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Abstract
This paper introduces and investigates a new family of distributions

called the Topp-Leone-Gompertz-exponentiated half logistic-G (TL-Gom-
EHL-G) distribution. Some mathematical and statistical properties of this
family of distributions are derived. To estimate and evaluate the model pa-
rameters, the maximum likelihood estimation technique is used, and the con-
sistency of maximum likelihood estimators is examined using Monte Carlo
simulation. Applications to three real data sets from different areas were
used to demonstrates the usefulness and versatility of the TL-Gom-EHL-G
family of distributions.
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Resumen
Este artículo presenta e investiga una nueva familia de distribuciones de-

nominada distribución Topp-Leone-Gompertz-exponenciada media logística-
G (TL-Gom-EHL-G). Se derivan algunas propiedades matemáticas y estadís-
ticas de esta familia de distribuciones. Para estimar y evaluar los parámetros
del modelo se utiliza la técnica de estimación de máxima verosimilitud y se
examina la consistencia de los estimadores de máxima verosimilitud medi-
ante simulación de Monte Carlo. Se utilizaron aplicaciones a tres conjuntos
de datos reales de diferentes áreas para demostrar la utilidad y versatilidad
de la familia de distribuciones TL-Gom-EHL-G.
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1. Introduction

The Gompertz distribution was proposed by Gompertz (1825) and is used to
study the nature of human mortality by determining the value of life contingencies.
This distribution has a limitation in that it only applies to data with a monotonic
hazard rate function, whereas in practice, we encounter non-monotonic data with
hazard rate function that are bathtub, upside-down bathtub, and bathtub followed
by upside-down bathtub. Many researchers responded to this need by extending
the Gompertz distribution to produce the desired flexibility in the hazard rate
function.

Extensions and generalizations of the Gompertz distribution include the gen-
eralized Gompertz distribution by El-Gohary et al. (2013) and the Gompertz-G
distribution by Algarni et al. (2021). Chipepa & Oluyede (2021) developed the
Marshall-Olkin-Gompertz-G family of distributions, and Oluyede, Chamunorwa,
Chipepa & Alizadeh (2022) presented the Topp-Leone-Gompertz-G family of dis-
tributions. The cumulative distribution function (cdf) and probability density
function (pdf) of the Gompertz-G family of distributions are given by

F (x; γ, λ, ψ) = 1− exp

(
λ

γ

(
1−

[
1−G(x;ψ)

]−γ))
, (1)

and

f(x; γ, λ, ψ) =
[
1−G(x;ψ)

]−γ−1
exp

(
λ

γ

(
1−

[
1−G(x;ψ)

]−γ))
g(x;ψ), (2)

respectively, where G(x;ψ) is the baseline cdf, g(x;ψ) =
dG(x;ψ)

dx , for γ, λ > 0
and parameter vector ψ. We take λ = 1, in this paper to avoid the problem of
overparameterization.

Jafari et al. (2014) developed the beta-Gompertz distribution, Roozegar et al.
(2017) considered the properties and applications of McDonald-Gompertz distri-
bution, Nzei et al. (2020) introduced Topp-Leone-Gompertz distribution, Eghw-
erido et al. (2021) proposed the alpha power Gompertz distribution, Lenart &
Missov (2016) considered goodness-of-fit statistics for the Gompertz distribution,
El-Bassiouny et al. (2017) proposed exponentiated generalized Weibull-Gompertz
distribution, Khaleel et al. (2020) introduced Marshall-Olkin exponential Gom-
pertz distribution, Benkhelifa (2017) presented the Marshall-Olkin extended gen-
eralized Gompertz distribution, Elbatal et al. (2018) proposed the modified beta
Gompertz distribution, Shama et al. (2022) developed the gammaGompertz distri-
bution, Boshi et al. (2020) proposed the generalized gammageneralized Gompertz
distribution, El-Morshedy et al. (2020) proposed Kumaraswamy inverse Gompertz
distribution, and De Andrade et al. (2019) introduced the exponentiated general-
ized extended Gompertz distribution.

Some recent generalizations of the exponentiated half logistic distribution in-
clude: exponentiated half logistic-odd Burr III-G family of distributions by Oluyede,
Peter, Ndwapi & Bindele (2022), exponentiated half logistic-power generalized
Weibull-G family of distributions by Oluyede et al. (2021), type II exponentiated
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half logistic-Topp-Leone-Marshall-Olkin-G family of distributions by Moakofi et al.
(2021), exponentiated half logistic-odd Lindley-G family of distributions by Seng-
weni et al. (2021), exponentiated half logistic-odd Weibull-Topp-Leone-G family of
distributions by Chipepa et al. (2021), and exponentiated half logistic-log-logistic
Weibull distribution by Chamunorwa et al. (2021).

The motivations for developing TL-Gom-EHL-G family of distributions are as
follows:

• The ability of the special case of the new family of distributions in providing
better fits than other equi-parameter distributions available in the literature
and the nested models;

• The TL-Gom-EHL-G family of distributions provides flexibility in data fit-
ting, and can be applied to data sets with monotonic or non-monotonic
hazard rate shapes;

• The TL-Gom-EHL-G family of distributions creates heavy-tailed distribu-
tions for modelling various real-world data sets;

• This new family of distributions makes and kurtosis more flexible compared
to that of the baseline distribution.

The rest of the paper is structured as follows: Section 2 covers the hazard
rate function, series expansion of the density function, quantile function, sub-
families, moments and generating, probability weighted moments, distribution of
order statistics, Rényi entropy, and stochastic ordering. Section 3 contains the
maximum likelihood method for estimating the unknown parameters, followed by
special cases in Section 4. A Monte Carlo simulation study is presented in Section
5. Section 6 presents three applications to real-world data sets, followed by some
concluding remarks in Section 7.

2. The New Family of Distributions and Some
Properties

In this section, we derive the new Topp-Leone-Gompertz-exponentiated half
logistic-G (TL-Gom-EHL-G) family of distributions and some of the statistical
properties including sub-families, hazard rate function, series expansion of the
density function, quantile function, moments and moment generating function,
probability weighted moments, distribution of order statistics, Rényi entropy, and
stochastic ordering.

2.1. Topp-Leone-Gompertz-Exponentiated Half Logistic-G
Family of Distributions

Consider the exponentiated half logistic-G (EHL-G) family of distributions,
see Seo & Kang (2015) and Topp-Leone-Gompertz-G (TL-Gom-G) family of dis-
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tributions by Oluyede, Chamunorwa, Chipepa & Alizadeh (2022). The cdf of the
EHL-G family of distributions is given by

F (x;α, ψ) =

(
G(x;ψ)

1 +G(x;ψ)

)α
, (3)

for α > 0, where G(x;ψ) = 1 − G(x;ψ) is the survival function with parameter
vector ψ, and the cdf of TL-Gom-G family of distributions is given by

F (x; γ, b, ψ) =

{
1− exp

(
2

γ

(
1−

[
1−G(x;ψ)

]−γ))}b
, (4)

for γ, b > 0, and parameter vector ψ.
The function G(x;ψ) in equation (4) is replaced by equation (3) to obtain TL-

Gom-EHL-G family of distributions. The cdf of the new TL-Gom-EHL-G family
of distributions is given by

F (x; b, γ, α, ψ) =

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb , (5)

for b, γ, α > 0 and parameter vector ψ. The corresponding pdf is

f(x; b, γ, α, ψ) = 4bα

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb−1

× exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ
×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)

×
[
G(x;ψ)

]α−1
g(x;ψ) (6)

for b, γ, α > 0 and parameter vector ψ.

2.2. Hazard Rate Function

The hazard rate function (hrf) is a very important concept in survival analysis.
It is obtained by dividing the pdf by the survival function. Mathematically,

h(x; b, γ, α, ψ) = f(x; b, γ, α, ψ)/
(
1− F (x; b, γ, α, ψ)

)
.
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The hrf of the TL-Gom-EHL-G family of distributions is given by

h(x; b, γ, α, ψ) = 4bα

1− exp

 2

γ

1−

[
1−

(
G(x : ψ)

1 +G(x;ψ)

)α]−γb−1

× exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ[G(x;ψ)]α−1

×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)
g(x;ψ)

×

1−

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb


−1

,

(7)

for b, γ, α > 0 and parameter vector ψ.

