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Abstract
We introduce a four-parameter model called the Weibull Nadarajah-

Haghighi distribution. It is obtained by inserting the Nadarajah-Haghighi
distribution in the Weibull-G family. The proposed distribution can produce
constant, increasing, decreasing, bathtub, and upside down-bathtub hazard
rate shapes, which are the most important in lifetime analysis. We explore
some structural properties, including the quantile function, ordinary and
incomplete moments, mean deviations, Bonferroni and Lorenz curves, and
Rényi entropy. The maximum likelihood method is used to estimate the
model parameters. A simulation study is formed to examine the precision of
the estimates. The usefulness of the new distribution is illustrated through
two applications to real data. The new model provides better fits than some
widely known lifetime distributions.

Key words: Hazard rate function; Lifetime data; Maximum likelihood; Nadarajah-
Haghighi distribution; Weibull-G family.

Resumen
Este trabajo introduce un nuevo modelo probabilístico de cuatro paráme-

tros llamado distribución Weibull Nadarajah-Haghighi. Este modelo es ob-
tenido mediante la inserción de la distribución Nadarajah-Haghighi en la
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familia Weibull-G. Un punto destacado de esta nueva propuesta son sus for-
mas en la función de hazard: constante, creciente, decreciente, bañera y
bañera invertida, que son las más importantes en el análisis de superviven-
cia. En este trabajo también se exploran algunas propiedades estructurales
del modelo, como la función cuantil, los momentos ordinarios e incompletos,
las desviaciones medias, las curvas de Bonferroni y Lorenz y la entropía de
Rényi. Para la estimación de los parámetros, se utiliza el método de máxima
verosimilitud. Además, un estudio de simulación de Monte Carlo se realiza
para examinar el desempeño de las estimaciones. La utilidad de la nueva
distribución se ilustra a través del ajuste en dos conjuntos de datos reales.
El nuevo modelo muestra mejores ajustes que algunas distribuciones consi-
deradas canónicas en análisis de supervivencia.

Palabras clave: Distribución Nadarajah-Haghighi; Familia Weibull-G; Fun-
ción de hazard; Máxima verosimilitud; Tiempos de sobrevida.

1. Introduction

The Nadarajah-Haghighi (NH) distribution was introduced by Nadarajah &
Haghighi (2011) for modeling zero-mode data. It has mainly been applied in sur-
vival analysis and reliability estimation (Almarashi et al., 2022; Elshahhat et al.,
2022). In this context, the NH model is considered an alternative to the gamma,
Weibull, and exponentiated-exponential distributions since it presents a decreasing
shape for its probability density function (pdf) and allows increasing, constant, or
decreasing shapes for the hazard rate function (hrf). Although, it is not appropri-
ate for bathtub and upside-down bathtub-shaped (or unimodal) hazard rates.

Such failure rates are appeared when analyzing complex electronic and me-
chanical systems. For example, upside-down bathtub hazard rates can be encoun-
tered in reparable systems (Louzada et al., 2018), reliability-centered maintenance
(Ramos et al., 2018), and fatigue failures (Jiang et al., 2003). In contrast, the
bathtub shape are common in the reliability of embedded software in hardware
devices (Singla et al., 2012), and wind turbines (Pérez et al., 2013) among oth-
ers. Readers are referred to Klutke et al. (2003) for a detailed discussion on the
occurrence of bathtub shape failures.

Due to the relevance of these features, several authors proposed generaliza-
tions of the NH distribution. For example, Lemonte (2013) pioneered the expo-
nentiated Nadarajah-Haghighi (ENH), Bourguignon et al. (2015) introduced the
gamma Nadarajah-Haghighi (GNH) distribution. The NH model is also a special
case of the power generalized Weibull (PGW) (Bagdonavicius & Nikulin, 2002),
exponentiated power generalized Weibull (Peña-Ramírez et al., 2018), Nadarajah-
Haghighi Lindley (Peña-Ramírez et al., 2019) and logistic Nadarajah-Haghighi
(Peña-Ramírez et al., 2020) distributions. On the other hand, to the best of our
knoledge, the Weibull generalized (Weibull-G) family (Bourguignon et al., 2014)
have not been considered to derive a lifetime distribution from the NH distribution.

The Weibull-G family extends the Weibull distribution by applying its odds
ratio and adding two extra parameters to furnish a more flexible distribution
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(Bourguignon et al., 2014). Afterward, specific baselines have often been addressed
to this family, thus allowing to obtain generalized models that accommodate dif-
ferent patterns for their densities and hazard rates (Oguntunde et al., 2015; Guerra
et al., 2021). In this paper, we use this approach to propose a new four-parameter
model called the Weibull Nadarajah-Haghighi (WNH) distribution. Our primary
motivation is that new distribution allows for greater flexibility of its pdf than
the baseline density. The WNH density can be unimodal and is quite flexible for
skewness and kurtosis. In addition, it contains as particular models some well-
known distributions such as the Weibull-Exponential (WExp) and the Gompertz
distribution models.

Secondly, the WNH presents five different shapes for the hazard function, i.e.,
decreasing, increasing, upside-down bathtub, and bathtub-shaped forms. This
feature makes the new distribution quite competitive with other popular lifetime
models and very attractive to be used in reliability applications. As highlighted
by Xu et al. (2017), using distributions that unify monotonic and non-monotonic
hazard shapes is a flexible and elegant way to deal with failure data fitting. For
example, the bathtub-shaped hrf is reproduced by the WNH distribution using a
single set of four parameters for all the regions of the hazard function.

In practical situations, we note that the WNH distribution may provide better
fits than other generated models under the NH baseline. See the results of Sec-
tion 7. They reveal that the WNH model can be a valuable alternative to other
NH-generated distributions and widely known lifetime models.

The paper is outlined as follows. Section 2 defines the new model and its the-
oretical background. In Section 3, we derive a linear representation for the WNH
density function. In Section 4, a broad variety of its structural properties are ex-
plored. The estimation of the model parameters by maximum likelihood and using
a Bayesian approach is presented in Section 5. A simulation study is performed in
Section 6 to examine the adequacy of the maximum likelihood estimates (MLEs).
Section 7 provides empirical applications for illustrative purposes. Section 8 offers
some concluding remarks.

2. The Weibull Nadarajah-Haghighi distribution

The derivation of generalized distributions by adding parameters to an existing
model is an instrumental technique in the statistical literature (Oluyede & Liyan-
age, 2023). These generalized models have been proposed to obtain flexible models,
which can accommodate different configurations of skewness and non-monotonic
shapes for the hrf (Marinho et al., 2018). We can cite Silva et al. (2019) and Peter
et al. (2021) as some recent advances in the distribution theory.

