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Abstract

Linear mixed effects models are highly flexible in handling correlated data
by considering covariance matrices that explain variation patterns between
and within clusters. For these covariance matrices, there exist a wide list
of possible structures proposed by researchers in multiple scientific areas.
Maximum likelihood is the most common estimation method in linear mixed
models and it depends on the structured covariance matrices for random
effects and errors. Classical methods used to optimize the likelihood function,
such as Newton-Raphson or Fisher’s scoring, require analytical procedures
to obtain parametrical restrictions to guarantee positive definiteness for the
structured matrices and it is not, in general, an easy task. To avoid dealing
with complex restrictions, we propose an adaptive method that incorporates
the so-called Hybrid Genetic Algorithms with a penalization technique based
on minimum eigenvalues to guarantee positive definiteness in an evolutionary
process which discards non-viable cases. The proposed method is evaluated
through simulations and its performance is compared with that of Newton-
Raphson algorithm implemented in SAS® PROC MIXED V9.4.
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Resumen

Los modelos lineales mixtos son muy flexibles cuando se trabaja con datos
correlacionados ya que estos consideran matrices de covarianza que explican
los patrones de variación entre individuos y dentro de sus observaciones.
Para estas matrices de covarianza existe una amplia lista de posibles estruc-
turas propuestas por investigadores en múltiples áreas científicas. El método
de máxima verosimilitud es el más común para la estimación de los paráme-
tros en modelos lineales mixtos y depende de las matrices de covarianza es-
tructuradas para efectos aleatorios y errores. Los métodos clásicos utilizados
para optimizar la función de verosimilitud, como Newton-Raphson o Fisher’s
scoring, requieren desarrollos analíticos para obtener restricciones sobre los
parámetros que garanticen matrices estructuradas y definidas positivas, y
en general, esto no es una tarea fácil. Para evitar lidiar con restricciones
complejas, proponemos un método adaptativo que incorpora los llamados
Algoritmos Genéticos Híbridos con una técnica de penalización basada en
valores propios mínimos con el fin de garantizar matrices positivas definidas
en un proceso evolutivo que descarta casos no viables. El método propuesto
se evalúa a través de simulaciones y se compara su desempeño con el algo-
ritmo de Newton-Raphson implementado en SAS® PROC MIXED V9.4.

Palabras clave: Algoritmo genético híbrido; Modelo lineal mixto; Opti-
mización; Matrices definidas positivas.

1. Introduction

Linear mixed models (LMM) are an extension of simple linear models to take
into account fixed and random effects and are widely applied when there is depen-
dency between observations. The most common case of this dependency appears
when several measures are taken for the same individual inducing a within-subjects
variation which is included in the LMM through an error term. Between-subjects
variation is represented in the LMM by means of a random effect term. The theo-
retical assumption for these two sources of variation is that they are multivariate
independent and normally distributed random variables with zero-mean vectors
and structured covariance matrices. Laird & Ware (1982) proposed both Maxi-
mum Likelihood (ML) and Restricted Maximum Likelihood (REML) to estimate
the parameters in these covariance matrices and they claim that these methods
are quite sensitive to the selection of the covariance structures.

For independent data, the covariance structure is a multiple of the identity and
there is only one parameter to be estimated. A simple way to extend this struc-
ture for taking into account the dependence on the data is to assume homogeneous
covariances which implies including an additional parameter to be estimated. How-
ever, this assumption may not be realistic because in general, the correlations are
dynamic, as for example in longitudinal data.

Conversely, an unstructured covariance matrix, where all parameters are as-
sumed to be different, could lead to overparameterization problems. Therefore,
it is desirable to select an intermediate structure to describe the variation pat-
terns and, at the same time, to reduce the number of parameters to be estimated
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(Pinheiro, 1994).
Once the structures are selected, the optimization process of the likelihood

function must ensure that these structures are maintained in addition to the
positive-definiteness condition.

Some convergence problems arise in the optimization process of the likelihood
function when using algorithms based on derivatives. Verbeke & Molenberghs
(1997), for instance, identify positive-definiteness problems with respect to the
estimated covariance matrices when the Newton-Raphson algorithm is used. This
is because these matrices are structured and some parametric restrictions are re-
quired to ensure that they are always positive definite (PD) during the optimiza-
tion process, which is not an easy task. The PROC MIXED of SAS®, for example,
imposes that diagonal elements in the covariance matrices are nonnegative, but
this is not a sufficient condition and Verbeke & Molenberghs (1997) recommend
that one should check the obtained maximum likelihood estimators for the covari-
ance matrices to verify positive-definiteness.

To avoid dealing with these restrictions in the function domain, we propose an
optimization method, for the ML and REML functions, based on a penalty tech-
nique and we use hybrid genetic algorithms (HGA) as optimizer (Scrucca, 2017).
The main advantage of this proposed method is that it penalizes the parameters
in the space of all feasible solutions or simply search space (see subsection 3.1 and
Appendix B for more details) that leads to non-PD covariance matrices and also
it combines the power of genetic algorithms as a global optimization technique
with the speed of a local optimizer such as Newton-Raphson. Mebane & Sekhon
(2011) implemented this method to solve difficult optimization problems when the
function to be optimized is discontinuous or nonlinear in their parameters.

This paper is organized as follows. In Section 2, we describe the theoretical
aspects of linear mixed models as well as the likelihood functions. Conditions
for the covariance matrices are exposed in Section 3. The proposed optimization
method of the likelihood functions is presented in Section 4. Section 5 includes
some simulations for different structures. In Section 6 the conclusions are given. In
Appendix A there is an additional proof and a general description for the Newton-
Raphson algorithm. Finally, Appendix B gives some general aspects of hybrid
genetic algorithms.

2. Linear Mixed Models

Let us assume we have a random sample of N independent subjects from a
target population, where the i-th member has ni observations. Let Yij denotes
the j-th (j = 1, . . . , ni) continuous response from the i-th (i = 1, . . . , N) subject.
By denoting Y i = (Yi1, . . . , Yini)

′, the individual-LMM developed by Laird &
Ware (1982), is given by

Y i = Xiβ +Zibi + ϵi, for i = 1, 2, . . . , N, (1)

where Xi and Zi are the design matrices for both fixed and random effects, β and
bi, respectively, and ϵi is an error vector. In addition, let us assume bi and ϵi are
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independent random vectors with bi ∼ N(0,D) and ϵi ∼ N(0,Σi).
The covariance matrix of Y i, denoted by V i = V ar(Y i), is given by

V i = ZiDZ ′
i +Σi. (2)

By denoting Y = (Y ′
1, . . . ,Y

′
N )′, the design matrix by X = [X1 . . . XN ]′, ϵ =

(ϵ′1, . . . , ϵ
′
N )′, b = (b′1, . . . , b

′
N )′, G = diag{D, . . . ,D}, Σ = diag{Σ1, . . . ,ΣN},

and Z = diag{Z1, . . . ,ZN}, the general LMM can be written as

Y = Xβ +Zβ + ϵ, (3)

where β and ϵ are independent, β ∼ N(0,G) and ϵ ∼ N(0,Σ) and from (2)

V = ZGZ ′ +Σ. (4)

2.1. Log-Likelihood Function

The log-likelihood function for model (3) is given by

logL(β,D,Σ|Y ) = −1

2
log |V | − 1

2
(Y −Xβ)′V −1(Y −Xβ)− N

2
log(2π).