2.3. Linear Representation

The pdf of the TL-Gom-EHL-G family of distributions can be expressed an
infinite linear combination of exponentiated-G (Exp-G) densities, that is,

f(x; b, γ, α, ψ) =

∞∑
q=0

aq+1gq+1(x;ψ), (8)

where gq+1(x;ψ) = (q + 1)[G(x;ψ)]qg(x;ψ) is the exponentiated-G (Exp-G) pdf
with the power parameter (q + 1) and parameter vector ψ, and

a
q+1

=

∞∑
l,i,j,k,m,p=0

(
b− 1

l

)(
i

j

)(
γ(j + 1) + k

k

)
(−1)l+i+m+p+q

(
2(l+j)
γ

)i
i!

×
(
α(k + 1) +m

m

)(
α(k + 1)− 1

p

)(
m+ p

q

)(
4bα

q + 1

)
. (9)

Consequently, the mathematical and statistical properties of the TL-Gom-
EHL-G family of distributions follows directly from those of the exponentiated-G
(Exp-G) family of distributions. See the web-appendix for details.

2.4. Quantile Function

Let the random variableX be from the TL-Gom-EHL-G family of distributions,
then the quantile function of Q

X
(u) can be obtained by solving the non-linear

equation:
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F (x; b, γ, α, ψ) =

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb = u,

for 0 ≤ u ≤ 1. Note that (after simplification),

G(x;ψ) = 2

(1− [1− γ

2
log
(
1− u

1
b

)]−1
γ

)−1
α

+ 1

−1

.

Therefore, the quantile function of the TL-Gom-EHL-G family of distributions is
given by

Q
X
(u) = G−1

2

(1− [1− γ

2
log
(
1− u

1
b

)]−1
γ

)−1
α

+ 1

−1
 . (10)

Consequently, for a given baseline cdf G, equation (10) can be very useful for the
generation of random numbers and simulations.

2.5. Sub-Families

In this subsection, we present sub-families of the TL-Gom-EHL-G family of
distributions.

• When α = 1, we obtain the Topp-Leone-Gompertz-Half Logistic-G (TL-
Gom-HL-G) family of distributions.

• When b=1, we obtain a new family of distributions with the cdf

F (x; γ, α, ψ) =

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ ,
for γ, α > 0 and parameter vector ψ.

• When γ = 1, we obtain a new family of distributions.

• When b = γ = 1, we obtain a new family of distributions.

• When b = α = 1, we obtain a new family of distributions.

• When γ = α = 1, we obtain a new family of distributions.

• When b = γ = α = 1, we obtain a new family of distributions.
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2.6. Moments and Generating Function

Moments are used to describe the characteristics of a distribution, and moment
generating functions aid in the generation of moments of the statistical distribu-
tions. This helps in determining the measures of central tendency and dispersion
for the new proposed distribution. The moments and moment generation function
of the TL-Gom-EHL-G family of distributions are presented in this subsection. Let
Yq+1 ∼ Exp − G(q + 1, ψ), then the sth raw moment, µ′

s of the TL-Gom-EHL-G
family of distributions is given by

µ′
n = E(Xs) =

∫ ∞

−∞
xsf(x)dx =

∞∑
q=0

a
q+1
E(Y sq+1),

where E(Y sq+1) is the sth moment of Yq+1 and a
q+1

is given by equation (9). The
moment generating function (MGF), for |t| < 1, is given by:

MX(t) =

∞∑
q=0

a
q+1
Mq+1(t),

where Mq+1(t) is the MGF of Yq+1 and a
q+1

is given by equation (9).

2.7. Probability Weighted Moments (PWMs)

In this subsection, we present the probability weighted moments (PWMs) of the
TL-Gom-EHL-G family of distribution. The PWMs are the expectation of certain
function of a random variable whose mean is known. The primary application
of PWMs is in the estimation of parameters for a probability distribution whose
inverse form cannot be expressed explicitly. For a more detailed description of
PWMs, see Hosking et al. (1985). Let the pdf and cdf of the TL-Gom-EHL-G
family of distributions be denoted by f(x) and F (x), respectively. The PWMs of
a random variable X is defined by

ϕ
n,z

= E (Xn (F (X))
z
) =

∫ ∞

−∞
xn(F (x))zf(x)dx.

We note that

(F (x))zf(x) = 4bα

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x : ψ)

)α]−γb(z+1)−1

× exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ
×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)

×
[
G(x;ψ)

]α−1
g(x;ψ).
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Now following the same steps leading to equation (8), we obtain

(F (x))zf(x) =

∞∑
q=0

Cq+1gq+1(x;ψ),

where

C
q+1

=

∞∑
l,i,j,k,m,p=0

(
b(z + 1)− 1

l

)(
i

j

)(
γ(j + 1) + k

k

)
(−1)l+i+m+p+q

(
2(l+j)
γ

)i
i!

×
(
α(k + 1) +m

m

)(
α(k + 1)− 1

p

)(
m+ p

q

)(
4bα

q + 1

)
.

Thus, the probability weighted moments of TL-Gom-EHL-G family of distribu-
tions reduces to

ϕ
n,z

= E (Xn (F (X))
z
) =

∞∑
q=0

C
q+1

∫ ∞

−∞
xng

q+1
(x;ψ)dx,

where g
q+1

(x;ψ) = (q + 1)[G(x;ψ)]qg(x;ψ) is the Exp-G pdf with the power pa-
rameter (q + 1) and parameter vector ψ.

2.8. Distribution of Order Statistics

The distribution of the order statistics of the TL-Gom-EHL-G family of dis-
tributions are presented in this subsection. Order statistics are very useful in
probability and statistics, and have a wide range of applications, including esti-
mating distribution parameters and the distribution of quantiles such as the me-
dian, which are derived from the distribution of order statistics. The pdf of the rth
order statistic (Arnold et al., 2008) for the TL-Gom-EHL-G family of distributions
can be written as

fr:n(x) =
n!f(x)

(r − 1)!(n− r)!

n−r∑
w=0

(−1)w
(
n− r

w

)
[F (x)]w+r−1. (11)

Using equations (5) and (6), we have

f(x)[F (x)]w+r−1 = 4bα

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb(w+r)−1

× exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ
×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)

×
[
G(x;ψ)

]α−1
g(x;ψ).
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Now following the same steps leading to equation (8), we obtain

f(x)[F (x)]w+r−1 =

∞∑
q=0

d
q+1
gq+1(x;ψ), (12)

where gq+1(x;ψ) = (q + 1)[G(x;ψ)]qg(x;ψ) is the Exp-G pdf with the power pa-
rameter (q + 1) and parameter vector ψ, and

dq+1 =

∞∑
l,i,j,k,m,p=0

(
b(w + r)− 1

l

)(
i

j

)(
γ(j + 1) + k

k

)
(−1)l+i+m+p+q

(
2(l+j)
γ

)i
i!

×
(
α(k + 1) +m

m

)(
α(k + 1)− 1

p

)(
m+ p

q

)(
4bα

q + 1

)
.

Thus, by substituting (12) into (11), the pdf of the rth order statistic for the
TL-Gom-EHL-G family of distributions can be written as

fr:n(x) =
n!

(r − 1)!(n− r)!

∞∑
q=0

n−r∑
w=0

(−1)w
(
n− r

w

)
d

q+1
g
q+1

(x;ψ). (13)

2.9. Rényi Entropy

In this subsection, Rényi entropy for TL-Gom-EHL-G family of distributions is
derived. Rényi entropy is important in information theory, ecology, and statistics
as a measure of diversity. An entropy is a measure of uncertainty or variation of a
random variable. Rényi entropy (Rényi, 1961) is an extension of Shannon entropy
(Shannon, 1951). Rényi entropy for the TL-Gom-EHL-G family of distributions
(see appendix for details) is given by

IR(v) =
1

1− v
log

[ ∞∑
q=0

τ
q
exp ((1− v)I

REG
)

]
, (14)

for v > 0, v ̸= 1, where

I
REG

=
1

1− v
log

[ ∫ ∞

0

([
1 +

q

v

] (
G(x;ψ)

) q
v (g(x;ψ))

)v
dx

]
is the Rényi entropy of Exp-G distribution with power parameter ( qv + 1) and

τq =

∞∑
l,i,j,k,m,p=0

(
v(b− 1)

l

)(
i

j

)
(−1)l+j+m+q

(
2(v+l)
γ

)i
i!