In this context, Bourguignon et al. (2014) pioneered a family of univariate
distributions generated by extending the Weibull model applied to the odds ratio.
Let G(x) and g(x) denote the cumulative distribution function (cdf) and pdf of
a baseline model with parameter vector ξ. Consider the Weibull cdf F (x) =

1− e−a xb (for x > 0, a > 0 and b > 0). The Weibull-G family follows by replacing
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the argument x with the baseline’s odds, G(x)/G(x), in the Weibull cdf, where
G(x) = 1 −G(x). Then, for x ∈ D ⊆ R, the cdf and pdf of the Weibull-G family
are

F (x;α, β, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0

a b tb−1e−a tbdt = 1− exp

{
−a

[
G(x; ξ)

G(x; ξ)

]b}
(1)

and

f(x;α, β, ξ) = a b g(x; ξ)
G(x; ξ)b−1

G(x; ξ)b+1
exp

{
−a

[
G(x; ξ)

G(x; ξ)

]b}
, (2)

respectively. If b = 1, we have the exponentiated-G (exp-G) family. Note that
the Weibull-G family does not have as a special case the baseline G distribution.
However, we can consider the distributions of this family as a compounding model
between the Weibull and the baseline distributions (Tahir et al., 2016).

The WNH distribution is defined by inserting the NH cdf in Equation (1). The
cdf and pdf of the NH distribution are given by

G(x) = 1− exp{1− (1 + λx)α}, x > 0, (3)

and
g(x) = αλ(1 + λx)α−1 exp{1− (1 + λx)α}, (4)

respectively, where λ and α are positive scale and shape parameters, respectively.
The exponential distribution is a special case when α = 1.

Thus, the cdf of the WNH distribution

F (x) = 1− exp
{
−a [exp{(1 + λx)α − 1} − 1]

b
}
, (5)

and the pdf has the form

f(x) = a bαλ (1 + λx)α−1 [1− exp{1− (1 + λx)α}]b−1

× exp
{
−b [1− (1 + λx)α]− a [exp{(1 + λx)α − 1} − 1]

b
}
, (6)

where a, b > 0 are two extra shape parameters from the Weibull-G family, α > 0
is a shape and λ > 0 is a scale from the baseline model.

Hereafter, X ∼ WNH (a, b, α, λ) denotes a random variable with pdf (6). The
WNH distribution contains as special models some known distributions. For α = 1,
it reduces to the Weibull-Exponential distribution introduced by Oguntunde et al.
(2015). If b = 1 and α = 1, it becomes the Gompertz distribution. Figure 1
displays plots of the WNH pdf for some parameter values and reveals that it
allows to fit left and right skewed data. More details about these measures can
also be found in Section 4.2.

The hrf of X becomes

τ(x) = a bαλ (1 + λx)α−1 [1− exp{1− (1 + λx)α}]b−1

× exp {−b [1− (1 + λx)α]} .
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Figure 2 reports plots of the hrf of X which has at least five different shapes.
These characteristics give great flexibility to the model. For example, its decreasing
hazard shape can help analyze lifetime data in which earlier failures are corrected
or when the specimens improve over time (Peña-Ramírez et al., 2020). The bathtub
shape makes it feasible for survival analysis problems such as the human mortality
experience. It presents a high infant mortality rate which decreases rapidly to
reach a low level for quite a few years before increases again (Silva et al., 2010).
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Figure 1: Plots of the WNH density.
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Figure 2: Plots of the WNH hrf.

3. Useful Expansion

Bourguignon et al. (2014) demonstrated that the Weibull-G pdf can be ex-
pressed in terms of the exp-G densities. Let G(y) be the baseline cdf of a random
variable Y . The exp-G cdf is obtained by a power transformation Hc(y) = G(y)c

of G(y), where c > 0 is an additional shape parameter. Then, the exp-G density
function is hc(y) = c g(y)G(y)c. Tahir & Nadarajah (2015) wrote a survey with
other ways to obtain generated continuous distributions, and listed twenty-eight
models using such a method. We can also refer to Peña-Ramírez et al. (2018)
Martínez-Flórez et al. (2022) as recent advances in this family.

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 93–119



A New Nadarajah-Haghighi Generalization 99

In this section, we derive a useful expansion for the WNH density based on the
exp-G family. To this aim, we replace Equations (3) and (4) in (2), leading to

f(x) = a bαλ (1 + λx)α−1 exp{1− (1 + λx)α} [1− exp{1− (1 + λx)α}]b−1

[exp{1− (1 + λx)α}]b+1

× exp

{
−a

[
1− exp{1− (1 + λx)α}
exp{1− (1 + λx)α}

]b}
. (7)

By expanding the exponential function in the last quantity in (7), we have

exp

{
−a

[
1− exp{1− (1 + λx)α}
exp{1− (1 + λx)α}

]b}
=

∞∑
i=0

(−1)iai

i!

[1− exp{1− (1 + λx)α}]i b

[exp{1− (1 + λx)α}]i b
.

Inserting the above expansion in (7) and after some algebra, we obtain

f(x) = a bαλ (1 + λx)α−1 exp{1− (1 + λx)α}

×
∞∑
i=0

(−1)iai

i!

[1− exp{1− (1 + λx)α}](i+1)b−1

[exp{1− (1 + λx)α}](i+1)b+1
. (8)

By using the generalized binomial theorem, we can rewrite the quantity
[exp{1− (1 + λx)α}]−[(i+1)b+1] as

{1− [1− exp{1− (1 + λx)α}]}−[(i+1)b+1]
=

∞∑
j=0

Γ([i+ 1]b+ j + 1)

j! Γ([i+ 1]b+ 1)

× [1− exp{1− (1 + λx)α}]j .

By inserting the last equation in (8) and after some simplifications, the WNH
density function can be expressed as an infinite linear combination of exp-NH
densities, namely

f(x) =

∞∑
i,j=0

ωi,j h(i+1)b+j(x), (9)

where
ωi,j =

(−1)i b ai+1 Γ([i+ 1]b+ j + 1)

i! j! [(i+ 1)b+ j] Γ([i+ 1]b+ 1)
.

As mentioned before, the ENH model (Lemonte, 2013) is the exp-G distribution
by taking for the baseline the NH model. Figure 3 reveals the convergence of
S =

∑n
i,j=0 ωi,j for n = 1, 2, . . . , 15 and a = b = 0.5. Equation (9) is the main

result of this section.

4. Some Structural Properties

In this section, we obtain some structural properties of the WNH distribution
from those of the ENH model. Our investigation includes the quantile function
(qf), ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz
curves and Rényi entropy.
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Figure 3: Sum of the coefficients S =
∑n

i,j=0 ωi,j of the linear combination in (9).