To simplify the optimization process of the previous log-likelihood function,
Henderson (1984) proposes to assume that V is known, derivate with respect
to β and equating by zero to obtain

β̂ = (X ′V −1X)−1X ′V −1Y . (5)

Then, the matrices G and Σ can be estimated by minimizing the function

ℓ
(
G,Σ|Y , β̂

)
= −2 logL(G,Σ|Y ) = log |V |+ r′V −1r +N log(2π). (6)

where | · | denotes the determinant function, and

r = Y −Xβ̂ = Y −X(X ′V −1X)−1X ′V −1Y . (7)

To correct the bias from estimating β, Patterson & Thompson (1971) proposed to
minimize the REML function

ℓR

(
G,Σ|Y , β̂

)
= log |V |+ r′V −1r + log |X ′V −1X|+ (N − p) log(2π), (8)

where r is given in (7) and p is the rank of X.
To save notation in the rest of this work, we will denote ℓ (G,Σ) and ℓR (G,Σ)

or simply ℓ and ℓR, instead of ℓ
(
G,Σ|Y , β̂

)
and ℓR

(
G,Σ|Y , β̂

)
, respectively.
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Table 1: Examples of covariance structures.

Name Abbreviation Example (3× 3)

Compound Symmetry CS


σ2 + σ1 σ1 σ1

σ1 σ2 + σ1 σ1

σ1 σ1 σ2 + σ1



First-Order Autoreg. Moving Average ARMA(1, 1) σ2


1 γ γρ

γ 1 γ

γρ γ 1



Toeplitz TOEP


σ2 σ1 σ2

σ1 σ2 σ1

σ2 σ1 σ2


Source: SAS Institute Inc. (2008)

3. Covariance Structures for G and Σ

Since G = diag{D,D, . . . ,D} and Σ = diag{Σ1,Σ2, . . . ,ΣN} are block diago-
nal matrices, conditions for them depend on conditions for D and Σ1,Σ2, . . . ,ΣN ,
respectively. For example, symmetry and positive definiteness can be ensured by
assuming that their diagonals matrices are symmetric and PD. In addition, co-
variance structures can be assigned to G and Σ through D and Σi. Regarding to
these structures, different authors have proposed several structures for covariance
matrices to model variability patterns between correlated observations (Wolfinger,
1993). PROC MIXED of SAS® (SAS Institute Inc., 2008) includes an extensive list of
structures providing a detailed description with respect to the number of param-
eters and variability patterns. Some useful structures in practice include Com-
pound Symmetry (CS), First-Order Autoregressive Moving Average (ARMA(1,
1)), Toeplitz (TOEP) and Multiple of the identity (MI) given by σ2I (where I
is the identity matrix). Table 1 shows examples of (3 × 3) dimensions for these
structures.

3.1. Naive Search Spaces for the Covariance Parameters and
Positive-Definiteness

The covariance structures depend on a set of parameters with certain particular
restrictions. A “naive” approximation for the parameters search space is the cross
product of the intervals that result after considering these particular restrictions.
In this context, “naive” means that this first approximation does not take into ac-
count the positive definiteness condition of the covariance matrices. Let Ω denotes
the naive search space for the covariance parameters. As an example of Ω, consider
the CS structure, which depends on θ = (σ, σ1)

′ and the particular restrictions for
these parameters are σ > 0 and σ2 + σ1 > 0, so the naive search space for θ is
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Ω = (0,∞)×
(
−σ2,∞

)
. However, CS is not PD for all parameter vectors in Ω. To

see this, let us consider the CS-(3 × 3) matrix with (σ, σ1) = (1.2,−1). It can be
seen that σ = 1.2 > 0 and σ2 + σ1 = 0.44 > 0, but the eigenvalues of this matrix
are equal to 1.44, 1.44 and −1.56, respectively. The Cholesky decomposition is a
method to guarantee PD matrices (Pinheiro & Bates, 1996), but it not an easy
task to find the parameterization when the matrix is not unstructured. To see
this, let us consider the Cholesky decomposition for the CS-(3× 3) structure, σ2 + σ1 σ1 σ1

σ1 σ2 + σ1 σ1

σ1 σ1 σ2 + σ1

 =

 a11 0 0

a21 a22 0

a31 a32 a33

 a11 a21 a31
0 a22 a32
0 0 a33

 .

It can be proved that the solutions are given by a11 =
√
σ2 + σ1, a21 = a31 =

σ1/
√
σ2 + σ1, a22 =

√
σ4 + 2σ2σ1/

√
σ2 + σ1, a32 = σ1σ/

(√
σ2 + σ1

√
σ2 + 2σ1

)
and a33 = σ

√
σ2 + 3σ1/

√
σ2 + 2σ1, with the restrictions σ2+σ1 > 0, σ2+2σ1 > 0

and σ2+3σ1 > 0. The intersection of these restrictions is σ1 > −σ2/3 and therefore
the space where the CS-(3×3) structure is PD is given by θ ∈ (0,∞)×(−σ2/3,∞).
Figure 1 (a) shows this PD region (vertical lines) compared with the naive search
space Ω (horizontal lines) 1.
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Figure 1: Naive search space Ω (horizontal lines) and PD region (vertical lines) for
the (3 × 3) matrices, considering the structures: (a) CS, (b) TOEP and (c)
ARMA(1, 1).
Source: Author.

The ARMA(1, 1) depends on θ = (σ, ρ, γ)′ with σ > 0, |ρ| < 1 and |γ| < 1 for
stationarity and invertibility, respectively (Box et al., 1970).Therefore, the naive
search space is Ω = (0,∞) × (−1, 1) × (−1, 1). Following the method given by
Madar (2015), we obtained the PD region (for all σ > 0) of Figure 1 (c) for
the ARMA(1, 1)-(3 × 3) in contrast to the naive search space Ω. The border
curves were obtained with the relationship ρ = (2γ2 − 1)/γ. This condition can
be extended for higher dimensions using the method of Madar (2015).