(
γ(v + j) + v + k − 1

k

)

×
(
α(v + k) + v +m− 1

m

)(
m+ p

q

)(
α(v + k)− v

p

)
(4bα)

v[
1 + q

v

]v .
Therefore, Rényi entropy of the TL-Gom-EHL-G family of distributions can

be obtained from those of the Exp-G family of distributions.

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



64 Neo Dingalo, Broderick Oluyede & Fastel Chipepa

2.10. Stochastic Ordering

In this subsection, we present likelihood ratio ordering. Stochastic orderings
have many applications in probability and statistics. They are useful in probability
theory for deducing probability inequalities and for comparing lifetime distribu-
tions with relation to some of their characteristics.

Suppose we have two random variables W and X with distribution functions
FW (r) and FX(r), respectively, and FW (r) = 1 − FW (r) the survival function.
Note that W is stochastically smaller than X if FW (r) ≤ FX(r) for all r or
FW (r) ≥ FX(r) for all r. This is denoted by W <st X. Hazard rate order and
likelihood ratio order are stronger and are given by W <hr X if hW (r) ≥ hX(r)

for all r, and W <lr X if fW (r)
fX(r) is decreasing in r (Shaked & Shanthikumar, 2007).

We know that W <lr X ⇒W <hr X ⇒W <st X.
Consider X1 and X2 to be independent random variables with pdfs

f
TL−Gom−EHL−G

(x; b1, γ, α, ψ) and f
TL−Gom−EHL−G

(x; b2, γ, α, ψ), respectively. If
b2 > b1, then the random variables X1 and X2 are stochastically ordered.

Note that,

f1
(x; b1, γ, α, ψ) = 4b1α

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb1−1

× exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ
×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)

×
[
G(x;ψ)

]α−1
g(x;ψ),

f
2
(x; b2, γ, α, ψ) = 4b2α

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x : ψ)

)α]−γb2−1

× exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ
×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)

×
[
G(x;ψ)

]α−1
g(x;ψ),
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and,
f
1
(x; b1, γ, δ, ψ)

f
2
(x; b2, γ, δ, ψ)

=
f1(x)

f
2
(x)

=
b1
b2

1− exp

 2

γ

1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γb1−b2 .
(15)

If we differentiate equation (15) with respect to x, we get

d

dx

[
f1(x)

f2(x)

]
=

4αb1
b2

(b1 − b2)

[
1− exp

(
2

γ

(
1−

[
1−

(
G(x;ψ)

1 +G(x : ψ)

)α]−γ))]b1−b2−1

× exp

(
2

γ

(
1−

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ))

×

[
1−

(
G(x;ψ)

1 +G(x;ψ)

)α]−γ−1 [
1 +G(x;ψ)

]−(α+1)

×
[
G(x;ψ)

]α−1
g(x;ψ).

Consequently, d
dx

[
f1 (x)

f
2
(x)

]
< 0 if b2 > b1. We conclude that, X1 <lr X2, X1 <hr X2

and X1 <st X2, and the random variables X1 and X2 are stochastically ordered.

3. Maximum Likelihood Estimation

In this section, we use the maximum likelihood estimation technique to estimate
the parameters of the TL-Gom-EHL-G family of distributions. The log-likelihood
function ℓn = ℓn(∆) for the parameters from the observed values has the form
ℓn(∆) = n ln(4bα)

+ (b− 1)

n∑
i=1

log

1− exp

 2

γ

1−

[
1−

(
G(xi;ψ)

1 +G(xi;ψ)

)α]−γ
+

n∑
i=1

 2

γ

1−

[
1−

(
G(xi;ψ)

1 +G(xi;ψ)

)α]−γ
+ (α− 1)

n∑
i=1

log
[
G(xi;ψ)

]
− (γ + 1)

n∑
i=1

log

[
1−

(
G(xi;ψ)

1 +G(xi;ψ)

)α]
− (α+ 1)

n∑
i=1

log
[
1 +G(xi;ψ)

]
+

n∑
i=1

log
(
g(xi;ψ)

)
.

(16)
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The first derivative of the log-likelihood function with respect to each com-
ponent of the parameter vector ∆ = (b, γ, α, ψ)T , that is, elements of the score
vector U(∆) are given in the appendix. These partial derivatives are not in closed
form and the equations obtained from them can be solved using R, MATLAB and
SAS software by use of iterative method such as the NewtonRaphson procedure
for a specified baseline cdf G(x;ψ).

4. Some Special Cases

In this section, some special cases of the TL-Gom-EHL-G family of distribu-
tions are presented by specifying the baseline distribution to be Weibull, Burr XII,
and Lindley distributions, respectively.

4.1. Topp-Leone-Gompertz-Exponentiated Half Logistic-Wei-
bull (TL-Gom-EHL-W) Distribution

Consider the Weibull distribution as the baseline distribution, with cdf and pdf
given by G(x;λ) = 1− e−x

λ and g(x;λ) = λxλ−1e−x
λ

, respectively, for λ > 0 and
x > 0. Then, the cdf of the TL-Gom-EHL-W distribution is given by

F (x; b, γ, α, λ) =

1− exp

 2

γ

1−

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γb ,
and the corresponding pdf is

f(x; b, γ, α, λ) = 4bα

1− exp

 2

γ

1−

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γb−1

× exp

 2

γ

1−

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γ
×

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γ−1 [
1 + e−x

λ
]−(α+1)

×
[
1− e−x

λ
]α−1

λxλ−1e−x
λ

,

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



TL-Gom-EHL-G Family of Distributions 67

for b, γ, α, λ > 0. The hrf is given by

h(x; b, γ, α, λ) = 4bα

1− exp

 2

γ

1−

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γb−1

× exp

 2

γ

1−

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γ
×

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γ−1 [
1 + e−x

λ
]−(α+1)

×
[
1− e−x

λ
]α−1

λxλ−1e−x
λ

×

1−

1− exp

 2

γ

1−

[
1−

(
1− e−x

λ

1 + e−xλ

)α]−γb


−1

,

for b, γ, α, λ > 0.

Figure 1: Plots of the pdf and hrf of the TL-Gom-EHL-W distribution

The plots of the pdf and hrf of the TL-Gom-EHL-W distribution are shown
in Figure 1. The shape of the pdf can be unimodal, reverse-J, and left or right-
skewed. Also, the plot of the hrf for the selected parameter values shows increasing,
decreasing, and bathtub shapes. Figures 2 and 3 depicts the skewness and kurtosis
plots for the TL-Gom-EHL-W distribution.

• When we fix the parameters b and α, the skewness and kurtosis of TL-Gom-
EHL-W distribution increase as γ and λ increase, and

• When we fix the parameters γ and λ, the skewness and kurtosis of TL-Gom-
EHL-W distribution increase as b and α increase.
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Figure 2: Plots of skewness and kurtosis of the TL-Gom-EHL-W distribution

Figure 3: Plots of skewness and kurtosis of the TL-Gom-EHL-W distribution

4.2. Topp-Leone-Gompertz-Exponentiated Half Logistic-Burr
XII (TL-Gom-EHL-BXII) Distribution

Consider the Burr XII distribution as the baseline distribution with the cdf and
pdf given by G(x; c, k) = 1− (1 + xc)−k and g(x; c) = cxc−1(1 + xc)−k−1, respec-
tively, for c, k > 0. Then, the cdf and pdf of the TL-Gom-EHL-BXII distribution
are given by
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F (x; b, γ, α, c, k) =

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ))]b
,

and

f(x; b, γ, α, c, k) = 4bα

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ))]b−1

× exp

(
2

γ

(
1−

[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ))

×
[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ−1 [
1 + (1 + xc)−k

]−(α+1)

×
[
1− (1 + xc)−k

]α−1
cxc−k(1 + xc)−k−1,

for b, γ, α, c, k > 0.

