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Abstract

This paper proposes new parameterizations of the beta and beta binomial
distributions as functions of the mean and variance parameters. From these
new parameterizations, new beta and beta binomial linear regression models
are formulated by assuming that appropriate real functions of the mean and
variance follow linear regression structures. These models were �tted to real
datasets by applying Bayesian methods, using the OpenBUGS software. The
new beta regression models were �tted to the Dyslexia Reading Accuracy
dataset and the new beta binomial regression models were applied to the
School Absenteeism Dataset. In both cases, the results obtained by �tting
these models were compared with those obtained by �tting the usual mean
and dispersion beta regression models and the mean and dispersion beta
binomial regression models, respectively.

Key words: Mean and variance beta and beta binomial distributions; Beta
and beta-binomial regression models; Bayesian methods.

Resumen

Este artículo propone nuevas parametrizaciones de las distribuciones beta
y beta binomial como funciones de los parámetros de media y varianza.
A partir de estas nuevas parametrizaciones, se formulan nuevos modelos
de regresión lineal beta y beta binomial asumiendo que funciones reales
apropiadas de la media y la varianza siguen estructuras de regresión lineal.
Estos modelos se ajustaron a conjuntos de datos reales mediante la aplicación
de métodos bayesianos, utilizando el software OpenBUGS. Los nuevos
modelos de regresión beta se ajustaron al conjunto de datos de precisión de
lectura de niños con dislexia y los nuevos modelos de regresión beta binomial
se aplicaron al conjunto de datos de ausentismo escolar. En ambos casos, los
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resultados obtenidos ajustando estos modelos se compararon con los obtenidos
ajustando los modelos habituales de regresión beta de media y dispersión y los
modelos de regresión beta binomial de media y dispersión, respectivamente.

Palabras clave: Media y varianza; Distribución beta; Distribución beta
binomial; Modelos de regresión beta y beta-binomial; Métodos bayesianos.

Introduction

This paper presents results of analyzing situations where the observations of
the variables of interest are associated with the beta distribution. The beta
distribution has applications in uncertainty of random variation of probability,
fraction or prevalence, among others. Thus, this distribution has many
applications in areas such as �nancial sciences, social sciences like education
(Cepeda-Cuervo & Núñez Antón, 2013) and epidemiology (Hunger et al., 2012),
where random variables are continuous in a bounded interval that is isomorphic to
the interval (0, 1). To mention an example, in studies of the quality of education,
a number in a continuous scale from 0 to 5 (or any other positive integer bounds)
is assigned as a measure of performance in school subjects like math or language
(Cepeda & Gamerman, 2005). In these cases, the measure assigned to each student
can be expressed as a number from zero to one. Thus, it can be assumed that
the level of student performance is a random variable with a beta distribution.
In education systems and other �elds, a need often exist to model continuous
random variables that assume values in a bounded interval on a set of explanatory
variables. In these cases, if a continuous random variable W assumes values in a
bounded open interval (a, b), a beta regression model can be proposed by de�ning
a random variable Y = (W −a)/(b−a), which can be assumed to follows the beta
distribution.

Some variables can be assumed to follow beta distributions where their
parameters are modeled as functions of explanatory variables. For example,
students' performance can be explained by educational factors like educational
level of mothers; land concentration can be explained by random variables
associated with social and political factors; and the proportion of income spent
monthly can be explained by the number of persons in the household. With
these ideas, beta Bayesian regression models, with joint modeling of the mean and
dispersion parameters, were initially proposed by Cepeda-Cuervo (2001), p. 63
in the framework of joint modeling in the biparametric exponential family. He
described beta regression models where the mean, µ = p/(p+ q), and the so called
dispersion parameter of the beta distribution, ν = p + q, follow linear regression
structures:

h(µ) = xtβ and (1)

g(ν) = ztγ, (2)

where h(·) is the logit function and g(·) is the logarithmic function; x and z are
vectors of explanatory variables and, β = (β0, . . . , βk) and γ = (γ0, . . . , γp) are the

Revista Colombiana de Estadística - Theorical Statistics 46 (2023) 63�79



µσ2-Beta and µσ2-Beta Binomial Regression Models 65

respective vectors of regression parameters. Other appropriate link functions can
be considered. These parameterization of the beta distribution can be appropriate
in the beta regression models' de�nition, where ν can be interpreted as a �precision�
parameter in the sense that, for �xed values of µ, larger values of ν correspond to
smaller values of the variance (a conditional interpretation of ν). Independently
of this proposal, in the same year, Paolino (2001) proposed beta regression models
assuming that p and q, the parameters of the beta distribution B(p, q), follow
regression structures.