The AR(1) structure (a particular case of ARMA(1, 1) with γ = ρ) depends
on θ = (σ, ρ)′, with particular restrictions σ > 0 and |ρ| < 1 for stationarity

1We selected 0 < σ < 100 to obtain the figure.
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(Box et al., 1970). Madar (2015) showed that the elements of the lower triangular
matrix, L, of the Cholesky decomposition LL′ for the AR(1) covariance structure
are given by

lji =

{
ρj−1, j ≥ i = 1

ρj−1
√
1− ρ2, j ≥ i ≥ 2,

and therefore the condition for positive definiteness of AR(1) structure is |ρ| < 1,
which matches with the stationarity condition. So, the naive search space is Ω =
(0,∞) × (−1, 1) and the AR(1) structure is PD for all parameter vectors in this
space.

The TOEP-(3 × 3) structure depends on θ = (σ, σ1, σ2)
′, with standard devi-

ation σ > 0 and covariances −∞ < σ1, σ2 < ∞. This structure can be rewritten
as

 σ2 σ1 σ2

σ1 σ2 σ1

σ2 σ1 σ2

 =

 σ 0 0

0 σ 0

0 0 σ

 1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

 σ 0 0

0 σ 0

0 0 σ

 , (9)

where ρ1, ρ2 are correlations. So, the new restrictions are σ > 0 and −1 < ρ1, ρ2 <
1 and the naive search space is Ω = (0,∞) × (−1, 1) × (−1, 1). However, the
correlation matrix in (9) is not PD for all (σ, ρ1, ρ2) ∈ (0,∞) × (−1, 1) × (−1, 1).
To see this, let us consider the following Cholesky decomposition

 1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

 =

 a11 0 0

a21 a22 0

a31 a32 a33

 a11 a21 a31
0 a22 a32
0 0 a33

 .

It can be proved that solutions for the lower triangular matrix are a11 = 1, a21 =
ρ1, a31 = ρ2, a33 =

√
(1− ρ22 − 2ρ21 + 2ρ21ρ2)/(1− ρ21), a22 =

√
1− ρ21, and a32 =

ρ1(1 − ρ2)/
√
1− ρ21 , with conditions 1 − ρ21 > 0 and 1 − ρ22 − 2ρ21 + 2ρ21ρ2 > 0.

Therefore, the restrictions for ensuring positive definiteness for the TOEP-(3× 3)
matrix in the equation (9), are σ > 0, −1 < ρ1 < 1 and ρ2 > 2ρ21 − 1. Figure
1 (b) shows this PD region (vertical lines) compared with the naive search space
Ω (horizontal lines). This regions are given for all σ > 0. For higher matricial
dimensions, Madar (2015) describes the structure for the lower triangular matrix
of the Cholesky decomposition and this can be used to obtain the restrictions that
lead to PD TOEP matrices. Finallly, the MI structure is PD for all σ > 0.

The above mentioned restrictions for positive definiteness show that, in general,
to obtain the parametrical restrictions to find the PD region is not an easy task and
we propose in Subsection 4.2 to use a penalization method for non-PD matrices
based on HGAs to optimize the ML and REML functions in the LMM. This
method uses the naive search space Ω which is easy to obtain in contrast to the
region of positive definiteness.
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4. Proposed Optimization Method of the Likeli-
hood Function

One of the most common iterative algorithms used to optimize the log-likelihood
functions (6) and (8) is the so called Newton-Raphson (NR). This methods is based
on derivatives and for each iteration it is necessary to ensure positive definiteness
for matrices G and Σ. Unfortunately, it is difficult to meet these requirements
and some software procedures establish simpler conditions that are necessary, but
not sufficient, to ensure positive definiteness constraints (West et al., 2006). For
example, the PROC MIXED of SAS® restricts the diagonal elements of G and Σ to
be positive in the NR algorithm during the entire iteration process but this is not
sufficient to ensure positive definiteness of covariance matrices and some warning
messages may appear during the optimization process. Other optimization meth-
ods are Fisher’s Scoring which is based on the expected information matrix instead
of the observed information matrix (Wolfinger et al., 1994) and Expectation Max-
imization (EM) algorithm proposed by Dempster et al. (1977) which is mainly
used to find starting values for other algorithms or to optimize complicated like-
lihood functions. Lindstrom & Bates (1988) provide reasons for preferring NR to
the EM based on time consuming and consistent convergence. In this section, we
propose a heuristic method based on HGAs (see Appendix B) to optimize (6) and
(8) by designing penalty functions to ensure that matrices G and Σ are PD. We
also describe the NR algorithm in the context of LMM as well as the theoretical
framework of the proposed method.

4.1. Newton-Raphson Algorithm

Let us suppose that matrices G and Σ depend on the parameter vectors θG

and θΣ, respectively, and denote this dependence by G(θG) and Σ(θΣ). So, the
matrix V depends on the parameter vector θ =

(
θ′
G,θ

′
Σ

)′ and from equation (5),
β̂ also depends on θ. NR algorithm follows the general steps (Demidenko, 2004):

1. With an initial parameter vector θ0 compute the gradient vector g and the
Hessian matrix H.

2. Let λ = 1.

3. Compute new estimates for θ, iteratively, using θi = θi−1 − λ
(
H−1g

)
.

4. If θi is a valid vector of covariance parameters and improves the likelihood,
continue to Step (5). Otherwise, reduce λ by half and return to Step (3).

5. Check for convergence and stop if some convergence criterion is reached.
Otherwise, compute g and H with the new estimates for θ and go back to
Step (2).

Wolfinger et al. (1994) recommended the Minimum Variance Quadratic Unbi-
ased Estimators (MIVQUE) method proposed by Rao (1972) for computing the
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initial parameter vector, θ0. The gradient vector and the Hessian matrix for both
ML and REML are described in Appendix A.2. Since they depend on matrix
V , it is clear that for each iteration, NR method requires to ensure positive def-
initeness for matrices G and Σ. A partial solution to reach this condition is to
restrict the diagonal elements of G and Σ to be positive. Another alternative
is to apply Cholesky decomposition (or other parameterizations) to these matri-
ces to simplify the optimization problem. Pinheiro & Bates (1996) described some
parametrizations that enforce the positive definiteness and compared their compu-
tational efficiency and statistical interpretability using ML and REML estimation.
Those parameterizations are easy to use when covariance matrices G and Σ are
not structured, that is, when it is assumed that the singular variances and covari-
ances do not follow a pattern. However, the general assumption is that G and Σ
are structured.