When c = 1, we obtain the Topp-Leone-Gompertz-exponentiated half logistic-
Lomax (TL-Gom-EHL-Lomax) distribution and when k = 1, we obtain the Topp-
Leone-Gompertz-exponentiated half logistic-log-logistic (TL-Gom-EHL-LLoG) dis-
tribution.

The hrf of the TL-Gom-EHL-BXII distribution is given by

h(x; b, γ, α, c, k) = 4bα

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ
))]b−1

× exp

(
2

γ

(
1−

[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ
))

×
[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k

)α]−γ−1 [
1 + (1 + xc)−k

]−(α+1)

×
[
1− (1 + xc)−k

]α−1

cxc−1(1 + xc)−k−1

×

1−

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + xc)−k

1 + (1 + xc)−k−1

)α]−γ
))]b−1

,

for b, γ, α, c, k > 0. The plots of the pdf and hrf of the TL-Gom-EHL-BXII distri-
bution are shown in Figure 4. The pdf can be reverse-J, left-skewed, right-skewed
and almost symmetric. Also, the shapes of the hrf for the TL-Gom-EHL-BXII
distribution include bathtub, upside-down bathtub, bathtub followed by upside-
down bathtub, increasing, and decreasing. Figures 5 and 6 depicts the skewness
and kurtosis plots for the TL-Gom-EHL-BXII distribution.

• When we fix the parameters b, γ and α, the skewness and kurtosis of TL-
Gom-EHL-BXII distribution decrease as c and k increase, and

• When we fix the parameters b, c and k, the skewness and kurtosis of TL-
Gom-EHL-BXII distribution decrease as α and γ increase.
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Figure 4: Plots of the pdf and hrf of the TL-Gom-EHL-BXII distribution

Figure 5: Plots of skewness and kurtosis of the TL-Gom-EHL-BXII distribution

4.3. Topp-Leone-Gompertz Exponentiated Half Logistic-Lin-
dley (TL-Gom-EHL-L) Distribution

Taking baseline distribution to be Lindley distribution with cdf and pdf given
by G(x;λ) = 1− (1+ λx

1+λ )e
−λx and g(x;λ) = λ2

(1+λ) (1+x)e−λx, for λ > 0, the cdf
and pdf of the TL-Gom-EHL-L distribution are given by

F (x; b, γ, α, λ) =

1− exp

 2

γ

1−

[
1−

(
1− (1 + λx

1+λ )e
−λx

1 + (1 + λx
1+λ )e

−λx

)α]−γb ,
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Figure 6: Plots of skewness and kurtosis of the TL-Gom-EHL-BXII distribution

and

f(x; b, γ, α, λ) = 4bα

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ))]b−1

× exp

(
2

γ

(
1−

[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ))

×

[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ−1 [
1 + (1 +

λx

1 + λ
)e−λx

]−(α+1)

×
[
1− (1 +

λx

1 + λ
)e−λx

]α−1
λ2

(1 + λ)
(1 + x)e−λx,

for b, γ, α, λ > 0. The hrf of the TL-Gom-EHL-L distribution is given by

h(x; b, γ, α, λ) = 4bα

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ))]b−1

× exp

(
2

γ

(
1−

[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ))

×
[
1− (1 +

λx

1 + λ
)e−λx

]α−1
[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ−1

×
[
1 + (1 +

λx

1 + λ
)e−λx

]−(α+1)
λ2

(1 + λ)
(1 + x)e−λx

×

1−

[
1− exp

(
2

γ

(
1−

[
1−

(
1− (1 + λx

1+λ
)e−λx

1 + (1 + λx
1+λ

)e−λx

)α]−γ))]b−1

,

for b, γ, α, λ > 0.
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Figure 7: Plots of the pdf and hrf of the TL-Gom-EHL-L distribution

The plots of the pdf and hrf of the TL-Gom-EHL-L distribution are shown in
Figure 7. The pdf can be reverse-J, left-skewed, right-skewed and almost sym-
metric. Also, the hrf for the TL-Gom-EHL-L distribution show bathtub, bathtub
followed by upside-down bathtub, upside-down bathtub, increasing and decreas-
ing shapes. Figures 8 and 9 depicts the skewness and kurtosis plots for the

Figure 8: Plots of skewness and kurtosis of the TL-Gom-EHL-L distribution

TL-Gom-EHL-L distribution.

• When we fix the parameters γ and λ, the skewness and kurtosis of TL-Gom-
EHL-L distribution increase as b and α increase, and

• When we fix the parameters γ and α, the skewness and kurtosis of TL-Gom-
EHL-L distribution decrease and then increase as b and λ increase.
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Figure 9: Plots of skewness and kurtosis of the TL-Gom-EHL-L distribution

5. Simulation Study

The performance of the TL-Gom-EHL-W distribution is investigated in this
section by running various simulations for different sizes (n = 35, 50, 100, 200,
400, 800, 1000, and 1600) using the R software program. For the true parameter
values shown in Table 1, we simulate N = 3000 samples. The table shows mean
MLEs of the model parameters, as well as the Average bias (ABias) and root mean
squared error (RMSE). The mean MLEs, RMSE, and ABias measures are used to
assess the accuracy of maximum likelihood estimates. The ABias and RMSE of
an estimated parameter, say η̂ are given by

ABias(η̂) =

∑N
i=1 η̂i
N

− η, and RMSE(η̂) =

√∑N
i=1(η̂i − η)2

N
.

Tables 1 shows that as sample sizes increase, the mean estimates are consistent
as the mean estimates tend to be closer to the true parameter values, while the
RMSE and ABias decrease.

6. Applications

In this section, three data examples are provided to illustrate the significance
and importance of the TL-Gom-EHL-G family of distributions. This is done by
fitting the TL-Gom-EHL-W distribution, which is a special case of the TL-Gom-
EHL-G family of distributions. The Adequacy Model package in R software (Team,
2022) was used to evaluate model performance and the nlm package in R software
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Table 1: Monte Carlo Simulation Results

Parameter n
(0.4,1.5,0.5,2.0) (1.0,1.0,0.5,1.2) (0.4,0.4,0.4,3.0)

Mean RMSE ABias Mean RMSE ABias Mean RMSE ABias
b 35 0.7013 0.6856 0.3013 1.1865 0.8211 0.1865 0.5490 0.7060 0.1490

50 0.6480 0.5509 0.2480 1.2029 0.9241 0.2029 0.6463 1.3881 0.2463
100 0.5523 0.3319 0.1523 1.1791 0.6645 0.1791 0.5076 0.3106 0.1076
200 0.4912 0.2430 0.0911 1.1384 0.5665 0.1384 0.4645 0.1854 0.0645
400 0.4712 0.1945 0.0712 1.1212 0.4397 0.1212 0.4614 0.1489 0.0614
800 0.4363 0.1453 0.0363 1.0777 0.3365 0.0777 0.4391 0.0740 0.0391
1600 0.4335 0.1239 0.0335 1.0467 0.2780 0.0467 0.4252 0.0431 0.025

α 35 2.5807 2.6112 1.0807 1.7094 1.2575 0.7094 0.6205 0.8073 0.2205
50 2.6017 2.5605 1.1017 1.6563 1.2025 0.6563 0.6779 1.3100 0.2779
100 2.1305 1.7630 0.6305 1.4505 0.8586 0.4505 0.5448 0.2901 0.1448
200 1.8671 1.2301 0.3671 1.2558 0.5752 0.2558 0.5004 0.1986 0.1004
400 1.7155 0.6813 0.2155 1.1412 0.3581 0.1412 0.4945 0.1615 0.0945
800 1.7074 0.6344 0.2074 1.1045 0.2544 0.1045 0.4768 0.0928 0.0768
1600 1.5272 0.4163 0.0272 1.0632 0.1649 0.0632 0.4134 0.0134 0.0134