Since 2001, beta regression models have been extensively studied and applied
in statistics. Using the µ-ν parameterizations of the beta distribution, Ferrari
& Cribari-Neto (2004) proposed beta regression models with constant dispersion
parameters, where the mean follows a regression structure given by h(µ) =
xtβ, in which h is an appropriate twice di�erentiable function. With this
parameterization, they wrote the beta density function in terms of µ and
ν, obtained the parameter estimates using maximum likelihood. Smithson &
Verkuilen (2006) propose frecuentist aproach to the beta regression models, where
both mean and precision are modeled with distinct sets of predictors. Further work
has been published by Simas et al. (2010), proposing nonlinear beta regression
models, where the mean parameter varies through a nonlinear regression structure
and the precision parameters vary through a linear structure. Cepeda & Achcar
(2010) proposed nonlinear beta regression in the context of double generalized
nonlinear models. The beta regression models were extended in Cepeda-Cuervo &
Núñez Antón (2013), assuming that the observations are spatially correlated.

Taking into account the conditional and restricted interpretation of ν, the so
called precision parameter, and following the proposal presented in Cepeda-Cuervo
& Garrido (2015), in which a restricted mean and variance regression model was
proposed, in this paper we propose the mean and variance parameterization of the
beta distribution, with clear and straightforward parameter interpretation. With
this parameterization of the beta distribution, new beta regression models are
proposed:

h(µ) = xtβ and (3)

g(σ2) = ztλ, (4)

where h(.) and g(.) are appropriate real valued functions (one to one and two
di�erentiable) from the open interval (0, 1) to the real number set. There are many
examples of the mean link function h(.), like logit, probit and complementary log-
log functions. Examples of the variance link functions are given by the mean link
functions, de�ned over an appropriate transformation of the interval (0, 1/4) to the
interval (0, 1). Here we apply the beta regression models to the reading accuracy
data for dyslexic and non-dyslexic Australian children (Smithson & Verkuilen,
2006) and compare the results with that obtained by usual models presented in
the literature.

From these new parameterizations of the beta distribution, many statistical
extensions can be proposed. For example, using a µσ2 parameterization of the beta
distribution, a new parameterization of the beta binomial distribution is proposed,

Revista Colombiana de Estadística - Theorical Statistics 46 (2023) 63�79



66 Edilberto Cepeda-Cuervo

where this distribution is de�ned by assuming that Y | π∗ follows binomial
distribution, Y | π∗ ∼ Bin(n, π∗), where π∗ follows µσ2-beta distribution. From
these parameterizations of the beta binomial distribution, new beta binomial
regression models are proposed and applied to the School Absenteeism dataset
analysis.

This paper is organized as follows. After this introduction, in Section 1,
we de�ne the µσ2-beta distribution and the µσ2-beta binomial distribution. In
Section 2, we propose the µσ2 beta regression models and the µσ2-beta binomial
regression models. In Section 3, we describe the results of applying these models
to the analysis of dyslexia and the School Absenteeism datasets. Finally, some
conclusions of the paper are included in Section 4.

1. New Parameterizations of the Beta and Beta

Binomial Distributions

A random variable Y has a beta distribution if its density function is given by:

f(y|p, q) = Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1I(0,1)(y), (5)

where p > 0, q > 0 and Γ(.) denotes the gamma function. The mean and variance
of Y, µ = E(Y ) and σ2 = V ar(Y ), are given by:

µ =
p

p+ q
and (6)

σ2 =
p q

(p+ q)2(p+ q + 1)
. (7)

Many random variables can be assumed to have a beta distribution. Some
examples, are income inequality and land distribution when these are measured
using the Gini index, as proposed by Atkinson (1970), or the performance of
students in subjects such as mathematics and language. In last case, if the
performance or some other continuous variable X takes values in an open interval
(a, b), the random variable Y = (X − a)/(b − a) can be assumed to have a beta
distribution. Student performance can be explained, for example, by household
socioeconomic variables, since these can have a large impact on students' cognitive
achievement. The level of students' achievement is also closely related to the
educational level of their parents, especially by the educational level of the mothers
and the number of hours devoted to studying a subject. Thus, the beta regression
model can be appropriate to explain the behavior of school performance as a
function of associated factors in a mean and variance regression structure.