4.2. Proposed Method

Let us suppose that G(θG) and Σ(θΣ) are continuous matricial functions and
that the applications

TG : ΩG → AG and TΣ : ΩΣ → AΣ

θG 7→ G(θG) θΣ 7→ Σ(θΣ)

are continuous, where ΩG and ΩΣ are Euclidean subspaces and AG, AΣ are the
sets of symmetric matrices with the corresponding dimensions.

Since G(θG) and Σ(θΣ) are symmetric matrices, their eigenvalues are real
numbers (see Schott (1997), Theorem 3.9 page 106 for details) and therefore, we
propose to calculate their minimum eigenvalues, λmin, and compare them with
zero for checking positive definiteness. Let us define

ΛG : AG → R and ΛΣ : AΣ → R
G 7→ λmin(G) Σ 7→ λmin(Σ)

where λmin(G) and λmin(Σ) are the minimum eigenvalues of G and Σ, respectively.
Since ΛG and ΛΣ are continuous (see Schott (1997), Theorem 3.14 page 115 for
details), the composite functions,

ΛG ◦ TG : ΩG → R and ΛΣ ◦ TΣ : ΩΣ → R
θG 7→ λmin[G(θG)] θΣ 7→ λmin[Σ(θΣ)]

are also continuous (see Munkres (2000), Theorem 18.2 page 107). So, if we have
that λmin[G(θ0

G)] > 0, for some θ0
G ∈ ΩG, there is an open interval Iθ0

G
∈ R+

and, by definition of continuity functions, (ΛG ◦ TG)
−1(Iθ0

G
) ∈ ΩG is also open,

i.e., there is an open set around θ0
G for which all vectors in it yield PD matrices.

An equivalent result is given for (ΛΣ ◦ TΣ). As we will see later, these results are
important to guarantee that local optimization for HGAs is possible.
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4.2.1. Penalized Fitness Function

To guarantee positive definiteness as well as to preserve the specific structures
for G and Σ, we propose to optimize the functions (6) and (8) by applying HGAs
and penalizing the parameters vectors, θG and θΣ, when they do not lead to PD
matrices. Coello (2002), Kuri-Morales & Gutiérrez-García (2002), Lin (2013) and
Chehouri et al. (2016) explored different penalization methods with GAs in the
context of constrained optimization and we are using an equivalent idea to ensure
the positive definiteness of the covariance matrices.

Before describing those penalizations, note that both functions ℓ and ℓR include
the logarithm of the determinants |V | and |X ′V X|, so we take the absolute value
to these terms to guarantee their existence for all (θG,θΣ) ∈ ΩG×ΩΣ. So, instead
of ℓ and ℓR let us consider the modified functions

ℓ∗(G,Σ) = log[abs(|V |)] + r′V −1r +N log(2π) (10)

and

ℓ∗R(G,Σ) = log[abs(|V |)]+r′V −1r+log[abs(|X ′V −1X|)]+(N−p) log(2π), (11)

where abs(·) is the absolute value function. The purpose of defining the functions
ℓ∗ and ℓ∗R is to evaluate and identify the “undesired” cases when G and Σ are
non-PD. However, for PD matrices this functions are equivalent to the functions
given in (6) and (8), respectively. Therefore, this method does not induce bias in
the maximum likelihood estimators. Our strategy consists in including a “naive”
search space (as explained in subsection 3.1), even when the covariance matrices
are not PD and then penalizing those cases by using the following penalized fitness
function (for REML use ℓ∗R instead of ℓ):

fϵ,K(θG,θΣ) =

{
ℓ∗[G(θG) + ϵIG,Σ(θΣ) + ϵIΣ], if mmin > 0

abs(ℓ∗[G(θG) + ϵIG,Σ(θΣ) + ϵIΣ]) +K, otherwise (12)

where mmin = min{ΛG ◦ TG(θG),ΛΣ ◦ TΣ(θΣ)} and K > 0 is a penalty term.
Kuri-Morales & Gutiérrez-García (2002) provide several methods for selecting this
penalty term and the simplest one is to define K as a large constant (O

(
109

)
).

We propose a dynamic selection for K by taking into account the number of
digits in the integer part of either ℓ∗ or ℓ∗R. Denote this integer value by ndigs
and take K = 10ndigs+9. We selected this penalization term because it has a
simple structure and it also provides a high penalty for the parameter vectors
that do not lead to PD matrices. However, as mentioned above, there are other
penalization methods in the literature (Kuri-Morales & Gutiérrez-García, 2002),
but we decided to use K for its simple form and because it is dynamic by giving a
high penalization depending on the order of magnitude of the likelihood function.
As an example, suppose that ℓR is equal to −345.1982 for some (θG,θΣ) ∈ ΩG ×
ΩΣ, with min{ΛG ◦ TG(θG),ΛΣ ◦ TΣ(θΣ)} ≤ 0, so the integer part of this number
is −345 (ndigs = 3) and therefore K = 103+9 = 1012. Thus, the penalized value
is abs(−365.1982) + 1012 = 365.1982 + 1012.
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The matrices ϵIG and ϵIΣ were included in the function f to avoid the estima-
tion of G and Σ to be computationally singular in the optimization process (for
all θG and θΣ in the search space), where IG and IΣ are the identity matrices
with the corresponding dimensions of G and Σ, respectively. The value ϵ > 0 is
used as a pivot and we choice ϵ = 10−10. This selection is based on the tolerance
or limit value in the determinant to declare a matrix as singular, the software R
version 4.1.0, for example, considers a tolerance with order O(10−16).

The function (12) is defined such that the parameter vectors that lead to non-
PD covariance matrices have always the highest values in the minimization process.
This implies that the HGA discard those cases in a evolutionary way because they
are the worst candidates for optimizing the log-likelihood function compared to
the parameter vectors that lead to PD matrices.

4.2.2. Minimizing the Penalized Fitness Function

Given specific structures for G and Σ, we propose to apply the HGAs to the
function f to obtain local optimum candidates and also carrying out local opti-
mization iteratively until it reaches an optimum. This local optimization could be
done with Newton-Raphson or another optimization method based on derivatives.
An overview of the HGAs is available in Appendix B.

Since functions TG ◦ ΛG(θG) and TΣ ◦ ΛΣ(θΣ) are continuous for all θG ∈ ΩG

and θΣ ∈ ΩΣ, the function min{TG ◦ΛG(θG), TΣ ◦ΛΣ(θΣ)} is also continuous, for
all (θG,θΣ) ∈ ΩG×ΩΣ. This means that if the GA finds a couple (θG1

,θΣ1
) which

produces PD matrices G1 and Σ1, it is possible to conduct a local optimization
search around it. This is because the log-likelihood functions ℓ∗ and ℓ∗R are differ-
entiable for all PD matrices G, Σ and, as we discussed before, the continuity of
min{TG◦ΛG(θG), TΣ◦ΛΣ(θΣ)} implies that there exists an open set C ⊆ ΩG×ΩΣ,
with (θG1

,θΣ1
) ∈ C, such that for all (θG,θΣ) ∈ C, their corresponding matrices

are PD.