4.1. Quantile Function

The qf of X is determined by inverting Equation (5). Thus, for u ∈ (0, 1), we
have

Q(u) =
1

λ


[
1 + log

(
1 +

[
− log(1− u)

a

] 1
b

)] 1
α

− 1

 . (10)

Setting u = 0.5 gives the median M = Q(0.5) of X. The qf is a useful tool to
obtain skewness and kurtosis measures and for simulating WNH random variable
using the inverse transformation method. Let U be a standard uniform random
variable. Thus, the random variable X = Q(U) has pdf given by (6).

4.2. Ordinary and Central Moments

The sth ordinary moments of X follows from (9) as

µ′
s = E(Xs) =

∞∑
i,j=0

wi,j

∫ ∞

0

xs h(i+1)b+j(x) dx.

Using a result in Lemonte (2013), we obtain

µ′
s = λ−s

∞∑
i,j,l=0

s∑
k=0

(−1)s+l−k [(i+ 1)b+ j] el+1 wi,j

(l + 1)k/α+1

×
(
(i+ 1)b+ j − 1

l

)(
s

k

)
Γ

(
k

α
+ 1, l + 1

)
,
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where Γ(a, x) =
∫∞
x

za−1e−zdz denotes the complementary incomplete gamma
function.

An alternative representation for the ordinary moments of X can be based on
the NH qf. We can write

µ′
s = λ−s

∞∑
i,j=0

wi,j [(i+ 1)b+ j]I
(s)
i,j (α, b), (11)

where I
(s)
i,j (α, b) =

∫ 1

0
u(i+1)b+j−1{[1 − log(1 − u)]1/α − 1}s du can be evaluated

numerically.

4.3. Skewness and Kurtosis

The Bowley skewness (Kenney & Keeping, 1962) and the Moors kurtosis (Moors,
1988) of X can also be defined in terms of the qf, respectively, by

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
,

and

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(3/4)−Q(1/4)
,

where Q(·) is given by (10).
Table 1 provides a numerical experiment that computes the first four moments,

B and M coefficients for some parameter values of the WNH model. These scenar-
ios are selected using the values from Figure 1. Thus, we can compare the measures
with the density shapes. The results corroborate that the proposed distribution
is quite flexible regarding the properties above. It can accommodate a wide range
of values for the moments. For example, µ′

1 varies between 0.1416 (Scen. 16) and
1.2439 (Scen. 9). In contrast, µ′

4 has a variation between 0.0012 (Scen. 16) and
33.1512 (Scen. 9). For the skewness measure, note that B can have positive and
negative values, thus indicating that the WNH distribution is useful for modeling
left and right skewed data. For comparing Scen. 13 to 16, we note that λ does
not affect B and M. This result is expected since λ is a scale parameter. Finally,
Figure 4 reports contour lines of B and M , thus allowing a visual inspection of
their behavior when varying a and b.
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Figure 4: Contour lines of the WNH Bowley skewness ((a) and (b)) and Moors kurtosis
((c) and (d)).

4.4. Incomplete Moments and Mean Deviations

The incomplete moments provide high-value information in reliability and in-
equality studies. It is because they can be used to obtain the mean deviations and
the Bonferroni and Lorenz curves. We derive those measures using the WNH
distribution and provide a visual inspection of these curves for some selected
scenarios.

Let ms(y) denote the sth incomplete moment of X, say ms(y) =
∫ y

0
xs f(x)dx.

From Equation (9), we can write

ms(y) = E(Xs) =

∞∑
i,j=0

wi,j

∫ y

0

xs h(i+1)b+j(x) dx.
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Table 1: First four moments, B and K for the WNH distribution.

Scen. Parameter values Statistical Properties
a b α λ µ′

1 µ′
2 µ′

3 µ′
4 B M

1 0.8 2.5 2.0 0.5 0.5680 0.3507 0.2295 0.1571 −0.0601 1.2170
2 1.5 2.5 2.0 0.5 0.4816 0.2544 0.1433 0.0848 −0.0490 1.2112
3 2.0 2.5 2.0 0.5 0.4450 0.2181 0.1143 0.0631 −0.0439 1.2090
4 3.0 2.5 2.0 0.5 0.3966 0.1742 0.0822 0.0409 −0.0369 1.2062
5 1.5 1.5 2.0 0.4 0.5391 0.3609 0.2744 0.2279 0.0129 1.1636
6 1.5 2.0 2.0 0.4 0.5754 0.3792 0.2730 0.2098 −0.0272 1.1924
7 1.5 2.5 2.0 0.4 0.6020 0.3975 0.2799 0.2071 −0.0490 1.2112
8 1.5 3.0 2.0 0.4 0.6220 0.4136 0.2888 0.2096 −0.0626 1.2239
9 1.4 0.8 0.8 0.5 1.2439 2.8886 8.9484 33.1512 0.2426 1.1984

10 1.4 0.8 1.3 0.5 0.6573 0.7463 1.0826 1.8242 0.1964 1.1430
11 1.4 0.8 2.0 0.5 0.3943 0.2586 0.2121 0.1993 0.1702 1.1161
12 1.4 0.8 3.0 0.5 0.2506 0.1022 0.0515 0.0295 0.1538 1.1010
13 2.0 1.5 1.8 0.5 0.4247 0.2279 0.1404 0.0952 0.0297 1.1640
14 2.0 1.5 1.8 0.8 0.2655 0.0890 0.0343 0.0145 0.0297 1.1640
15 2.0 1.5 1.8 1.2 0.1770 0.0396 0.0102 0.0029 0.0297 1.1640
16 2.0 1.5 1.8 1.5 0.1416 0.0253 0.0052 0.0012 0.0297 1.1640

We can show that ms(y) is given by

ms(y) = λ−s
∞∑

i,j=0

wi,j [(i+ 1)b+ j]

×
∫ 1−e1−(1+λy)α

0

{[1− log(1− u)]1/α − 1}su(i+1)b+j−1 du.