γ 35 1.2483 1.3474 0.8483 0.7918 0.7378 0.2918 0.8094 4.3895 0.4094
50 1.2152 1.2755 0.8152 0.7296 0.6612 0.2296 0.5330 0.3967 0.1330
100 1.1608 1.1863 0.7608 0.6327 0.3490 0.1327 0.5269 0.3451 0.1269
200 0.8542 0.8290 0.4542 0.5894 0.2654 0.0894 0.4791 0.1933 0.0791
400 0.6770 0.5204 0.2770 0.5353 0.1954 0.0353 0.4543 0.1400 0.0543
800 0.5660 0.3298 0.1660 0.5064 0.1355 0.0064 0.4283 0.0589 0.0283
1600 0.4946 0.2248 0.0946 0.4881 0.1056 -0.0118 0.4230 0.0433 0.023

λ 35 1.2483 1.3474 0.8483 1.0314 0.5533 -0.1685 2.5847 1.3418 -0.4152
50 1.6826 0.6984 -0.3173 1.0215 0.5189 -0.1784 2.6764 1.1238 -0.3235
100 1.6841 0.7204 -0.3158 1.0181 0.4681 -0.1818 2.6797 0.9464 -0.3202
200 1.7443 0.5902 -0.2556 1.0671 0.3672 -0.1328 2.6955 0.7702 -0.3044
400 1.8027 0.5292 -0.1972 1.0834 0.3223 -0.1165 2.8581 0.6519 -0.1418
800 1.9042 0.4507 -0.0957 1.1081 0.3105 -0.0918 2.9947 0.0378 -0.0052
1600 1.9888 0.3846 -0.0111 1.1513 0.2702 -0.0486 3.0103 0.0103 0.0103

was used to estimate model parameters using the maximum likelihood estimation
technique (Marinho et al., 2019).

These goodness-of-fit statistics are: −2 log-likelihood statistic (−2 ln(L)), Akaike
Information Criterion (AIC = 2p−2 ln(L)), Bayesian Information Criterion (BIC =

p ln(n) − 2 ln(L)), AICC=AIC + 2 p(p+1)
n−p−1 , where L = L(∆̂) is the value of the

likelihood function evaluated at the parameter estimates, n is the number of ob-
servations, and p is the number of estimated parameter, Cramér-von Mises (W ∗),
Anderson-Darling (A∗), Kolmogorov-Smirnov (K-S) statistic, as well as its asso-
ciated p-value and Sum of Squares (SS) from the probability plots were also used
to assess goodness-of-fit. The Sum of Squares (SS) from the probability plots
(Chambers et al., 1983) is given by

SS =

n∑
j=1

[
F (x(j))−

(
j − 0.375

n+ 0.25

)]2
,

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



TL-Gom-EHL-G Family of Distributions 75

where j = 1, 2 . . . , n and x(j) are the ordered values of the observed data. The
best-fitting model is the one with the smallest goodness-of-fit statistics and the
highest p-value for the K-S statistic.

The total time on test (TTT) or its scaled TTT transform proposed by Aarset
(1987) is used to evaluate the empirical behaviour of the hrf. For constant hazard
rates, it is a straight diagonal, convex for decreasing hazard rates, and concave
for increasing hazard rates. If the hazard rate is shaped like a bathtub, it is first
convex and then concave. If the hazard rate is an upside-down bathtub, it is
concave at first and then convex at the end.

The TL-Gom-EHL-W distribution is compared to some selected non-nested
models, namely, Topp-Leone-Marshall-Olkin-Weibull (TL-MO-W) distribution by
Aldahlan & Afify (2018), Topp-Leone generated Weibull (TL-GW) distribution by
Aryal et al. (2017), Topp-Leone-odd Burr III-log-logistic (TL-OBIII-LLoG) dis-
tribution by Moakofi et al. (2022), Kumaraswamy-Weibull (K-W) distribution by
Cordeiro et al. (2010), and odd generalised half logistic Weibull-Weibull (OGHLW-
W) distribution by Chipepa et al. (2020), and their pdfs are as follows:

fTL−MO−W (x; b, α, λ, β) =
2bα2βλβxβ−1e−2(λx)β(

1− ᾱe−(λx)β
)3 (

1−
(
1− ᾱe−(λx)β

)2)b−1

,

for b, α, λ, β > 0, ᾱ = 1− α and x > 0,

fTL−GW (x;α, θ, λ, β) = 2αθβλβxβ−1 exp(−(λx)β)(1− exp(−(λx)β))θα−1

×
[
1− (1− exp(−(λx)β)

]θ [
2− (1− exp(−(λx)β))θ

]α−1
,

for α, θ, λ, β > 0 and x > 0,

fTL−OBIII−LLoG(x;α, β, b, λ) = 2αβb

1−
1−

(
1 +

(
1− (1 + x)−1

(1 + x)−1

)−α
)−β

2b−1

×

1−

(
1 +

(
1− (1 + x)−1

(1 + x)−1

)−α
)−β

 g(x;λ)

((1 + xλ)−1)2

×

(
1 +

(
1− (1 + x)−1

(1 + x)−1

)−α
)−β−1 (

1− (1 + x)−1

(1 + x)−1

)−α−1

,

for α, β, b, λ > 0 and x > 0,

fK−W (x;α, θ, λ, β) = abβαβxβ−1e−αx
β

(1− e−αx
β

)a−1(1− (1− e−αx
β

)a)b−1,

for α, θ, λ, β > 0 and x > 0, and

fOGHLWW (x;α, β, λ, γ) =

2αβλγxγ−1e−λx
γ (

1− e−λx
γ)β−1

exp

[
−α

(
1−e−λx

e−λx

)β]
e−(β+1)λxγ

(
1 + exp

[
−α

(
1−e−λx

e−λx

)])2 ,

for α, β, λ, γ > 0.
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We also perform likelihood ratio (LR) test, to compare TL-Gom-EHL-W dis-
tribution with its nested models. The nested models considered in this paper are
obtained by setting some of the parameters of the TL-Gom-EHL-W distribution
to unit.

6.1. Mexico COVID-19 Data

The first data set relates to the mortality rates of patients infected by the
COVID-19 pandemic in Mexico, (see https://covid19.wh). The data points are
given in the web-appendix.

The estimated variance-covariance matrix is given by
79.7448 7.6906 −1.2466 −0.2597

7.6906 0.7416 −0.1202 −0.0250

−1.2466 −0.1202 0.0200 0.0041

−0.2597 −0.0250 0.0041 0.0008


and the approximate 95% two-sided confidence intervals for b, γ, α and λ are given
by 11.3380 ± 17.5027, 14.0725 ± 1.6879, 2.3646 ± 0.2778 and 0.1000 ± 0.0581, re-
spectively.

The maximum likelihood estimates of Mexico COVID-19 data set and standard
errors in parenthesis are shown in Table 2.

Table 2: Estimates of Models for Mexico COVID-19 Data

Model Estimates
b γ α λ

TL-Gom-EHL-W(b, γ, α, λ) 11.3380 14.0725 2.3646 0.1000
(8.9299) (0.8612) (0.1417) (0.0298)

TL-Gom-EHL-W(b, γ, 1, λ) 19.2720 1.4194 × 10−08 - 0.9999
(1.9575) (0.0149) - (0.3729)

TL-Gom-EHL-W(1, γ, α, λ) - 1.7037 3.7624 0.5000
- (2.01339) (0.3767) (0.1345)

TL-Gom-EHL-W(b, 1, α, λ) 523.6400 - 0.3063 0.1553
(4.8459 × 10−08) - (0.0038) (0.0098)

TL-Gom-EHL-W(b, 1, 1, λ) 0.9617 - - 0.2745
(0.0935) - - (0.2745)

TL-MO-W(b, α, λ, β) 3.1274 642.6500 5.2910 0.2502
(0.0335) (0.0035) (0.0002) (0.0940)

TL-GW(α, θ, λ, β) 0.5385 540.3600 406.9000 0.2508
(0.1086) (8.9958 × 10−05) (6.0018 × 10−05) (0.0043)

TL-OBIII-LLoG(α, β, b, λ) 1.0002 15.7024 0.2835 1.7205
(3.2378) (15.0574) (0.2901) (5.5692)

K-W(α, θ, λ, β) 24.1993 431.7437 0.1847 2.8364
(5.3787) (0.0146) (0.0196) (2.5335)

OGHLWW(α, β, λ, γ) 2.4172 × 10−05 0.5020 18.4240 0.1446
(2.4172 × 10−05) (0.5020) (18.4240) (0.1446)

In Table 3 we observe that the TL-Gom-EHL-W distribution has the lowest
values for the goodness-of-fit statistics for the first data set and the highest p-value
for the K-S statistics when compared to the selected non-nested models.
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Figure 10 shows the flexibility of the TL-Gom-EHL-W distribution in fitting
heavy-tailed data, such as the Mexico COVID-19 data set.