4.2.3. Algorithm

Given the fitness function f , HGA (see Appendix B for details) is applied
according to the following pseudocode:
(1) Initialize population P (0) of size npop in the search space Ω;
(2) set g = 0;
(3) for i = 1 to niter;
(4) evaluate fitness (f) of population P (g);
(5) select the best-fit individuals from P (g) to produce P ′(g), according to

a probability pelitism;
(6) encode the individuals of P ′(g);
(7) apply the crossover method to produce the population P ′′(g) from P ′(g);
(8) perform the mutation method on P ′′(g) to produce the decoded P ′′′(g);
(9) select the best-fit individual of P ′′′(g);
(10) according to a probability plocal, take the decision of carrying out a local

optimization;
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(11) if the decision of local optimization is affirmative then;
(12) carry out local optimization with the best-fit individual of P ′′′(g) as

initial value;
(13) replace best-fit individual of P ′′′(g) with the obtained local optimum

to produce the next generation P (g + 1);
(14) else;
(15) P (g + 1) = P ′′′(g);
(16) end if ;
(17) g = g + 1;
(18) end for;
where g is the iteration number, P (g) is the initial population at iteration g, P ′(g)
is the resulting population after best-fit individuals selection at iteration g, P ′′(g)
is the resulting population after crossover at iteration g and P ′′′(g) is the resulting
population after mutation at iteration g.

5. Simulation Study

A simulation study were conducted to evaluate the proposed methodology
for optimizing the likelihood functions in equations (6) and (8) given in Sub-
section 4.2. The proposed methodologies based on HGAs were compared with the
Newton-Raphson algorithm incorporated in PROC MIXED of SAS® version 9.4. For
the HGAs, we used the package “GA” (Scrucca, 2017), version 3.2.2 of the sofware
R, version 4.1.0. The simulations were run on Windows 10, Intel(R) Core(TM) i5-
4590 3.30 GHz and 8.00 GB of RAM.

To carry out the simulation study, we use a dental growth measurements data
for 11 girls and 16 boys at ages 8, 10, 12 and 14 from Pothoff & Roy (1964) to
obtain the reference parameters in the simulations. Let us denote Yij the dental
growth measurement for i-th subject (i = 1, . . . , N) at jth time (j = 1, . . . , s). We
consider the model:

Yij = β0+β1Ageij +β2Genderi+β3(Ageij ∗Genderi)+ b0i+ b1iAgeij +εij , (13)

where Ageij ∗ Genderi denotes the interaction between age and gender and ϵi =
(εi1, . . . , εis)

T are independent random vectors following a multivariate normal
distribution with mean 0 and covariance matrix Σi = Σ•, for all i. The random
effects vector bi = (b0i, b1i)

T in the model (13) is independent of ϵi and follows a
multivariate normal distribution with mean 0 and covariance matrix D.

To create different simulation scenarios, we consider two sample sizes: N = 27
(which is the sample size of the original dataset from Pothoff & Roy (1964)), and
N = 54 (twice the sample size in the original dataset). The repeated measures
size was s = 4, which is the number of repeated measures of the original dataset.

We also consider two combinations of covariance structures: AR(1) for Σ• with
Toeplitz for D (AR(1)-TOEP) and Multiple of the identity for Σ• with Toeplitz
for D (MI-TOEP). We propose a TOEP (2×2) for D because we are interested in
evaluate our proposed method with a structured matrix with equal variances. We
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analyze ML and REML methods for each simulation case and therefore, we have
a total of 8 simulation scenarios. When the sample size is N = 54, we maintain
the same proportion of boys and girls from the original data set, i.e., 22 girls and
32 boys.

For each scenario, we carry out 500 simulations and the results were summa-
rized using Means, Medians and Root-Mean-Square-Error (RMSE) for the pro-
posed method versus Newton-Raphson algorithm of PROC MIXED of SAS® version
9.4, respectively. The real parameters used in all simulation scenarios were ob-
tained using the dataset from Pothoff & Roy (1964).

5.1. Calibration of HGAs Tuning Parameters

Before carrying out the simulations it is necessary “to calibrate” the HGAs
tuning parameters (see Appendix B). To do this, we selected a simulated dataset
for each scenario and then we applied the HGAs varying a set of tuning parameters
until reaching “stability” in the optimal value of the ML and REML functions. In
this context, the “stability” means that for each one of the 40 simulated datasets,
we apply several times (we choose 100 times) the HGA with a set of tuning pa-
rameters and all the optimal values obtained are equal. The tuning parameters
obtained after this calibration process are:

• Number of iterations: niter = 250.

• Population size: npop = 50 (by default in “ga” function of R, version 4.1.0,
GA package).

• Crossover probability: pcross = 0.80 (by default in “ga” function of R, version
version 4.1.0, GA package ).

• Mutation probability: pmuta = 0.20.

• Local optimization probability: plocal = 0.05 (by default in “ga” function of
R, version version 4.1.0, GA package).

• Percentage of elitism: pelitism = 5% (by default in “ga” function of R, version
version 4.1.0, GA package).

The search space for the parameters vector (σ0, ρ0, σ1, ρ1)
′ of AR(1)-TOEP

structure is Ω = (0, 50) × (−1, 1) × (0, 50) × (−1, 1) and the search space for the
parameters vector (σ0, ρ0, σ1)

′ of MI-TOEP combination is Ω = (0, 50)× (−1, 1)×
(0, 50). The Toeplitz structures has correlation parameters instead of covariance
parameters because we used a matrix decomposition similar to the one given in
the equation (9). Note that the search spaces are large enough to contain the real
covariance parameters which is the main objetive in the calibration process.
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5.2. Results from Both ML and REML Likelihood Functions

The simulation results for structure AR(1)-TOEP in model (13) are in Table
3, and for MI-TOEP structure are in Table 4. There are small differences for the
means and medians between the proposed method and Newton-Raphson values.
However the RMSE are similar to each other and relatively small. This differences
are explained by the results obtained in Figures 2 for the combination AR(1)-
TOEP and 3 for MI-TOEP. They show the comparison of functions −2 log(ML)
and −2 log(REML) between the proposed method and Newton-Raphson for all dif-
ferent simulated scenarios. Crosses indicate that the estimated covariance matrix
for random effects, D, is not PD when Newton-Raphson method is applied but
with the proposed method it is PD. In these cases, the proposed method reaches
higher values than Newton-Raphson, because the latter continues optimizing the
log-likelihood function without taking into account the positive-definiteness of ma-
trix D. Table 2 shows the percentages of crosses for both structures. The values are
higher for MI-TOEP structure and these percentages show that Newton-Raphson
is less efficient to reach PD matrices compared with the proposed method.