1.1. Mean and variance (µσ2) beta distribution

From the beta density function de�ned in (5), the mean (µ) and dispersion (ν)
beta distribution is de�ned by setting ν = p + q. A random variable Y follows a
µν-beta distribution if it density function is given by:
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f(y|µ, ν) = Γ(ν)

Γ(µν)Γ(ν(1− µ))
yµν−1(1− y)ν(1−µ)−1I(0,1)(y), (8)

where 0 < µ < 1 and ν > 0. In this parameterization E(Y ) = µ and

Var(Y ) = σ2 = µ(1−µ)
1+ν . Hence, 0 < σ2 < 1/4. This parameterization, proposed in

Jorgensen (1997) and in Cepeda-Cuervo (2001), p. 63, was presented in (Ferrari
& Cribari-Neto, 2004).

Assuming the mean and variance parameterization of the beta distribution
proposed in Cepeda-Cuervo (2015), the mean and variance beta density function

is given by (9), where K =
Γ(

µ(1−µ)

σ2 −1)

Γ(
µ2(1−µ)

σ2 −µ)Γ(
µ(1−µ)2

σ2 −(1−µ))
.

f(y|µ, σ2) = Ky
µ2(1−µ)

σ2 −µ−1(1− y)
µ(1−µ)2

σ2 −(1−µ)−1I(0,1)(y), (9)

This parameterization of the beta density function can be obtained from (8), by

setting ν = µ(1−µ)
σ2 − 1. Thus, the beta density function, written as a function of

the precision parameter ϕ = 1/σ2, is given by:

f(y|µ, σ2) = Kyµ
2(1−µ)ϕ−µ−1(1− y)µ(1−µ)2ϕ−(1−µ)−1I(0,1)(y), (10)

where K = Γ(µ(1−µ)ϕ−1)
Γ(µ2(1−µ)ϕ−µ)Γ(µ(1−µ)2ϕ−(1−µ)) .

1.2. µσ2-Beta Binomial Distribution

The beta binomial distribution assumes that the random variable Y, conditional
on π∗, has binomial distribution Bin(m,π∗) and that π∗ follows the beta
distribution de�ned by (5). The beta binomial probability is given by:

f(y|n, p, q) =
(
n

y

)
B(y + p, n− y + q)

B(p, q)
IA(y), p > 0, q > 0, (11)

where A = {0, 1, 2, . . . , n} and B(.) is the beta function. If Y follows the beta
binomial distribution de�ned by (11), V (Y ) = mπ(1 − π)[1 + ρ(m − 1)], where
ρ = 1/(1+p+q). As a consequence, ρ can be interpreted as a dispersion parameter,
in the sense that for constant mean, the variance of Y increases when ρ increases
and the variance Y decreases when ρ decreases. In this parameterization of the
beta-binomial distribution, the variance of Y is 1+ ρ(m− 1) times the variance of
the binomial model. In this distribution, if the random variable Y , conditional on
π∗, has binomial distribution Bin(mi, π

∗) and π∗ follows a µσ2-beta distribution
with E(π∗) = π and Var(π∗) = σ2, the unconditional distribution of Y is given by:

f(y|n, π, σ2) =

(
n

y

)
B(y + µν, n− y + ν(1− µ))

B(µν, ν(1− µ))
IA(y), (12)

where ν = µ(1−µ)
σ2 − 1 (or ν = µ(1 − µ)ϕ − 1). In this case, Y is said to follow a

πσ2-beta binomial distribution with mean and variance (precision) given by:
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E(Y ) = E(E(Y |π∗)) = mE(π∗) = mπ and