Figure 10: Fitted Densities and Probability Plots for Mexico COVID-19 Data

Figure 11 show the TTT plot for Mexico COVID-19 data set with increasing
hazard rate function.

Figure 11: Fitted TTT and Hrf Plots for Mexico COVID-19 Data

The Kaplan-Meier (K-M) survival and Empirical Cumulative Function (ECDF)
curves for Mexico COVID-19 data set are shown in Figure 12. Based on the
closeness of the empirical and fitted lines in Figure 12, we conclude that TL-Gom-
EHL-W adequately fits the Mexico COVID-19 data set.

We show the profile log-likelihood functions of the maximum likelihood esti-
mates of b, γ, α, and λ in Figure 13. Figure 13 shows that the maximum likelihood
estimates for the TL-Gom-EHL-W distribution exist and can be obtained uniquely.
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Figure 12: Fitted K-M survival and ECDF plots for Mexico COVID-19 Data

Figure 13: Plots of the profile log-likelihood functions of the parameters of the TL-
Gom-EHL-W distribution on Mexico COVID-19 data
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6.2. Earthquakes Data

The current data is derived from Castillo et al. (2005). The data represents
the time in days between successive major earthquakes around the world. An
earthquake is included if its magnitude was at least 7.5 on the Richter scale or
if over 1000 people were killed. There were 63 recorded earthquakes in total,
resulting in 62 recorded waiting times. The data observations are shown in the
web-appendix.

The estimated variance-covariance matrix is given by
0.0115 −0.0959 0.0004 8.0256x10−04

−0.0959 1.7847 −0.0047 −0.0124

0.0004 −0.0047 1.6437x10−05 3.6630x10−05

8.0256x10−04 −0.0124 3.6630x10−05 9.9867x10−05


and the approximate 95% two-sided confidence intervals for b, γ, α and λ are
given by 0.5559± 0.2102, 2.1649± 2.6184, 20.8754± 0.0079 and 0.1928± 0.0195,
respectively.

Table 4 shows the maximum likelihood estimates of the earthquake dataset
and standard errors in parentheses.

Table 4: Estimates of Models for Earthquakes Data

Model Estimates
b γ α λ

TL-Gom-EHL-W(b, γ, α, λ) 0.5559 2.1649 20.8754 0.1928
(0.1072) (1.3359) (0.0.0040) (0.0099)

TL-Gom-EHL-W(b, γ, 1, λ) 57.0048 0.6808 - 0.1158
(23.0494) (0.6032) - (0.0374)

TL-Gom-EHL-W(1, γ, α, λ) - 0.0372 15.7053 0.2100
- (0.3255) (2.7364) (0.0110)

TL-Gom-EHL-W(b, 1, α, γ) 445.3400 - 0.6233 0.0791
(8.3245 × 10−06) - (0.0274) (0.0051)

TL-Gom-EHL-W(b, 1, 1, λ) 70.4852 - - 0.0986
(13.3741) - - (0.0039)

TL-MO-W(b, α, λ, β) 547.2100 0.1673 0.5013 0.2241
(9.9610 × 10−05) (0.1516) (0.3835) (0.0627)

TL-GW(α, θ, λ, β) 0.4075 96.44418 2.7799 0.1991
(0.3843) (0.1006) (8.4110) (0.0624)

TL-OBIII-LLoG(α, β, b, λ) 5.5447 91.0270 0.4259 0.1212
(0.0001) (0.0003) (0.0991) (0.1212)

K-W(α, θ, λ, β) 5.8865 6.0009 0.3209 0.0053
(3.1638) (2.8003) (0.0742) (0.0094)

OGHLWW(α, β, λ, γ) 0.1952 0.0941 0.9617 0.4938
(0.1254) (0.1477) (1.0987) (0.1451)

Table 5 shows that the TL-Gom-EHL-W distribution has the lowest values for
the goodness-of-fit statistics and the highest p-value for the K-S statistics when
compared to the selected non-nested models used on the earthquake data set.

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



TL-Gom-EHL-G Family of Distributions 81

T
ab

le
5:

G
oo

dn
es

s-
of

-F
it

St
at

is
ti

cs
fo

r
E

ar
th

qu
ak

es
D

at
a

M
od

el
E

st
im

at
es

−
2
lo
g

A
IC

A
IC

C
B

IC
W

∗
A

∗
K

-S
p-

va
lu

e
SS

T
L

-G
om

-E
H

L
-W

(b
,
γ
,
α
,
λ
)

87
6.

18
42

88
4.

18
42

88
4.

88
59

89
2.

69
27

0.
03

73
0.

30
33

0.
06

24
0.

96
91

0.
03

58

T
L

-G
om

-E
H

L
-W

(b
,
γ
,
1
,
λ
)

88
6.

00
19

89
2.

00
19

89
2.

41
56

89
8.

38
33

0.
19

73
1.

19
90

0.
11

03
0.

43
69

0.
20

34

T
L

-G
om

-E
H

L
-W

(1
,
γ
,
α
,
λ
)

88
3.

71
50

88
9.

71
50

89
0.

12
87

89
6.

09
64

0.
16

16
0.

99
62

0.
09

57
0.

62
01

0.
15

83

T
L

-G
om

-E
H

L
-W

(b
,
1
,
α
,
λ
)

88
9.

56
42

89
5.

56
41

89
5.

97
79

90
1.

94
55

0.
24

74
1.

48
40

0.
11

87
0.

34
65

0.
23

81

T
L

-G
om

-E
H

L
-W

(b
,
1
,
1
,
λ

88
6.

22
14

89
0.

22
14

89
0.

42
48

89
4.

47
57

0.
20

05
1.

21
72

0.
11

11
0.

42
75

0.
20

65

T
L

-M
O

-W
(b
,
α
,
λ
,
β
)

89
2.

12
44

90
0.

12
43

90
0.

82
61

90
8.

63
29

0.
28

14
1.

67
25

0.
12

92
0.

25
12

0.
28

60

T
L

-G
W

(α
,
θ
,
λ
,
β
)

88
4.

02
87

89
2.

02
87

89
2.

73
05

90
0.

53
73

0.
16

81
1.

03
06

0.
09

74
0.

59
77

0.
16

07

T
L

-O
B

II
I-

L
L

oG
(α
,
β
,
b
,
λ
)

89
4.

57
99

90
2.

57
99

90
3.

28
16

91
1.

08
84

0.
30

75
1.

81
98

0.
12

81
0.

26
01

20
.5

04
7

K
-W

(α
,
θ
,
λ
,
β
)

87
9.

44
00

88
7.

44
00

88
8.

14
17

89
5.

94
85

0.
09

09
0.

58
83

0.
08

71
0.

73
43

0.
08

89

O
G

H
LW

W
(α
,
β
,
λ
,
γ
)

90
0.

90
73

90
8.

90
73

90
9.

60
91

91
7.

41
59

0.
19

23
1.

46
80

0.
14

10
0.

16
94

20
.6

22
6

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



82 Neo Dingalo, Broderick Oluyede & Fastel Chipepa

The fitted densities and probability plots are provided in Figure 14. Figure 14
shows the adaptability of the TL-Gom-EHL-W distribution using the earthquake
data set.

Figure 14: Fitted Densities and Probability Plots for Earthquake Data

The TTT plot for earthquake data with an upside-down bathtub followed by
bathtub hazard rate function is shown in Figure 15.