Table 2: Percentage of non-PD covariance matrices D (% of crosses) obtained with
Newton-Raphson in contrast with the proposed method.

Structure ML REML
N = 27 N = 54 N = 27 N = 54

AR(1)-TOEP 24.8 19.0 22.6 17.2
MI-TOEP 43.8 33.6 38.6 30.4

Source: Author.

The results obtained in this subsection suggest that our method is better to
guarantee PD covariance matrices in an evolutionary way compared to Newton-
Raphson. Demidenko (2004) exposes this problem when Newton-Raphson is used
to optimize the log-likelihood function and emphasizes the importance that a
method yields PD covariance matrices.

6. Conclusions

We presented an estimation method for the covariance parameters in linear
mixed models using hybrid genetic algorithms as the optimization method of the
likelihood function. This method was created to identify the parametrical regions
where the structured covariance matrices (involved in the optimization process)
were positive definite. To do this, we considered a penalized function based on
either maximum likelihood or restricted maximum likelihood procedures and used
the minimum eigenvalue function as the identification technique. We penalized
the regions where the eigenvalues were negative in such a way that the hybrid ge-
netic algorithms evolved rejecting them and giving a good fitness for parametrical
regions where the eigeinvalues for the covariance matrices were greater than zero.
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Table 3: Results of Monte Carlo simulations for the proposed method compared with
Newton-Raphson and using the AR(1)-TOEP structure.

Maximum likelihood (ML)
4-27 4-54

Proposed Newton-Raphson Proposed Newton-Raphson
Parm Real Mean Median RMSE Mean Median RMSE Mean Median RMSE Mean Median RMSE
σ0 2.069 1.989 1.985 0.295 1.994 1.988 0.291 2.029 2.015 0.207 2.032 2.016 0.206
ρ0 0.755 0.778 0.799 0.362 0.725 0.799 0.294 0.779 0.787 0.246 0.757 0.786 0.213
ρ1 -0.790 -0.789 -0.796 0.061 -0.793 -0.799 0.059 -0.786 -0.790 0.045 -0.788 -0.791 0.044
σ1 2.284 2.285 2.276 0.245 2.281 2.270 0.244 2.278 2.273 0.172 2.276 2.272 0.172
β0 16.270 16.286 16.335 0.876 16.286 16.335 0.876 16.251 16.252 0.624 16.251 16.252 0.624
β1 1.139 1.082 1.099 1.409 1.080 1.105 1.409 1.114 1.137 0.987 1.113 1.129 0.987
β2 0.797 0.814 0.816 0.542 0.814 0.815 0.542 0.776 0.775 0.370 0.776 0.774 0.369
β3 -0.321 -0.353 -0.327 0.858 -0.353 -0.325 0.858 -0.340 -0.349 0.567 -0.340 -0.349 0.567

Restricted Maximum likelihood (REML)
4-27 4-54

Proposed Newton-Raphson Proposed Newton-Raphson
Parm Real Mean Median RMSE Mean Median RMSE Mean Median RMSE Mean Median RMSE
σ0 2.069 2.075 2.070 0.297 2.081 2.079 0.294 2.071 2.059 0.208 2.074 2.060 0.207
ρ0 0.755 0.750 0.770 0.352 0.706 0.770 0.296 0.766 0.773 0.242 0.746 0.773 0.213
ρ1 -0.790 -0.785 -0.792 0.063 -0.788 -0.794 0.061 -0.784 -0.788 0.046 -0.785 -0.789 0.045
σ1 2.284 2.290 2.283 0.245 2.287 2.277 0.244 2.280 2.276 0.172 2.278 2.275 0.172
β0 16.270 16.286 16.334 0.875 16.286 16.334 0.875 16.251 16.252 0.624 16.251 16.253 0.624
β1 1.139 1.082 1.098 1.408 1.081 1.102 1.409 1.113 1.141 0.988 1.113 1.135 0.987
β2 0.797 0.814 0.815 0.542 0.814 0.815 0.542 0.776 0.775 0.370 0.776 0.774 0.370
β3 -0.321 -0.353 -0.326 0.858 -0.353 -0.326 0.858 -0.340 -0.349 0.567 -0.340 -0.349 0.567

Source: Author.

We used hybrid genetic algorithms among a broad list of evolutionary algo-
rithms because it combines the search power of genetic algorithms as a global op-
timization technique with the speed of a local optimizer such as Newton-Raphson.

The simulation results suggest that the proposed method has a good perfor-
mance, in terms of the correct estimation of the covariance parameters in linear
mixed models, compared to Newton-Raphson algorithm and it was even better
in obtaining positive definite covariance matrices when both random effects and
error are included in the model with structured covariance matrices.

Finally, for the proposed optimization method based on hybrid genetic algo-
rithms, there is still room for improvement in terms of calibration of the tuning
parameters for the genetic algorithm and it is an interesting problem for further
research.
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Figure 2: Comparison between the proposed methodology and the Newton-Raphson
algorithm of the 500 optimal values for both −2 log(ML) and −2 log(REML)
using the combination of AR(1)-TOEP structures. The line x = y is added
in each scenario to facilitate comparison. Crosses indicate that the estimated
covariance matrix D is not PD for Newton-Raphson algorithm. Gray circles
indicate that both proposed method and Newton-Raphson are PD.
Source: Author.
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Table 4: Results of Monte Carlo simulations for the proposed method compared with
Newton-Raphson and using the MI-TOEP structure.