Alternatively,

ms(y) = λ−s
∞∑

i,j,l=0

s∑
k=0

(−1)s+l−k [(i+ 1)b+ j] el+1 wi,j

(l + 1)k/α+1

(
(i+ 1)b+ j − 1

l

)(
s

k

)

×
[
Γ

(
k

α
+ 1, l + 1

)
− Γ

(
k

α
+ 1, (l + 1)(1 + λy)α

)]
. (12)

The mean deviations about the mean and the median are given by δ1 = E(|X−
µ′
1|), and δ2 = E(|X −M |), respectively. They are dispersion statistics proposed

as alternatives to standard deviation. As argued by Gorard (2005), the mean
deviations are more efficient in real-life situations where the data contain tiny
errors and non-Gaussian distributions. The mean deviations about the mean and
the median can be expressed as

δ1 = 2µ′
1F (µ′

1)− 2m1(µ
′
1) and δ2 = µ′

1 − 2m1(M),

respectively, where µ′
1 = E(X), M = Median(X) = Q(0.5) is the median, F (µ′

1)
is easily determined from (5) and m1(y) =

∫ y

0
x f(x)dx is the first incomplete

moment. We can determine m1(y) from the sums for ms(y) given in (12) by
taking s = 1 or using numerical integration.
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Other important applications of the previous results refer to the Bonferroni
and Lorenz curves, which are central instruments for studying income distribution
and inequality analysis. For a given probability p, they are defined by

B(p) =
m1 [Q(p)]

p µ′
1

and L(p) =
m1 [Q(p)]

µ′
1

respectively, where m1(·) follows from (12) and Q(·) from (10). The Lorenz curve
informs about the cumulative proportion of income held by the bottom p percent of
the population, offering a complete picture of the concentration in the distribution
(Gómez-Déniz et al., 2022). Figure 5 reports plots for the Bonferroni and Lorenz
curves obtained from the WNH distribution, which illustrates the flexibility of the
new model to accommodate different inequality patterns.
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Figure 5: Bonferroni and Lorenz curves for some selected scenarios.

5. Estimation

Several approaches to parameter estimation for models have been proposed in
the literature. However, two, in particular, stand out: maximum likelihood esti-
mation and Bayesian methods. The maximum likelihood estimates (MLEs) have
desirable properties that can be used to construct confidence intervals. Addition-
ally, large sample theory for these estimations offers simple approximations for
finite samples. On the other hand, Bayesian methods allow the incorporation of
prior information in estimation procedures, making them an important alternative
when limited data is available or when models are complex and cannot be easily fit
with classical methods. This section focuses on estimating the parameter vector
θ = (a, b, α, λ), which indexes the model WNH using maximum likelihood and the
Bayesian approach.
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5.1. Maximum Likelihood Estimation

Initially, we consider the maximum likelihood method for estimating the un-
known parameters of the WNH distribution. Let x = (x1, . . . , xn)

⊤ be an observed
random sample from the WNH(a, b, α, λ) distribution given by (6). Based on this
sample, the log-likelihood function for the parameter vector θ = (a, b, α, λ) has
the form

ℓ (θ|x) =n log (a bαλ) + b

n∑
i=1

(1 + λxi)
α + (α− 1)

n∑
i=1

log (1 + λxi)− n b

+ (b− 1)

n∑
i=1

log
[
1− e1−(1+λxi)

α
]
− a

n∑
i=1

[
e(1+λxi)

α−1 − 1
]b

. (13)

Equation (13) can be maximized either directly by using the R (optim function),
SAS (PROC NLMIXED) or Ox program (MaxBFGS sub-routine) or by solving the non-
linear likelihood equations obtained by differentiating (13).

We perform a numerical experiment to illustrate the behavior of Equation (13)
and compare it with the log-likelihood in the baseline model. To this aim, we
generate a WNH random sample with size n = 100 and θ = (2.7, 5.7, 0.5, 1.0)

⊤

and compute the log-likelihoods corresponding to the WNH and NH distributions
by varying the baseline’s parameter values. Figure 6 provides the results of this
experiment. Note that the WNH log-likelihood has a higher maximum value for
the selected parameter sets and corresponds to the actual value of the generated
sample.
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(a) For a = 2.7, b = 5.7, λ = 1.0 and varying
α.
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(b) For a = 2.7, b = 5.7, α = 0.5 and varying
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Figure 6: Log-likelihood for the WNH and NH distributions computed from WNH ran-
dom sample with size n = 100 and θ = (2.7, 5.7, 0.5, 1.0)⊤.
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The components of the score vector U(θ) = [Ua(θ), Ub(θ), Uα(θ), Uλ(θ)]
⊤ can

be expressed as

Ua(θ) =
n

a
−

n∑
i=1

[
e(1+λxi)

α−1 − 1
]b

,

Ub(θ) =
n

b
+

n∑
i=1

(1 + λxi)
α +

n∑
i=1

log
[
1− e1−(1+λxi)

α
]

− a

n∑
i=1

[
e(1+λxi)

α−1 − 1
]b

log
[
e(1+λxi)

α−1 − 1
]
− n,

Uα(θ) =
n

α
+ b

n∑
i=1

(1 + λxi)
α log[(1 + λxi)

α] +

n∑
i=1

log(1 + λxi)

+ (b− 1)

n∑
i=1

(1 + λxi)
α log(1 + λxi) e

1−(1+λxi)
α

1− e1−(1+λxi)α

− a b

n∑
i=1

(1 + λxi)
α log(1 + λxi) e

(1+λxi)
α−1

[
e(1+λxi)

α−1 − 1
]b−1

and

Uλ(θ) =
n

λ
+ (α− 1)

n∑
i=1

xi (1 + λxi)
−1 − b α

n∑
i=1

xi (1 + λxi)
α−1

− a bα

n∑
i=1

xi(1 + λxi)
α−1 e(1+λxi)

α−1
[
e(1+λxi)

α−1 − 1
]b−1

+ α (b− 1)

n∑
i=1

xi(1 + λxi)
α−1 e1−(1+λxi)

α

1− e1−(1+λxi)α
.

The MLE θ̂ of θ can also be obtained by setting Ua(θ), Ub(θ), Uα(θ) and
Uλ(θ) equal to zero and solving these equations simultaneously. Once they cannot
be solved analytically, we may use iterative techniques such as Newton-Raphson
algorithm for the maximization.

The MLEs of all members oh the Weibull-G family can be determined from
the profile log-likelihood function (Guerra et al., 2021). Thus, taking Ua(θ) = 0,
we have that a semi-closed MLE for a is given by

â(b, α, λ) =
n∑n

i=1

[
e(1+λxi)α−1 − 1

]b .
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Letting θp = (b, α, λ) and replacing â in (13), we can use the profile log-likelihood
to obtain the MLEs for the other three parameters. It is given by

ℓ(θp) = n log

(
n bαλ∑n

i=1

[
e(1+λxi)α−1 − 1

]b
)

+ b

n∑
i=1

(1 + λxi)
α

+ (α− 1)

n∑
i=1

log (1 + λxi) + (b− 1)

n∑
i=1

log
[
1− e1−(1+λxi)

α
]
− n (b+ 1).

(14)

The maximization of (14) may be simpler than of (13) because it involves only
three parameters.