Figure 15: Fitted TTT and Hrf Plots for Earthquake Data

The K-M survival and ECDF curves for the earthquake data set are shown in
Figure 16. Based on the closeness of the empirical and fitted lines in Figure 16, we
conclude that TL-Gom-EHL-W distribution adequately fits earthquake data set.
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Figure 16: Fitted K-M survival and ECDF plots for Earthquake Data

The profile log-likelihood functions of the maximum likelihood estimates of
b, γ, α, and λ are shown in Figures 17 and 18. Figures 17 and 18 shows that the
maximum likelihood estimates b, γ, α, and λ exist and can be obtained uniquely.

Figure 17: Plots of the profile log-likelihood functions of the parameters of the TL-
Gom-EHL-W distribution on Earthquake data

6.3. Unemployment Insurance Data

This unemployment insurance data set presents monthly unemployment in-
surance metrics from July 2008 to April 2013 from the Department of Labour,
Licensing and Regulation. It consists of 58 observations and 21 variables. It is
available at: https://catalog.data.gov/dataset/unemployment-insurance
-data-july-2008-to-april-2013.
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Figure 18: Plots of the profile log-likelihood functions of the parameters of the TL-
Gom-EHL-W distribution on Earthquake data

The estimated variance-covariance matrix is given by


0.7618 5.7560 −8.2286 −0.0785

5.7560 136.8862 −101.6347 −1.2337

−8.2286 −101.6347 108.1100 1.1386

−0.0785 −1.2337 1.1386 0.0126


and the approximate 95% two-sided confidence intervals for b, γ, α and λ are given
by 1.3399 ± 1.7107, 8.9737 ± 22.9316, 11.2968 ± 20.3792 and 0.2410 ± 0.2204, re-
spectively.

The maximum likelihood estimates of the unemployment insurance data set
are shown in Table 6, along with standard errors in parentheses.

In comparison to the selected non-nested distributions, the TL-Gom-EHL-W
distribution fits the unemployment insurance data well because it has the smallest
values of the goodness-of-fit statistics (AIC, AICC, BIC, W, A, K-S, SS) and the
highest p-value for the K-S statistics.

The fitted pdf and probability plots for the unemployment insurance data
set are shown in Figure 19. These fitted plots shows that the TL-Gom-EHL-W
distribution fits the data better than the non-nested models.

The TTT plot for the unemployment insurance data set shown in Figure 20
shows an increasing hazard rate function. Figure 21 shows the Kaplan-Meier
(K-M) and Empirical Cumulative Distribution Function (ECDF) curves for the
unemployment insurance data set. According to the closeness of the observed and
fitted lines in Figure 21, TL-Gom-EHL-W distribution fit unemployment insurance
data well. In Figures 22 and 23 we demonstrate the profile log-likelihood functions
of the maximum likelihood estimates of b, γ, α, and λ. From Figures 22 and 23, we
observe that the maximum likelihood estimates for TL-Gom-EHL-W distribution
are obtained uniquely.
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Table 6: Estimates of Models for Unemployment Insurance Data
Estimates

Model b γ α λ

TL-Gom-EHL-W(b, γ, α, λ) 1.3399 8.9737 11.2968 0.2410
(0.8728) (11.6998) (10.3976) (0.1124)

TL-Gom-EHL-W(b, γ, 1, λ) 131.8559 0.0161 - 0.3136
(34.3302) (0.1162) - (0.0366)

TL-Gom-EHL-W(1, γ, α, λ) - 4.3309 × 10−09 1.1217 0.0531
- (0.0113) (0.1083) (0.1348)

TL-Gom-EHL-W(b, 1, α, γ) 3.3520 × 1003 - 0.5255 0.1286
(7.1862 × 10−07) - (0.0249) (0.0081)

TL-Gom-EHL-W(b, 1, 1, λ) 194.4000 - - 0.1707
(3.4068 × 10−07) - - (0.0032)

TL-MO-W(b, α, λ, β) 79.0799 0.6110 0.2868 0.5113
(0.0024) (0.4512) (0.2271) (0.1292)

TL-GW(α, θ, λ, β) 0.8024 706.8900 47.7450 0.2395
(0.2281) (0.0002) (0.0015) (0.0048)

TL-OBIII-LLoG(α, β, b, λ) 0.0524 286.8700 0.6295 26.2820
(0.0024) (0.0002) (0.1829) (5.1868 × 10−06)

K-W(α, θ, λ, β) 592.0100 3.5560 0.1884 273.3100
(0.0024) (1.0337) (0.0031) (0.0022)

OGHLWW(α, β, λ, γ) 0.0938 0.0979 0.5196 0.9953
(0.0874) (0.2313) (1.0656) (0.3226)

Figure 19: Fitted Densities and Probability Plots for Unemployent Insurance Data

6.4. Likelihood Ratio Test

This section contains the likelihood ratio test results for comparing the TL-
Gom-EHL-W distribution and nested models.

The performance of the nested models and the TL-Gom-EHL-W distribution
differ significantly as shown by the results in Table 8. This demonstrates the
importance of the additional parameters added to the baseline distribution in
improving model flexibility.
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Figure 20: Fitted TTT and Hrf Plots for Unemployment Insurance Data

Figure 21: Fitted K-M survival and ECDF plots for Unemployment Insurance Data

Figure 22: Plots of the profile log-likelihood functions of the parameters of the TL-
Gom-EHL-W distribution on Unemployment Insurance data
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Figure 23: Plots of the profile log-likelihood functions of the parameters of the TL-
Gom-EHL-W distribution on Unemployment Insurance data

Table 8: Likelihood Ratio Test Results
Mexico COVID-
19 Data

Earthquake
Data

Unemployment
Insurance Data

Model df χ2(p-value) χ2(p-value) χ2(p-value)
TL-Gom-EHL-W(b, γ, 1, λ) 1 193.3000(<0.00001) 9.8177(0.001728) 29.9865(<0.00001)
TL-Gom-EHL-W(1, γ, α, λ) 1 8.3933(0.003766) 7.5308(0.006065) 298.2648(<0.00001)
TL-Gom-EHL-W(b, 1, α, λ) 1 8.0005(0.004676) 13.3800(0.000254) 31.8074(<0.00001)
TL-Gom-EHL-W(b, 1, 1, λ) 2 351.9559(<0.00001) 10.0372(0.001534) 25.3696(<0.00001)

7. Conclusions

We have proposed the TL-Gom-EHL-G family of distributions. Statistical
properties of the new family of distributions including hazard rate function, quan-
tile function, moments and moment generating functions, probability weighted
moments, distribution of order statistics, Rényi entropy, and stochastic ordering
are presented. The maximum likelihood estimation technique was used to estimate
the model parameters. The TL-Gom-EHL-W, TL-Gom-EHL-BXII, and TL-Gom-
EHL-L distributions were discussed as the special cases of the TL-Gom-EHL-G
family of distributions. The performance of the TL-Gom-EHL-W distribution was
investigated using various simulations with different sample sizes. Finally, the
TL-Gom-EHL-W distribution was fitted to three real data sets to demonstrate
the usefulness and effectiveness of the new family of distributions. The TL-Gom-
EHL-W distribution outperformed the nested and non-nested models used for
comparison in this paper.

Acknowledgements

The authors are very grateful to the reviewers for their constructive feedback.[
Received: October 2022 — Accepted: April 2023

]
Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



TL-Gom-EHL-G Family of Distributions 89

References
Aarset, M. V. (1987), ‘How to identify a bathtub hazard rate’, IEEE Transactions

on Reliability 36(1), 106–108.

Aldahlan, M. & Afify, A. Z. (2018), ‘The odd exponentiated half-logistic Burr XII
distribution’, Pakistan Journal of Statistics and Operation Research pp. 305–
317.

Algarni, A., M. Almarashi, A., Elbatal, I., S. Hassan, A., Almetwally, E. M.,
M. Daghistani, A. & Elgarhy, M. (2021), ‘Type I half logistic Burr X-G fami-
ly: Properties, Bayesian, and non-Bayesian estimation under censored samples
and applications to COVID-19 data’, Mathematical Problems in Engineering
2021, 1–21.

Arnold, B. C., Balakrishnan, N. & Nagaraja, H. N. (2008), A first course in order
statistics, SIAM.