V (Y ) = E[V ar(Y |π∗)] + V ar[E(Y |π∗)]

= mE[π∗(1− π∗)] +m2V ar(π∗)

= mπ(1− π) + σ2m(m− 1) (13)

Thus, in model (12), σ2 = V ar(π∗) and σ2m(m − 1) is the overvariance of the
beta binomial distribution. If σ2 > 0, there is overvariance, while if σ2 = 0,
the πσ2-beta binomial distribution is reduced to the binomial distribution. If
σ2 = ρπ(1 − π) in (13), the variance of the beta binomial distribution (11) is
obtained. In this new parameterization of the beta binomial distribution σ2 has
clear interpretation, given that it is the variance of π∗.

2. Beta Regression Models

A beta regression model was proposed by Cepeda-Cuervo (2001), with joint
modeling of the mean (µ) and dispersion (ν = p + q) parameters of the beta
distribution, assuming that the appropriate function of both follows a linear
regression structure. Under a general framework, he assumed a random sample
Yi ∼ Beta(pi, qi), i = 1, 2, . . . , n, with mean and dispersion regression structures
given by:

h(µi) = xt
iβ (14)

g(νi) = ztiγ, (15)

where h is the logit function and g is the logarithmic function; β = (β0, β1, . . . , βk)
t

and γ = (γ0, γ1, . . . , γp)
t are the vectors of the mean and dispersion regression

parameters structures, respectively; xi is the vector of the mean explanatory
variables; and zi is the vector of precision explanatory variables, at the i-th
observation. This model implies a parameterizations of the beta density function
(5) in terms of µi and νi.

In subsequent paper, Ferrari & Cribari-Neto (2004) presented a frequentist
approach to the beta regression models, assuming that h(µi) = xt

iβ, where h is
an appropriate real valued function, strictly monotonic and twice di�erentiable,
de�ned on (0, 1), and ϕ, the dispersion parameter, is a constant in the range of
values of the explanatory variables. The joint beta regression model proposed by
Cepeda-Cuervo (2001), was later studied by (Smithson & Verkuilen, 2006), using
Bayesian methods, and by Simas et al. (2010), from a frequentist perspective.
Multiple studies and applications have been developed in recent years in the
framework of beta regression models. Although many variations of mean and
dispersion beta regression models have been developed since the work of Cepeda-
Cuervo (2001), these proposals have at least two drawbacks. The �rst is the
interpretability of ν in the µν-beta regression model (8), given that ν is considered
to be a �precision� parameter in the sense that, for constant mean, the variance
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decreases when ν increases, σ2 = µ(1−µ)
ν+1 . A second problem is the lack of an

explicit regression structure for the variance, which impair the quality of the
posterior regression parameter inferences.

2.1. µσ2-Beta Regression Models

A �rst approximation of the mean and variance beta regression models was
proposed in (Cepeda-Cuervo, 2015), from a Bayesian perspective. In that model,
the mean regression structure is de�ned as a function of the explanatory variables
as in equation (14), where h is, for example, the logit function. In that paper,
the variance regression structure was de�ned as a function of the explanatory
variables as g(σ2

i ) = ztiλ, where λ = (λ0, λ1, . . . , λs)
t is the vector of variance

regression parameter structure and g is assumed to be the logarithmic function.
However, given that 0 < σ2 < 1/4, posterior samples of λ should be obtained from
restricted parameter spaces.

In this paper, from the new parameterization of the beta distribution given
in (9), we propose the mean and variance beta regression models by de�ning
appropriate variance link functions, in order to obtain regression parameter
estimates from unrestricted parameter spaces. Thus, the parameter estimates
can be obtained by applying Bayesian or maximum likelihood methods without
any parameter restrictions, if the link functions are once and twice di�erentiable,
respectively.

