evaluate in which situations it works better than the
�rst chosen model, the negative binomial GLM. The comparison between them
was relevant in order to guide the analyst in his daily practice. The simulation
study showed similar results in terms of RB, MSE and coverage rate of CIs for
the regression model coe�cients. Nevertheless, the Poisson-Tweedie model had a
better performance when data has zero in�ation and high dispersion. It would
be interesting to build bootstrap CIs to compare coverage rates and amplitudes
without normality assumptions, in future studies.

It is also worth mentioning that in both models, there were problems in the
dispersion parameter estimation. They were very noticeable for the negative bi-
nomial model when there was strong overdispersion due to a marked excess of
zeros (DI = 20 and p = 1.1). It was easy to identify the samples with estimations
problems in the Poisson-Tweedie power parameter and, therefore, in the dispersion
parameter, given their relationship. In contrast, in the negative binomial model,
although the dispersion parameter values which are remarkably large introduce
doubts about the convergence of the estimation method, it is di�cult to �nd an
objective criterion that de�nes when the estimates are not valid.

As to the application presented, the results obtained in the negative binomial
and Poisson-Tweedie models are similar, but the estimates in the latter are more
accurate.

Finally, this work has focused on the comparison of the negative binomial
model with the family of Poisson-Tweedie models. It remains to be analyzed
by means of simulation studies the performance of other models used to handle
excessive zeros, such us two-part models and other recent proposals. Speci�cally,
Berger & Tutz (2020) introduce an alternative of a semiparametric class of models
used for this type of data, which has the advantage of not requiring assumptions
about the count probability distribution. The authors proposed to weigh the
advantages of not requiring distributional assumptions against the possibility of
choosing the ideal distribution within the great variety of options covered by the
Poisson-Tweedie models.
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