The MLEs have interesting asymptotic properties that allow to construct ap-
proximate confidence intervals and testing hypotheses for the model parame-
ters. For n large, and under standard regularity conditions, the distribution of
(â− a, b̂− b, α̂−α, λ̂−λ) can be approximated by a multivariate normal distribu-
tion N4(0,J(θ̂)

−1
), where J(θ̂) = −∂ℓ(θ)/∂θ∂θ⊤|θ=θ̂ is the observed informa-

tion matrix. Thus, large-sample-based confidence intervals can be constructed for
θ using θ̂. For the 100(1− η)% confidence level, these intervals are given by

θ̂ ± zη/2 ×
[
v̂ar(θ̂)

]1/2
,

where zη/2 is the quantile η/2 of the standard normal distribution, and v̂ar(θ̂) =

diag
{
J(θ̂)

−1
}

.

5.2. Bayesian Inference

We also obtain Bayesian estimators for the WNH parameters using Markov
Chain Monte Carlo (MCMC) methods due to the complexity of the joint likeli-
hood function. Given an observed random sample x = (x1, . . . , xn)

⊤ from the
WNH(a, b, α, λ) distribution, the likelihood function is

L(θ|x) ∝ (a bαλ)n
n∏

i=1

(1 + λxi)
α−1

n∏
i=1

[1− exp{1− (1 + λxi)
α}]b−1

× exp

{
−b

n∑
i=1

[1− (1 + λxi)
α]− a

n∑
i=1

[exp{(1 + λxi)
α − 1} − 1]

b

}
.

In this case, the Bayesian estimation is constructed under the hypothesis that
the unknown parameters are independent and follow a gamma distribution, i.e.,
θi ∼ Gamma(pi, qi), θi ∈ θ, i = 1, . . . , 4, where the hyper-parameters (pi, qi) > 0
are known. Thus, the joint prior of parameters a, b, α and λ is p(a, b, α, λ) ∝
ap1−1bp2−1αp3−1λp4−1e−(q1a+q2b+q3α+q4λ). Hence, using Bayes’ theorem, the joint
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posterior pdf is

π(θ|x) ∝ an+p1−1bn+p2−1αn+p3−1λn+p4−1 exp{−(q1a+ q2b+ q3α+ q4λ)}

× exp

{
−b

n∑
i=1

[1− (1 + λxi)
α]− a

n∑
i=1

[exp{(1 + λxi)
α − 1} − 1]

b

}

×
n∏

i=1

(1 + λxi)
α−1

n∏
i=1

[1− exp{1− (1 + λxi)
α}]b−1

. (15)

To obtain the marginal posterior distribution for each parameter in the vector
θ, we need to integrate Equation (15). However, since the joint posterior dis-
tribution is intractable, we use the MCMC approach to draw posterior samples,
from which we can infer the marginal distributions. In order to generate samples,
we first need to derive the full conditional posterior distributions of the unknown
WNH parameters. They can be derived as

π(a|b, α, λ,x) ∝ an exp

{
−a

n∑
i=1

[exp{(1 + λxi)
α − 1} − 1]

b

}
, (16)

π(b|a, α, λ,x) ∝ exp

{
−b

n∑
i=1

[1− (1 + λxi)
α]− a

n∑
i=1

[exp{(1 + λxi)
α − 1} − 1]

b

}

× bn
n∏

i=1

[1− exp{1− (1 + λxi)
α}]b , (17)

π(α|a, b, λ,x) ∝ exp

{
b

n∑
i=1

(1 + λxi)
α − a

n∑
i=1

[exp{(1 + λxi)
α − 1} − 1]

b

}

× αn
n∏

i=1

(1 + λxi)
α

n∏
i=1

[1− exp{1− (1 + λxi)
α}]b−1

, (18)

and

π(λ|a, b, α,x) ∝ exp

{
b

n∑
i=1

(1 + λxi)
α − a

n∑
i=1

[exp{(1 + λxi)
α − 1} − 1]

b

}

× λn
n∏

i=1

(1 + λxi)
α−1

n∏
i=1

[1− exp{1− (1 + λxi)
α}]b−1

. (19)

Equations (16)-(19) demonstrate that the full conditional distributions of a, b,
α, and λ can not be expressed as any familiar density function. Then, generating
θ directly from p(a|·), p(b|·), p(α|·), and p(λ|·) is not possible using standard
methods. To obtain Bayes estimates for the unknown parameters, we use the
Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970)
with a normal proposal distribution. We follow the MCMC sampling procedure
outlined below:
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Step 1. Choose start values for the parameter vector θ = (a, b, α, λ), say θ(0) =
(a(0), b(0), α(0), λ(0)).

Step 2. Set the iteration counter j = 1.

Step 3. Propose a new value for the θ such as θ∗ = (a∗, b∗, α∗, λ∗)⊤ by sampling from
the proposal distribution: θ∗i ∼ N(θ̂i, Ĵi,i), where θ∗i ∈ θ∗ and i = 1, . . . , 4.
Here, Ĵi,i is the ith element of the main diagonal of the observed Fisher
information matrix J(θ̂).

Step 4. Calculate the acceptance probability as

h
(
θ
(j−1)
i , θ∗i

)
= min

1,
π
(
θ∗i |θ

(j−1)
−i , x

)
π
(
θ
(j−1)
i |θ(j−1)

−i , x
)
 , i = 1, . . . , 4,

where θ
(·)
−i denotes the vector θ(·) with its ith element removed, and π(·) are

given in Equations (16)-(19).

Step 5. Generate ui (i = 1, . . . , 4) from the uniform U(0, 1) distribution, and if
ui < h

(
θ
(j−1)
i , θ∗i

)
, set θ

(j)
i = θ∗i ; otherwise, set θ

(j)
i = θ

(j−1)
i .

Step 6. Increase the counter from j to j + 1.

Step 7. If j < M , where M is a large number where convergence is achieved, return
to step 3; otherwise, discard the first N < M samples as as burn-in and
compute the Bayes estimates as

θ̃i =
1

M −N

M∑
j=N+1

θ
(j)
i .

6. Simulation Study

In this section, we perform a simulation study to evaluate the performance of
the MLE method for the WNH distribution. The study is conducted by computing
10,000 Monte Carlo replications with sample sizes n ∈ {20, 40, 60, 100, 300, 500}.
We use the set of estimates of the parameters obtained in each replication to
calculate the mean and root mean squared errors (RMSEs). The data are gener-
ated using the inverse transformation method, where X = Q(U) is obtained from
Equation (10). We use Nelder-Mead algorithm to maximize Equation (13) and the
observed information matrix is obtained numerically from the optim function in R
programming language. Intending to assess the interval estimation, the coverage
probability of 95% point-wise confidence interval is computed.

We aim to provide scenarios similar to the observed in a real data set. Hence,
we set α = 0.1 and λ = 1.0 based on estimated values of the WNH model from
the failures times of a Boeing 720 air conditioning system (Proschan, 1963) and
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vary a and b according to the values reported in Table 2. This table also reports
the simulation results. We can verify that, for the selected scenarios, the coverage
probabilities are quite close to the nominal level regardless the sample size. The
experiment also reveal that the RMSEs of the point estimates decay when the
sample size increases. Moreover, the average estimates of the parameters tend to
be closer to the true parameter values when n increases. These results are expected
under first-order asymptotic theory.