Maximum likelihood (ML)

4-27 4-54

Proposed Newton-Raphson Proposed Newton-Raphson

Parm Real Mean Median RMSE Mean Median RMSE Mean Median RMSE Mean Median RMSE

σ0 2.069 2.040 2.036 0.159 2.025 2.028 0.161 2.060 2.054 0.120 2.053 2.049 0.119

σ1 2.069 1.971 1.966 0.291 1.994 1.985 0.274 2.015 1.999 0.213 2.027 2.011 0.205

ρ1 0.755 0.919 0.928 0.673 0.699 0.928 0.399 0.816 0.837 0.427 0.726 0.837 0.300

β0 16.270 16.182 16.239 1.400 16.182 16.239 1.400 16.293 16.309 1.009 16.293 16.309 1.009

β1 1.139 1.267 1.229 2.044 1.267 1.229 2.044 1.067 1.098 1.507 1.067 1.098 1.507

β2 0.797 0.797 0.811 0.531 0.797 0.811 0.531 0.762 0.759 0.377 0.762 0.759 0.377

β3 -0.321 -0.371 -0.372 0.815 -0.371 -0.372 0.815 -0.300 -0.274 0.604 -0.300 -0.274 0.604

Restricted Maximum likelihood (REML)

4-27 4-54

Proposed Newton-Raphson Proposed Newton-Raphson

Parm Real Mean Median RMSE Mean Median RMSE Mean Median RMSE Mean Median RMSE

σ0 2.069 2.060 2.056 0.159 2.047 2.048 0.158 2.070 2.064 0.120 2.064 2.060 0.119

σ1 2.069 2.056 2.051 0.287 2.078 2.070 0.276 2.058 2.041 0.211 2.069 2.051 0.205

ρ1 0.755 0.867 0.871 0.633 0.680 0.871 0.402 0.792 0.814 0.414 0.713 0.814 0.302

β0 16.270 16.182 16.239 1.400 16.182 16.239 1.400 16.293 16.309 1.009 16.293 16.309 1.009

β1 1.139 1.267 1.229 2.044 1.267 1.229 2.044 1.067 1.098 1.507 1.067 1.098 1.507

β2 0.797 0.797 0.811 0.531 0.797 0.811 0.531 0.762 0.759 0.377 0.762 0.759 0.377

β3 -0.321 -0.371 -0.372 0.815 -0.371 -0.372 0.815 -0.300 -0.274 0.604 -0.300 -0.274 0.604
Source: Author.
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Figure 3: Comparison between the proposed methodology and the Newton-Raphson
algorithm of the 500 optimal values for both −2 log(ML) and −2 log(REML)
using the combination of MI-TOEP structures. The line x = y is added in
each scenario to facilitate comparison. Crosses indicate that the estimated
covariance matrix D is not PD for Newton-Raphson algorithm. Gray circles
indicate that both proposed method and Newton-Raphson are PD.
Source: Author.

Acknowledgments

We thank the school of statistics from the Universidad Nacional de Colombia
at Medellín for its constinuous support to research initiatives. This work was par-
tially supported by Colombian Institute for Science and Technology (Colciencias)
Scholarship Program No. 647.[

Received: July 2022 — Accepted: March 2023
]

References
Box, G., Jenkins, G. & Reinsel, G. (1970), Time Series Analysis: Forecasting and

Control, fourth edn, John Wiley and Sons, New Jersey.

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 121–143



An Adaptive Method for Likelihood Optimizar in LMM Under Restricted Search Spaces139

Chehouri, A., R. Younes, J. P. & Ilinca, A. (2016), ‘A constraint-handling tech-
nique for genetic algorithms using a violation factor’, Journal of Computer Sci-
ence 12(7), 350–362.

Coello, C. (2002), ‘Theoretical and Numerical Constraint-Handling Techniques
used with Evolutionary Algorithms: A Survey of the State of the Art’, Computer
Methods in Applied Mechanics and Engineering 191, 1245–1287.

Coley, D. A. (1998), Introduction to genetic algorithms for scientists and engineers,
first edn, World scientific, River Edge, NJ, USA.

Demidenko, E. (2004), Mixed models: Theory and applications with R, second edn,
Wiley, New Jersey.

Dempster, A., Laird, N. & Rubin, E. (1977), ‘Maximum likelihood from incomplete
data via the em algorithm’, Journal of the Royal Statistical Society 39(1), 1–38.

El-Mihoub, T. A., Hopgood, A. A., Nolle, L. & Battersby, A. (2006), ‘Hybrid
Genetic Algorithms: A review’, Engineering Letters 13, 124–137.

Henderson, C. R. (1984), Applications of linear models in animal breeding, Tech-
nical Report Press, University of Guelph, Guelph, Canada.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, first edn,
University of Michigan Press, Ann Arbor.

Kuri-Morales, A. F. & Gutiérrez-García, J. (2002), ‘Penalty Function Methods
for Constrained Optimization with Genetic Algorithms: A Statistical Analysis’,
MICAI 2002: Advances in Artificial Intelligence 2313, 108–117.

Laird, N. M. & Ware, J. H. (1982), ‘Random-effects models for longitudinal data’,
Biometrics 38, 963–974.

Lin, C. (2013), ‘A rough penalty genetic algorithm for constrained optimization’,
Information Sciences 241, 119–137.

Lindstrom, M. J. & Bates, D. M. (1988), ‘Newton-Raphson and EM Algorithms
for Linear Mixed-Effects Models for Repeated-Measures Data’, Journal of the
American Statistical Association 83, 1014–1022.

Madar, V. (2015), ‘Direct formulation to Cholesky decomposition of a general
nonsingular correlation matrix’, Statistics & Probability Letters 103, 142–147.

Mebane, W. R. J. & Sekhon, J. S. (2011), ‘Genetic optimization using derivatives:
The rgenoud package for r’, Journal of Statistical Software 42(11), 1–26. https:
//www.jstatsoft.org/v42/i11/

Michalewicz, Z. (1998), Genetic algorithms + data structures= evolution programs,
second edn, Springer-Verlag, Berlin Heidelberg.

Munkres, J. R. (2000), Topology, second edn, Prentice Hall, Upper Saddle River.

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 121–143

https://www.jstatsoft.org/v42/i11/
https://www.jstatsoft.org/v42/i11/


140 Mauricio A. Mazo-Lopera, Juan C. Salazar-Uribe & Juan C. Correa-Morales

Patterson, H. D. & Thompson, R. (1971), ‘Recovery of inter-block information
when block sizes are unequal’, Biometrika 58, 545–554.

Pinheiro, J. C. (1994), Topics in Mixed Effects Models, PhD thesis, University of
Wisconsin-Madison, USA.

Pinheiro, J. C. & Bates, D. M. (1996), ‘Unconstrained parametrizations for
variance-covariance matrices’, Statistics and Computing 6, 289–296.

Pothoff, R. & Roy, S. (1964), ‘A generalized multivariate analysis of variance model
useful especially for growth curve problems’, Biometrika 51, 313–326.

Rao, C. (1972), ‘Estimation of variance and covariance components in linear mod-
els’, Journal of the American Statistical Association 67(337), 112–115.

Reeves, C. & Rowe, J. E. (2002), Genetic algorithms: Principles and perspectives,
first edn, Springer, New York.

SAS Institute Inc. (2008), SAS/STAT® 9.2 User’s Guide. The MIXED Procedure
(Chapter). Cary, NC: SAS Institute Inc.