In the µσ2 beta regression models, the mean regression structure is given by
(14), while for the variance, the proposed the regression structure is given by:

g(4σ2
i ) = ztλ, (16)

where h(.) and g(.) are real functions de�ned in the open interval (0, 1) of the real
number set R, like the logit, probit, log-log or the complementary log-log function.
If, for example, logit(4σ2) = ztλ, the variance of the beta regression model is given
by: σ2 = exp(ztλ)/(4 + 4exp(ztλ)). Thus, the parameter estimates of the mean
and variance regression structures are easily interpretable. For example, if the
logit link function is assumed for the mean and variance regression structure and:

1. X1 is an explanatory variable associated with a parameter β1 where β1 > 0,
increasing behavior of X1 is associated with an increasing mean, while if
β1 < 0, increasing behavior of X1 is associated with a decreasing mean.

2. Z1 is an explanatory variable associated with a parameter λ1 where λ1 > 0,
increasing behavior of Z1 is associated with increasing variance, while if
λ1 < 0, increasing behavior of Z1 is associated with decreasing of variance.

The mean and precision (ϕ = 1/σ2) beta regression model is de�ned by the
mean regression structure (14) and by g(ϕ−4) = ztλ, where g(.) is the logarithmic
function or some other appropriate real function de�ned from the positive real
numbers ℜ+ to the real numbers ℜ, such as the logarithmic function.
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2.2. µσ2-Beta Binomial Regression Models

In this section, the µσ2-beta binomial regression models are de�ned by
assuming that Yi ∼ BB(mi, πi, σ

2
i ), i = 1, . . . , n, are n independent random

variables that follow the beta binomial distribution de�ned in (12). Thus, in
the µσ2-beta binomial regression models, it is assumed that the random variables
Yi have, conditional on π∗, binomial distribution Bin(mi, π

∗
i ), and that π∗

i follows
the beta distribution de�ned by (9), with:

E(π∗
i ) = µi, and Var(π∗

i ) = σ2
i

The systematic and link function components are de�ned by h(πi) = xt
iβ and

g(σ2
i ) = zt

iλ, assuming the probability (mean) regression structures given by
(14) and variance regression structures de�ned in (16). The use of this beta-
binomial regression model is recommended when the researcher believes that the
data come from a population having di�erent subpopulations, and also when
there is correlation between the Bernoulli events within each binomial observation
(Quintero-Sarmiento et al., 2012). This assumption allow us to have a larger
variance than the onethat considered in the GLM with binomial response variable,
but assuming that the overvariance follows regression structures as functions of the
explanatory variables.

3. Applications

In this section, posterior inferences of the µσ2-beta and πσ2-beta binomial
regression models are presented in the framework of two applications. Section 3.1
includes results of analyzing reading accuracy dataset of dyslexic and non dyslexic
students with µσ2-beta regression models. These results illustrate the good
performance of the proposed models and the advantages of their interpretations
against the usual beta mean and dispersion regression models. Section 3.2 presents
results of applying πσ2-beta binomial regression models to a postnatal mortality
dataset and their interpretations.

3.1. Dyslexic versus Non-Dyslexic Reading Accuracy

This section presents results of applying µσ2-beta regression models to the
analysis of the reading accuracy data for dyslexic and non-dyslexic Australian
children (Smithson & Verkuilen, 2006). The variable of interest is accuracy,
measured by scores on a test of reading accuracy taken by 44 children, which
is predicted by two regressors variables: dyslexia (a dichotomic variable which has
value 1 for dyslexic children and −1 for non-dyslexic children) and nonverbal
intelligence quotient (IQ), converted to standardized Z scores. The sample
includes 19 dyslexic and 25 controls recruited from primary schools in the
Australian Capital Territory. The children's ages ranged from eight years �ve
months to twelve years three months. This dataset was analyzed by Smithson &
Verkuilen (2006), using mean and �dispersion� beta regression models and applying
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the Fisher scoring algorithm to �t the models. In this paper, we initially analyze
this data set by applying the Bayesian beta regression model proposed by Cepeda-
Cuervo (2001) as in Smithson & Verkuilen (2006), assuming that:

logit(µi) = β0 + β1DIS + β2IQ+ β3DISIQ (17)

log(νi) = γ0 + γ1DIS + γ2IQ. (18)

After that, in order to apply the µσ2-beta regression models, we assume a beta
regression model where the mean and variance regression structures are given by
(17) and (19), respectively.

logit(4σ2) = λ0 + λ1DIS + λ2IQ. (19)