7. Applications

In this section, two applications to real survival data are presented. In order
to illustrate the potentiality of the new distribution, we compare the WNH model
with nine other related distributions in terms of model fitting. We fit the Ku-
maraswamy Nadarajah-Haghighi (KwNH) (VedoVatto et al., 2016), GNH, WExp,
PGW, exponentiated Weibull (EW) (Mudholkar & Srivastava, 1993), ENH, NH,
Weibull, and Gompertz distributions. Their densities are presented in the Ap-
pendix A.

The first data set refers to the times of successive failures of the air conditioning
system of a fleet with 213 Boeing 720 jet airplanes (Proschan, 1963). The second
data set consists of the service times of 63 Aircraft Windshield (Murthy et al.,
2004). The unit of measurement is 1000 h. The R codes of all the numerical exper-
iments and applications are available at https://github.com/penaramirez/WNH.

Table 3 presents the descriptive statistics for both data sets. For the two
samples, the mean is larger than the median and the mode is outlier. The Boeing
720 data have great variance and amplitude, showing more variability than the
Aircraft Windshield. The first data set presents positive kurtosis, while the second
data set has negative one. Moreover, both data sets present positive skewness,
indicating right-skewed data. Note that the WNH model allows fitting skewed-
data, as explained in Sections 2 and 3.

Tables 4 and 5 list the MLEs (and the corresponding standard errors in paren-
theses) of the unknown parameters for all fitted models to the first and second
data sets, respectively. The Bayes estimates following the procedure described in
Section 5.2 are also included. In this case, we run the M-H sampler to generate a
Markov chain with 12,000 observations and discard the first 2,000 values as ’burn-
in’. These results are obtained using the AdequacyModel script in R software (Mar-
inho et al., 2019). We use the simulated-annealing algorithm for maximizing the
log-likelihood function for these models.
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â
b̂

α̂
λ̂

â
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Table 3: Descriptive statistics.
Statistics Real data sets

Boeing 720 Aircraft Windshield
Mean 93.14 2.09
Median 57.00 2.06
Mode 14.00 2.50
Variance 11398.47 1.55
Skewness 2.11 0.44
Kurtosis 4.92 -0.27
Minimum 1.00 0.05
Maximum 603.00 5.14
n 213 63

We consider the following goodness-of-fit statistics to select the most appro-
priate model: the Kolmogorov-Smirnov (KS) statistic and the Anderson-Darling
(A∗) and Cramér-von Mises (W ∗) corrected statistics. The statistics A∗ and
W ∗ are based on the empirical cdf, and to obtain them, we can proceed as
follows: (i) compute ηi = F (xi,θ) where F is a cdf with known form, θ is a
k-dimensional unknown parameter vector and the xi’s are in ascending order;
(ii) compute yi = Φ−1(ηi) , where Φ(·) is the standard normal cdf and Φ(·)−1

its qf; (iii) compute ui = Φ{(yi − ȳ)/sy}, where ȳ = n−1
∑n

i=1 yi and s2y =
(n−1)−1

∑n
i=1(yi− ȳ)2; (iv) calculate W 2 =

∑n
i=1{ui− (2i−1)/(2n)}2+1/(12n)

and A2 = −n − n−1
∑n

i=1{(2i − 1) log(ui) + (2n + 1 − 2i) log(1 − ui)} and (v)
modify W 2 into W ∗(1 + 0.5/n) and A2 into A∗ = A2(1 + 0.75/n + 2.25/n2) The
lower are them, the better is the model adjustment to the data.

Tables 4 and 5 provide the goodness-of-fit statistics for all fitted models to
the Boeing 720 and the Aircraft Windshield data sets, respectively. The Bayes
estimates for the WNH model give the lowest values of A∗, W ∗, and KS for both
data sets. So, it could be chosen as the best model among the other known lifetime
models, including the generated distributions from the NH baseline model.

Figure 7 displays the histogram and the plots of estimated densities of the
three more competitive models according to the goodness-of-fit statistics, whereas
the plots of estimated cdfs for these models are displayed in Figure 8. The plots
confirm that the WNH distribution yields an effective alternative to other NH gen-
erated distributions, such as the KwNH and ENH models in the first application.
It also can be useful against other widely known lifetime models, such as the EW
and Gompertz models in the second data set. This superiority over its competing
models allows unbiased estimators to be obtained for the WNH distribution and,
consequently, more appropriate statistical inference, including hypothesis tests,
confidence intervals, and prediction intervals. Particularly in engineering, proper
fitting of the WNH distribution produces unbiased estimates of important quan-
tities such as hrf, mean residual life, and mean downtime, among others. This
can improve preventive maintenance policies. For more details on these latter
reliability measures, we refer readers to Kayid & Izadkhah (2014).
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Table 4: MLEs and goodness-of-fit statistics for the Boeing 720 jet airplanes data set.
Distributions Estimates W∗ A∗ KS
WNH(a, b, α, λ) 5.6708 2.6781 0.0793 0.9853 0.0284 0.2226 0.0323

(2.4485) (0.2825) (0.0083) (0.4853)
WNH(a, b, α, λ)* 9.0142 3.0077 0.0724 2.0886 0.0429 0.2951 0.2121

(6.8545) (0.3417) (0.0078) (1.3906)
KwNH(a, b, α, λ) 1.5797 0.2124 0.7244 0.1344 0.0311 0.2285 0.0337

(0.3358) (0.0891) (0.0793) (0.0517)
GNH(a, α, λ) 1.3541 0.5726 0.0440 0.0367 0.2672 0.0373

(0.2213) (0.0775) (0.0217)
WExp(a, b, λ) 2.1559 0.7478 0.0030 0.2913 1.7808 0.0954

(0.2971) (0.0402) (0.0003)
PGW(α, λ, γ) 1.5918 0.2756 14.8971 0.0827 0.5692 0.0850

(0.1918) (0.0466) (2.534)
EW(α, β, λ) 0.0279 0.6187 2.2841 0.0411 0.2926 0.0389

(0.0111) (0.0883) (0.6961)
ENH(α, β, λ) 0.5402 0.0431 1.3862 0.0335 0.2534 0.0336