Aryal, G. R., Ortega, E. M., Hamedani, G. & Yousof, H. M. (2017), ‘The Topp-
Leone generated Weibull distribution: regression model, characterizations and
applications’, International Journal of Statistics and Probability 6(1), 126–141.

Benkhelifa, L. (2017), ‘The Marshall-Olkin extended generalized Gompertz distri-
bution’, Journal of Data Science 15(2), 239–266.

Boshi, M., Abid, S. & Al-Noor, N. (2020), Generalized gamma–generalized Gom-
pertz distribution, in ‘Journal of Physics: Conference Series’, Vol. 1591, IOP
Publishing, p. 012043.

Castillo, E., Hadi, A. S., Balakrishnan, N. & Sarabia, J.-M. (2005), Extreme value
and related models with applications in engineering and science, Wiley Hoboken,
NJ.

Chambers, J., William, C., Beat, K. & Paul, T. (1983), Graphical methods for
data analysis, Wadsworth.

Chamunorwa, S., Makubate, B., Oluyede, B. & Chipepa, F. (2021), ‘The exponen-
tiated half logistic-log-logistic Weibull distribution: Model, properties and ap-
plications’, Journal of Statistical Modelling: Theory and Applications 2(1), 101–
120.

Chipepa, F. & Oluyede, B. (2021), ‘The Marshall-Olkin-Gompertz-G family of
distributions: Properties and applications’, Journal of Nonlinear Sciences and
Applications 14(4), 257–260.

Chipepa, F., Oluyede, B. & Makubate, B. (2020), ‘The odd generalized half-
logistic Weibull-G family of distributions: properties and applications’, Journal
of Statistical Modelling: Theory and Applications 1(1), 65–89.

Chipepa, F., Oluyede, B. & Wanduku, D. (2021), ‘The exponentiated half logis-
tic odd Weibull-Topp-Leone-G: Model, properties and applications’, Journal of
Statistical Modelling: Theory and Applications 2(1), 15–38.

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



90 Neo Dingalo, Broderick Oluyede & Fastel Chipepa

Cordeiro, G. M., Ortega, E. M. & Nadarajah, S. (2010), ‘The Kumaraswamy
Weibull distribution with application to failure data’, Journal of the Franklin
Institute 347(8), 1399–1429.

De Andrade, T. A., Chakraborty, S., Handique, L. & Gomes-Silva, F. (2019),
‘The exponentiated generalized extended Gompertz distribution’, Journal of
Data Science 17(2), 299–330.

Eghwerido, J. T., Nzei, L. C. & Agu, F. I. (2021), ‘The alpha power Gompertz
distribution: characterization, properties, and applications’, Sankhya A 83, 449–
475.

El-Bassiouny, A., El-Damcese, M., Mustafa, A. & Eliwa, M. (2017), ‘Exponen-
tiated generalized Weibull-Gompertz distribution with application in survival
analysis’, Journal of Statistics Applications and Probability 6(1), 7–16.

El-Gohary, A., Alshamrani, A. & Al-Otaibi, A. N. (2013), ‘The generalized Gom-
pertz distribution’, Applied mathematical modelling 37(1-2), 13–24.

El-Morshedy, M., El-Faheem, A. A. & El-Dawoody, M. (2020), ‘Kumaraswamy
inverse Gompertz distribution: Properties and engineering applications to com-
plete, type-II right censored and upper record data’, Plos one 15(12), e0241970.

Elbatal, I., Jamal, F., Chesneau, C., Elgarhy, M. & Alrajhi, S. (2018), ‘The modi-
fied beta Gompertz distribution: theory and applications’, Mathematics 7(1), 3.

Gompertz, B. (1825), ‘On the nature of the function expressive of the law of human
mortality, and on a new mode of determining the value of life contingencies’,
Philosophical Transactions of the Royal Society of London 115, 513583.

Hosking, J. R. M., Wallis, J. R. & Wood, E. F. (1985), ‘Estimation of the gen-
eralized extreme-value distribution by the method of probability-weighted mo-
ments’, Technometrics 27(3), 251–261.

Jafari, A. A., Tahmasebi, S. & Alizadeh, M. (2014), ‘The beta-Gompertz distri-
bution’, Revista Colombiana de Estadistica 37(1), 141–158.

Khaleel, M. A., Al-Noor, N. H. & Abdal-Hameed, M. K. (2020), ‘Marshall Olkin
exponential Gompertz distribution: Properties and applications’, Periodicals of
Engineering and Natural Sciences 8(1), 298–312.

Lenart, A. & Missov, T. I. (2016), ‘Goodness-of-fit tests for the Gompertz distri-
bution’, Communications in Statistics-Theory and Methods 45(10), 2920–2937.

Marinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M. & Nadarajah,
S. (2019), ‘AdequacyModel: An R package for probability distributions and
general purpose optimization’, PloS one 14(8), e0221487.

Moakofi, T., Oluyede, B. & Chipepa, F. (2021), ‘Type II exponentiated half-logistic
Topp-Leone Marshall-Olkin-G family of distributions with applications’, Heliyon
7(12), e08590.

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



TL-Gom-EHL-G Family of Distributions 91

Moakofi, T., Oluyede, B. & Gabanakgosi, M. (2022), ‘The Topp-Leone odd Burr
III-G family of distributions: Model, properties and applications’, Statistics,
Optimization & Information Computing 10(1), 236–262.

Nzei, L. C., Eghwerido, J. T. & Ekhosuehi, N. (2020), ‘Topp-Leone Gompertz
distribution: Properties and applications’, Journal of Data Science 18(4), 782–
794.

Oluyede, B., Chamunorwa, S., Chipepa, F. & Alizadeh, M. (2022), ‘The Topp-
Leone Gompertz-G family of distributions with applications’, Journal of Statis-
tics and Management Systems 25(6), 1399–1423.

Oluyede, B., Chipepa, F. & Wanduku, D. (2021), ‘Exponentiated half logistic-
power generalized Weibull-G family of distributions: Model, properties and ap-
plications’, Eurasian Bulletin of Mathematics 3(3), 134–161.

Oluyede, B., Peter, P. O., Ndwapi, N. & Bindele, H. (2022), ‘The exponenti-
ated Half-logistic Odd Burr III-G: Model, properties and applications’, Pakistan
Journal of Statistics and Operation Research (1), 33–57.

Rényi, A. (1961), On measures of entropy and information, in ‘Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol-
ume 1: Contributions to the Theory of Statistics’, Vol. 4, University of California
Press, pp. 547–562.

Roozegar, R., Tahmasebi, S. & Jafari, A. A. (2017), ‘The McDonald Gom-
pertz distribution: Properties and applications’, Communications in Statistics-
Simulation and Computation 46(5), 3341–3355.

Sengweni, W., Oluyede, B. & Makubate, B. (2021), ‘The exponentiated half-
logistic odd Lindley-G family of distributions with applications’, Journal of
Nonlinear Sciences & Applications (JNSA) 14(5), 287–309.

Seo, J.-I. & Kang, S.-B. (2015), ‘Notes on the exponentiated half logistic distribu-
tion’, Applied Mathematical Modelling 39(21), 6491–6500.

Shaked, M. & Shanthikumar, J. G. (2007), Stochastic orders, Springer, New York.

Shama, M., Dey, S., Altun, E. & Afify, A. Z. (2022), ‘The gamma-Gompertz dis-
tribution: Theory and applications’, Mathematics and Computers in Simulation
193, 689–712.

Shannon, C. E. (1951), ‘Prediction and entropy of printed English’, Bell System
Technical Journal 30(1), 50–64.

Team (2022), R: A language and environment for statistical computing, R Founda-
tion for Statistical Computing, Vienna, Austria. http://www. R-project. org/.

Revista Colombiana de Estadística - Theoretical statistics 46 (2023) 55–92



92 Neo Dingalo, Broderick Oluyede & Fastel Chipepa

Appendix

The appendix materials can be found at the following url. https://drive.go
ogle.com/file/d/1H7NyC-cTGOPMPkfnhwSpixxkbVQyNr-j/view?usp=sharing
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