The posterior parameter estimates of the beta regression model de�ned by
(17) and (18) are given in Table 1. According to these estimates, the mean of the
score reading decreases with IQ for dyslexic children and increases for non dyslexic
children, given that logit(µ̂i) = (β̂0 + β̂1) + (β̂2 + β̂3)IQ for dyslexic children and

logit(µ̂i) = (β̂0 − β̂1) + (β̂2 − β̂3)IQ for their non-dyslexic counterparts. The
so called �dispersion� parameter increases with IQ and is lower for non dyslexic
children, but with the interpretation of the dispersion as in Section 2, for �xed
values of µ. For this model, the deviance information criterion (DIC) value is
−117.5. The error sum of squar SS = 0.4403. The error sum of square for the
mean and precision beta regression model de�ned by (17) and (18), obtained from
the parameter estimates reported by Cribari-Neto & Zeileis (2010), is SS=0.4618.
Thus, the parameter estimates and the results obtained by �tting this model via
Bayesian methods are consistent with that obtained by Smithson & Verkuilen
(2006) for this dataset. In both cases, the null hypothesis H : βi = 0, i=1,2,3, and
H : γi = 0, j=1,2, are rejected at a level of 95%.

Table 1: Parameter estimates, standard deviations, 95% credible intervals and DIC
values for of mean and �dispersion� beta regression parameters as de�ned by
(17) and (18).

logit-mean and log-dispersion log(ν)
Parameter Estimate S.D. 95% C.I.

β0 1.129 0.156 (0.813, 1.425)
β1 -0.747 0.155 (-1.036, -0.429)
β2 0.428 0.174 (0.079, 0.768)
β3 -0.515 0.181 (-0.866, -0.146)
γ0 3.104 0.250 (2.575, 3.555)
γ1 1.583 0.305 ( 0.963, 2.156)
γ2 0.997 0.444 (0.099, 1.839)

Dhat: -130.8 DIC: -117.5

Table 2 includes the parameter estimates of the µσ2-beta regression model,
assuming the logit-mean and logit-variance regression structures given by (17)
and (19), respectively. The mean parameter estimates agree for these two beta
regression models, as seen by comparing Table 1 and Table 2, in the sense that β0

and β2 are positive and, β1 and β3 are negative. However, the posterior parameter
inferences are very di�erent. In the mean and variance model, the null hypothesis
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β2 = 0 and λ2 = 0 are not rejected at a level of 0.05, given that zero belongs to
the 95% credible intervals.

Table 2: Parameter estimates, standard deviations, 95% credible intervals for the
parameter estimates and DIC values for the µσ2-beta regression model de�ned
by (17) and (19).

logit-mean and logit-variance
Parameter Estimates S.D. 95% C.I.

β0 1.208 0.141 (0.926, 1.490)
β1 -0.830 0.146 (-1.133,-0.537)
β2 0.215 0.128 (-0.025, 0.452)
β3 -0.298 0.135 (-0.546, -0.018)
λ0 -3.596 0.276 (-4.091,-3.023)
λ1 -0.928 0.344 (-1.632,-0.205)
λ2 -0.801 0.428 (-1.560, 0.056)

Dhat = −128.7 DIC = −114.5

Figure 1 is the plot of variance versus Dyslexia and IQ, obtained by �tting
the µσ2-beta regression model to the dyslexia dataset, where the variance follows
the regression structure given by (19). This plot shows that variance is bigger
for non-dyslexic children than for dyslexic ones, and that it decreases when IQ
increases. Figure 2 is the plot of the residuals of the logit-mean and logit-variance
beta regression models. The plots of the residuals are very similar to those of the
mean and �dispersion� beta regression models. From these plots, it is not possible
to �nd di�erences between residuals of these two regression models. However, the
sum of squared residuals for the logit-mean and logit-variance regression models
(SS = 0.4044) is smaller than the sum of squared residuals for the logit-mean and
logarithmic dispersion regression models (SS = 0.4052).