(0.0633) (0.0152) (0.2059)
NH(α, λ) 0.7256 0.0188 0.0782 0.5091 0.0466

(0.0891) (0.0044)
Weibull(α, λ) 51.9386 0.7593 0.1046 0.6634 0.1775

(4.2992) (0.0429)
Gompertz(θ, λ) 0.0147 0.0021 0.4733 2.8589 0.1397

(0.0035) (0.0009)
*Bayesian estimates
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Figure 7: Histogram and estimated densities of the (a) WNH, KwNH and ENH models
for the Boeing 720 data set; (b) WNH, EW and Gompertz models for the
Aircraft Windshield data set
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Table 5: MLEs and goodness-of-fit statistics for the Aircraft Windshield data set.
Distributions Estimates W∗ A∗ KS
WNH(a, b, α, λ) 0.2135 1.0479 0.6657 1.3431 0.0425 0.2812 0.0628

(0.0881) (0.2106) (0.1176) (0.4799)
NH(a, b, α, λ)* 0.4066 1.1104 0.7359 1.4010 0.0899 0.6463 0.4374

(0.2896) (0.2628) (0.2544) (1.1326)
KwNH(a, b, α, λ) 1.2302 0.2046 2.6044 0.4097 0.0651 0.3975 0.0799

(0.3722) (0.0941) (0.4623) (0.1126)
GNH(aαλ) 1.38304 4.5360 0.0916 0.0697 0.4247 0.0926

(0.1867) (1.7030) (0.0412)
WExp(a, b, λ) 2.2251 1.3864 0.1815 0.0639 0.3907 0.0698

(1.0921) (0.1460) (0.0474)
PGW(α, λ, γ) 1.311 4.251 8.979 0.0576 0.3561 0.0877

(0.1753) (4.5984) (9.2221)
EW(α, β, λ) 0.2829 3.3454 0.3407 0.0503 0.3237 0.0739

(0.0373) (1.0606) (0.1439)
ENH(α, β, λ) 5.19228 0.07274 1.42357 0.0763 0.4633 0.0939

(1.7410) (0.0278) (0.2221)
NH(α, λ) 6.08583 0.05458 0.0754 0.4574 0.1518

(2.4754) (0.0242)
Weibull(α, λ) 2.308 1.625 0.1046 0.6339 0.1095

(0.1869) (0.1680)
Gompertz(θ, λ) 0.2065 0.4882 0.0449 0.3019 0.0675

(0.0498) (0.0984)
*Bayesian estimates
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Figure 8: Estimated and empirical cdfs of the (a) WNH, KwNH and ENH models for
the Boeing 720 data set; (b) WNH, EW and Gompertz models for the Aircraft
Windshield data set
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8. Conclusions

In this paper we introduced a new four-parameter Nadarajah-Haghighi gen-
eralization, which may be useful for lifetime applications. More specifically, the
introduced model is called Weibull Nadarajah-Haghighi (WNH) distribution and
is obtained by inserting the Nadarajah-Haghighi model in the Weibull-G fam-
ily (Bourguignon et al., 2014). The proposed distribution allows for greater flex-
ibility of the density function than the Nadarajah-Haghighi density and presents
constant, increasing, decreasing, bathtub and upsidedown-bathtub hazard rate
shapes. It has the Weibull exponential and Gompertz distributions as sub-models.
Some structural properties of the WNH distribution are discussed and the parame-
ter estimation is carried out by maximum likelihood. We also perform a simulation
study. In the empirical applications, the WNH distribution is shown quite com-
petitive not only with other NH generated distributions but also to other widely
known lifetime models.
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]

References
Almarashi, A. M., Algarni, A., Okasha, H. & Nassar, M. (2022), ‘On reliability

estimation of NadarajahHaghighi distribution under adaptive type-I progres-
sive hybrid censoring scheme’, Quality and Reliability Engineering International
38, 817–833.

Bagdonavicius, V. & Nikulin, M. (2002), Accelerated life models: modeling and
statistical analysis, Chapman and Hall/CRC, Boca Raton.

Bourguignon, M., Lima, M. d. C. S., Leão, J., Nascimento, A. D. C., Pinho,
L. G. B. & Cordeiro, G. M. (2015), ‘A new generalized gamma distribution
with applications’, American Journal of Mathematical and Management Sci-
ences 34, 309–342.

Bourguignon, M., Silva, R. B. & Cordeiro, G. M. (2014), ‘The Weibull-G family
of probability distributions’, Journal of Data Science 12, 53–68.

Elshahhat, A., Alotaibi, R. & Nassar, M. (2022), ‘Inferences for Nadarajah-
Haghighi parameters via type-II adaptive progressive hybrid censoring with ap-
plications’, Mathematics 10, 3775.

Gómez-Déniz, E., Sarabia, J. M. & Jordá, V. (2022), ‘Parametric Lorenz curves
based on the beta system of distributions’, Communications in Statistics-Theory
and Methods 51, 8371–8390.

Gorard, S. (2005), ‘Revisiting a 90-year-old debate: the advantages of the mean
deviation’, British Journal of Educational Studies 53, 417–430.

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 93–119



116 Fernando A. Peña-Ramírez, Renata Rojas Guerra & Gauss M. Cordeiro

Guerra, R. R., Peña-Ramírez, F. A. & Cordeiro, G. M. (2021), ‘The Weibull Burr
XII distribution in lifetime and income analysis’, Anais da Academia Brasileira
de Ciências 93, e20190961.

Hastings, W. K. (1970), ‘Monte carlo sampling methods using markov chains and
their applications’.

Jiang, R., Ji, P. & Xiao, X. (2003), ‘Aging property of unimodal failure rate
models’, Reliability Engineering & System Safety 79, 113–116.

Kayid, M. & Izadkhah, S. (2014), ‘Mean inactivity time function, associated order-
ings, and classes of life distributions’, IEEE Transactions on Reliability 63, 593–
602.

Kenney, J. & Keeping, E. (1962), Mathematics of Statistics, 3 edn, Chapman and
Hall Ltda, New Jersey.

Klutke, G.-A., Kiessler, P. C. & Wortman, M. A. (2003), ‘A critical look at the
bathtub curve’, IEEE Transactions on reliability 52, 125–129.

Lemonte, A. J. (2013), ‘A new exponential-type distribution with constant, de-
creasing, increasing, upside-down bathtub and bathtub-shaped failure rate func-
tion’, Computational Statistics and Data Analysis 62, 149–170.

Louzada, F., Ramos, P. L. & Nascimento, D. (2018), ‘The inverse Nakagami-m
distribution: A novel approach in reliability’, IEEE Transactions on Reliability
67, 1030–1042.

Marinho, P. R. D., Cordeiro, G. M., Ramírez, F. P., Alizadeh, M. & Bourguignon,
M. (2018), ‘The exponentiated logarithmic generated family of distributions and
the evaluation of the confidence intervals by percentile bootstrap’, Brazilian
Journal of Probability and Statistics 32, 281–308.

Marinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M. & Nadarajah, S.
(2019), ‘Adequacymodel: An r package for probability distributions and general
purpose optimization’, PloS One 14, e0221487.