Schott, J. R. (1997), Matrix analysis for statistics, third edn, Wiley, New Jersey.

Scrucca, L. (2017), ‘On some extensions to ga package: hybrid optimization, par-
allelisation and islands evolution’, The R Journal. 9(1), 187–206.

Verbeke, G. & Molenberghs, G. (1997), Linear Mixed Models in Practice- A SAS-
Oriented Approach, first edn, Springer, New York.

West, B., Welch, K. & Galecki, A. (2006), Linear Mixed Models-A practical guide
using statistical software, second edn, Chapman and Hall/CRC, London.

Wolfinger, R. (1993), ‘Covariance structure selection in general mixed models’,
Comunications in Statistics - Simulation and Computation 22, 1079–1106.

Wolfinger, R., Tobias, R. & Sall, J. (1994), ‘Computing gaussian likelihoods and
their derivates for general linear mixed models’, SIAM Journal on Scientific
Computing 15(6), 1294–1310.

Appendix A.

Appendix A.1.

The matrix σ2Ir + σ1Jr has eigenvalues (rσ1 + σ2) with multiplicity 1 and σ2

with multiplicity (r − 1).
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Proof . The characteristic polynomial of σ2Ir + σ1Jr is given by

|σ2Ir + σ′
1Jr − λIr| = |σ1Jr − (λ− σ2)Ir|

= σr
1

∣∣∣∣Jr −
(λ− σ2)

σ1
Ir

∣∣∣∣
But Jr = 11′, where 1 denotes the all-ones vector of length r, so 11′ and 1′1 = r
have the same positive eigenvalue, r, and the others are equal to 0 with multiplicity
(r − 1) (Schott, 1997, page 131). So

(λ− σ2)

σ1
= r or

(
λ− σ2

σ1

)r−1

= 0

and therefore the eigenvalues of σ2Ir + σ1Jr are λ = (rσ1 + σ2) with multiplicity
1 and λ = σ2 with multiplicity (r − 1).

Appendix A.2. Grandient and Hessian for Newton-Raphson
algorithm

The l-th element for gradient vector and (l, s)-th element for Hessian matrix
to optimize the function (6) (ML case), Wolfinger et al. (1994) showed that they
are given by:

gML
l =

∂ℓ (G,Σ)

∂θl

= tr

(
V −1 ∂V

∂θl

)
− r′V −1 ∂V

∂θl
V −1r

and

HML
l,s =

∂2ℓ (G,Σ)

∂θl∂θs

= −tr

(
V −1 ∂V

∂θl
V −1 ∂V

∂θs

)
+ tr

(
V −1 ∂2V

∂θl∂θs

)
+ 2r′V −1 ∂V

∂θl
V −1 ∂V

∂θs
V −1r

−2r′V −1 ∂V

∂θl
V −1X∗X∗′V −1 ∂V

∂θs
V −1r − r′V −1 ∂2V

∂θlθs
V −1r,

where X∗ = XC for a matrix C satisfying CC ′ =
(
X ′V −1X

)−1.
Wolfinger et al. (1994) also showed that the l-th element for gradient vector

and (l, s)-th element for Hessian matrix to optimize the function (8) (REML case)
are given by:

gREML
l =

∂ℓR (G,Σ)

∂θl
= gML

l − tr

(
X∗′V −1 ∂V

∂θl
V −1X∗

)
and

HREML
l,s = HML

l,s + 2× tr

(
X∗′V −1 ∂V

∂θl
V −1 ∂V

∂θs
V −1X∗

)
−tr

(
X∗′V −1 ∂V

∂θl
V −1X∗X∗′V −1 ∂V

∂θs
V −1X∗

)
− tr

(
X∗′V −1 ∂2V

∂θlθs
V −1X∗

)
.
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Appendix B. Hybrid Genetic Algorithms

Genetic Algorithms are heuristic methods based on processes of natural selec-
tion and genetic dynamics, as the key to solve optimization problems. Holland
(1975) was the first to implement the idea of a population evolutionary develop-
ment to find an optimal solution to a specific problem.

The advantage of evolutionary algorithms includes its ability to address prob-
lems for which the objetive function has all types of discontinuities and restrictions,
which are difficult to control. The optimization of the functions (6) and (8) is not
an easy task, given the condition of positive definiteness for the covariance matrices
and also the restriction to keep a specific structure for these matrices.

The power of GAs as a global optimization technique could be combined with
the speed of a local optimizer (Scrucca, 2017). This extension of GAs is known
as Hybrid Genetic Algorithms which incorporates a global search and also a lo-
cal optimization based on the classical methodologies, such as Nelder-Mead or
Newton-Raphson. This idea accelerates the search towards the global optimum
El-Mihoub et al. (2006) and keeps the GAs ability to address restrictions diffi-
cult to manage. Scrucca (2017) describes the HGAs technique and gives different
applications by using the package “GA” of the software R.

Appendix B.1. HGAs Components

The HGAs are described by the following components:

- Fitness function: used to describe a specific problem. It depends on a vector of
parameters and the goal of GAs is to optimize it (Coley, 1998).

- Search space: a wide range of possible solutions to locate the optimum of the
fitness function. In the continuous case, the search space is, in general, a hyper-
cube.

- Population: a set of possible solutions in the search space. Individuals of this
population are coded in a fixed-length bit string representation.

- Crossover method: It mixes genetic fragments of the better solutions to form
new, on average even better solutions.

- Mutation operator: It allows permanent diversity within the solutions.

- Local optimizer: a classical methodology based on derivatives to carry out a local
optimization.

Appendix B.2. HGAs Parameters

The parameters into the HGAs, related with the above components are de-
scribed as follows:
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- Search space: It depends on the number of parameters in the fitness function
and it is, in general, an euclidean subset which contains a wide range of possible
solutions. We denote it by Ω.

- Number of iterations: It is a fixed integer indicating how many times must be
repeated the optimization process. We denote it by niter.

- Population size: It is the number of elements in the search space at each iteration.
We denote it by npop.

- Crossover probability: It is a fixed value in the interval (0; 1) which gives the
probability of applying the crossover procedure at each iteration. We denote it
by pcross.

- Mutation probability: It is a fixed value in the interval (0; 1) which gives the
probability of applying the mutation procedure at each iteration. We denote it
by pmuta.

- Local optimization probability: It is a fixed value in the interval (0; 1) which gives
the probability of applying the local search at each iteration. We denote it by
plocal.

- Percentage of elitism: It is the percentage of the best ranked individuals in the
population to be selected for the crossover process. We denote it by pelitism×100.

For a more detailed development of GAs and HGAs see, for instance Michalewicz
(1998) and Reeves & Rowe (2002).
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