From these results, we applied a variable elimination process in the mean and
variance regression structures, obtaining the beta regression models given by (20)
and (21), where IQ and DISIQ were eliminated from the mean regression structure
and IQ from the variance models.

logit(µi) = β0 + β1DIS (20)

logit(4σ2) = λ0 + λ1DIS (21)

For this model, given by equations (20) and (21), the parameter estimates and

their respective standard deviations are: β̂0 = 1.300(0.137), β̂1 = −0.872(0.136),

λ̂0 = −3.38(0.289), λ̂1 = −0.642(0.292); the hypotheses βi = 0 and λi = 0,
i = 0, 1, are rejected at a level of 95%; their DIC value is equals −114.4 and the
sum of square residuals equal to 0.4466. Finaly, under the DIC criterion, taking
into account the 95% credibility intervals, this model is selected as the best.

Thus, the results obtained by applying µσ2-beta regression models shows a big
di�erence with that obtained from analysis of the dyslexic dataset by applying
mean and dispersion regression models, as developed at the beginning of this
section, or by Smithson & Verkuilen (2006) by applying ML estimation.
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Figure 1: Variance behavior in the logit-mean and logit-variance beta regression models
de�ned by (17) and (19).
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Figure 2: Residuals of logit-mean and logit-variance beta regression models.

Revista Colombiana de Estadística - Theorical Statistics 46 (2023) 63�79



74 Edilberto Cepeda-Cuervo

3.2. School Absenteeism Dataset

The second dataset analyzed in this paper was originally presented in Quine
(1975) and comes from a sociological study of Australian Aboriginal and White
children from Walgett, New South Wales, with nearly equal numbers of the two
sexes and equal numbers from the two cultural groups. Children were classi�ed by
culture, age, sex and learner status, and the number of days absent from school
in a particular school year was recorded. The response variable of interest is the
number of days that a child was absent from school during the schol year. Children
who had su�ered a serious illness during the year were excluded from this analysis.

The values for each observed variable were:

� Age (A). Four groups: Primary (0), First form (1), Second form (2) and
Third form (3), where �Primary" includes children under 12 years of age;
�First form" refers to ages between 12 and 13 years; �Second form" denotes
ages between 13 and 14 years, and �Third form�, represents ages between 14
and 15 years.

� Gender (G). Factor with two levels: Female (0) or Male (1).

� Cultural Background(CB). Ethnic background: Aboriginal (0) and White
(1).

� Learning Ability(LA). Factor with two levels of learning capacity: Slow
learner (0) and Average learner (1).

� Days Absent(Y): days absent from school in the year.

Since the variable of interest Y (days absent) is the number of events that
occurred during a year, this dataset was analyzed by applying overdispersed models
associated with counts (Cepeda-Cuervo & Cifuentes-Amado, 2017), assuming that
it follows a negative binomial distributionNB(µ, α), where the mean and the shape
parameters follow linear regression structures. In this paper, assuming a schol year
of 200 days, this dataset is analyzed by applying the µσ2-beta binomial regression
model, where:

logit(µi) = β0 + β1Ai + β2Gi + β3CBi + β4LAi (22)

logit(4σ2
i ) = λ0 + λ1CBi + λ2LAi. (23)

This model was �tted to this dataset by applying Bayesian methods using the
Open Bugs software. The posterior parameter estimates, standard deviations and
credible intervals are given in Table 3, Model 1a. Assuming a mean structure
(22) without Age (A) and Gender (G) as explanatory variables, eliminated from
the model at a level of 95%, and the shape structure given by (23), the parameter
estimates, standard deviations and 95% credible intervals are reported in the same
Table, Model 1b. The DIC values for the µσ2-beta binomial regression model
de�ned by (22) and (23) is DIC = 649.272 and the DIC value of the reduced
model is DIC = 649.004. In this case, Model 1b is assumed to be the best, given
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Table 3: Parameter estimates of the (mean and variance) beta-binomial regression
models. For Model 1a, DIC = 649.273. For Model 1b, DIC = 649.004.