Martínez-Flórez, G., Pacheco-López, M. & Tovar-Falón, R. (2022), ‘Likelihood-
based inference for the asymmetric exponentiated bimodal normal model’, Re-
vista Colombiana de Estadística 45, 301–326.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.
(1953), ‘Equation of state calculations by fast computing machines’, The journal
of chemical physics 21, 1087–1092.

Moors, J. (1988), ‘A quantile alternative for kurtosis’, The statistician 88, 25–32.

Mudholkar, G. & Srivastava, D. (1993), ‘Exponentiated Weibull family for analyz-
ing bathtub failure-rate data’, IEEE Transactions on Reliability 42, 299–302.

Murthy, D., Xie, M. & R, J. (2004), Weibull models, Wiley, New York.

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 93–119



A New Nadarajah-Haghighi Generalization 117

Nadarajah, S. & Haghighi, F. (2011), ‘An extension of the exponential distribu-
tion’, Statistics 45, 543–558.

Oguntunde, P., Balogun, O., Okagbue, H. & Bishop, S. (2015), ‘The Weibull-
exponential distribution: Its properties and applications’, Journal of Applied
Sciences 15, 1305–1311.

Oluyede, B. & Liyanage, G. W. (2023), ‘The gamma odd Weibull generalized-
g family of distributions: Properties and applications’, Revista Colombiana de
Estadística 46, 1–44.

Peña-Ramírez, F. A., Guerra, R. R., Canterle, D. R. & Cordeiro, G. M. (2020),
‘The logistic Nadarajah–Haghighi distribution and its associated regression
model for reliability applications’, Reliability Engineering & System Safety
204, 107196.

Peña-Ramírez, F. A., Guerra, R. R. & Cordeiro, G. M. (2019), ‘The Nadarajah-
Haghighi Lindley distribution’, Anais da Academia Brasileira de Ciências
91, e20170856.

Peña-Ramírez, F. A., Guerra, R. R., Cordeiro, G. M. & Marinho, P. R. (2018),
‘The exponentiated power generalized Weibull: Properties and applications’,
Anais da Academia Brasileira de Ciências 90, 2553–2577.

Pérez, J. M. P., Márquez, F. P. G., Tobias, A. & Papaelias, M. (2013), ‘Wind
turbine reliability analysis’, Renewable and Sustainable Energy Reviews 23, 463–
472.

Peter, P. O., Oluyede, B., Bindele, H. F., Ndwapi, N. & Mabikwa, O. (2021), ‘The
gamma odd burr iii-g family of distributions: Model, properties and applica-
tions’, Revista Colombiana de Estadística 44, 331368.

Proschan, F. (1963), ‘Theoretical explanation of observed decreasing failure rate’,
Technometrics 5, 375–383.

Ramos, P. L., Nascimento, D. C., Cocolo, C., Nicola, M. J., Alonso, C., Ribeiro,
L. G., Ennes, A. & Louzada, F. (2018), ‘Reliability-centered maintenance: An-
alyzing failure in harvest sugarcane machine using some generalizations of the
Weibull distribution’, Modelling and Simulation in Engineering 2018, 1241856.

Silva, G. O., Ortega, E. M. & Cordeiro, G. M. (2010), ‘The beta modified Weibull
distribution’, Lifetime Data Analysis 16, 409–430.

Silva, R., Gomes-Silva, F., Ramos, M., Cordeiro, G. M., Marinho, P. & Andrade,
T. (2019), ‘The exponentiated Kumaraswamy-G class: General properties and
application’, Revista Colombiana de Estadística 42, 133.

Singla, N., Jain, K. & Sharma, S. K. (2012), ‘The beta generalized Weibull dis-
tribution: properties and applications’, Reliability Engineering & System Safety
102, 5–15.

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 93–119



118 Fernando A. Peña-Ramírez, Renata Rojas Guerra & Gauss M. Cordeiro

Tahir, M., Cordeiro, G. M., Mansoor, M., Zubair, M. & Alizadeh, M. (2016), ‘The
Weibull-Dagum distribution: Properties and applications’, Communications in
Statistics-Theory and Methods 45.

Tahir, M. H. & Nadarajah, S. (2015), ‘Parameter induction in continuous univari-
ate distributions: Well-established G families’, Anais da Academia Brasileira de
Ciências 87, 539–568.

VedoVatto, T., Nascimento, A. D. C., Miranda Filho, W. R., Lima, M. C. S.,
Pinho, L. G. & Cordeiro, G. M. (2016), ‘Some computational and theoreti-
cal aspects of the exponentiated generalized Nadarajah-Haghighi distribution’,
arxiv.org/abs/1610.08876v1 .

Xu, M., Droguett, E., Lins, I. & Moura, M. D. C. (2017), ‘On the q-Weibull
distribution forreliability applications: an adaptive hybrid artificial bee colony
algorithm forparameter estimation’, Reliability Engineering & System Safety
158, 93–105.

Appendix A. Alternative distributions fitted in the
applications

This appendix presents the distributions fitted in section 7 as competitive mod-
els to the Weibull Nadarajah-Haghighi distribution. These models and their cor-
responding densities are listed below (for x > 0):

• The KwNH density (VedoVatto et al., 2016) is given by

f(x) = a bαλ
(1 + λx)α−1

[
e1−(1+λx)α

]a {
1−

[
e1−(1+λx)α

]a}a−1

{
1−

[
1− e1−(1+λx)α

]a}1−b
.

• The GNH density (Bourguignon et al., 2015) is given by

f(x) =
αλ

Γ(a)
(1 + λx)α−1 [(1 + λx)α − 1]a−1 e1−(1+λx)α .

• The WExp density (Oguntunde et al., 2015) is given by

f(x) = a b λ
(
1− eλx

)b−1
e−b λ x−a(eλ x−1)

b

,

and it is a particular case of the proposed model when α = 1.

• The PGW density (Bagdonavicius & Nikulin, 2002) is given by

f(x) = αλγ (1 + λxγ)α−1 e1−(1+λxγ)α .
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• The EW density (Mudholkar & Srivastava, 1993) is given by

f(x) = αβ λxα−1 exp (−λxα) [1− exp (−λxα)]β−1.

• The ENH density (Lemonte, 2013) is given by

f(x) = αβ λ
(1 + λx)α−1 exp{1− (1 + λx)α}
[1− exp{1− (1 + λx)α}]1−β

.

• The NH density given by (4).

• The Weibull density is given by

f(x) = αλ (λx)α−1 e−(λx)α .

• The Gompertz density is given by

f(x) = θ eλx e
θ
λ (eλ x−1),

and it a particular case of the proposed model when α = β = 1.

The parameters of the above densities are all positive real numbers.
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