Model 1a Model 1b
Parameter Estimate S.D. Cred.Interval Estimate S.D. Cred.Interval

β0 -2.212 0.237 (-2.707,-1.773) -1.929 0.146 (-2.211,-1.64)
β1 0.123 0.092 (-0.049,0.312) � � �
β2 -0.009 0.127 (-0.261,0.240) � � �
β3 -0.789 0.181 (-1.137,-0.429) -0.777 0.188 (-1.154,-0.419)
β4 -0.401 0.189 (-0.765,-0.020) -0.444 0.170 (-0.785,-0.112)
λ0 -3.261 0.293 (-3.805,-2.666) -3.201 0.292 (-3.732,-2.588)
λ1 -0.825 0.404 (-1.610, -0.009) -0.866 0.401 (-1.670,-0.093)
λ2 -0.997 0.422 (-1.774,-0.131) -1.001 0.383 (-1.758,-0.238 )

that it has the lower DIC value and all the null hypotheses of its parameters are
rejected.

To compare the performance of the proposed model with the mean and
dispersion beta binomial regression models, the beta binomial model obtained
by assuming that Y ∼ Bin(m,π∗), where π∗ follows the beta distribution de�ned
by (8), was �tted to this dataset, assuming the mean regression structure (22) and
dispersion regression structure given by:

log(νi) = γ0 + γ1CBi + γ2LAi (24)

Their parameter estimates, standard deviations and 95% credible intervals
obtained from the application of Open Bugs are given in Table 4, Model 2a.
Assuming the mean regression structure (22) without the explanatory variables
Age and Gender, eliminated from the model at a level of 95%, and the �dispersion"
structure given by (24), the parameter estimates, standard deviations and 95%
credible intervals are reported in the same Table, Model 2b. The DIC values for
the beta binomial model (11) with regression structures de�ned by (22) and (23)
is DIC = 650.4. The DIC value of the reduced model is DIC = 649.7.

Table 4: Parameter estimates of the beta-binomial (mean and dispersion) regression
model. For Model 2a, DIC = 650.4. For Model 2b, DIC = 649.7.

Model 2a Model 2b
Parameter Estimate S.D. Cred.Interval Estimate S.D. Cred.Interval

β0 -2.325 0.307 (-2.927,-1.723) -1.939 0.151 (-2.232,-1.640)
β1 0.185 0.115 (-0.040, 0.407) � � �
β2 -0.063 0.163 ( 0.382, 0.261) � � �
β3 -0.747 0.191 (-1.119,-0.367) -0.759 0.186 (-1.121,-0.394)
β4 -0.415 0.190 (-0.788,-0.039) -0.446 0.187 (-0.813,-0.074)
γ0 2.419 0.252 ( 1.901, 2.889) 2.346 0.248 ( 1.842, 2.825)
γ1 0.055 0.345 (-0.640, 0.711) 0.209 0.321 (-0.416, 0.825)
γ2 0.680 0.329 ( 0.029, 1.322) 0.653 0.327 ( 0.002, 1.292)

Finally, given that in Model 2b, zero belongs to the credible interval of γ1,
we assumed a model with the mean regression structure (22), without age and
gender variables, and a overdispersion regression structure given by (24), without
cultural background (logit(πi) = β0 + β3CBi + β4LAi and log(νi) = γ0 + γ2LAi).
For this model, the posterior parameter estimates, standard deviations and 95%
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credible intervals are reported in Table 5, model 3. For this model, the DIC
value is DIC = 648.0. Of these mean and �dispersion� beta binomial regression
models, Model 3 in the best. This model has the lowest DIC value and all the null
hypotheses for the regression parameters are rejected at a level of 95%.

Table 5: Parameter estimates of the beta-binomial (mean and dispersion) regression
model. For Model 3, DIC = 648.0.

Model 3
Parameter Estimate S.D. Cred.Interval

β0 -1.951 0.145 (-2.237,-1.662)
β3 -0.709 0.163 (-1.027, -0.389)
β4 -0.460 0.184 (-0.823,-0.098)
γ0 2.421 0.215 ( 1.988, 2.822)
γ2 0.683 0.325 ( 0.044, 1.327)

The mean parameter estimations, although slightly di�erent, agree in the sense
that the estimates belong to the respective credible intervals. However, Cultural
Background is an explanatory variable of the overdispersion variance regression
structure (Model 1b) that does not belongs to the overdispersion regression
structure (Model 3). Of these two models, Model 1b is more appropriate given
that it has smaller sum of square errors (the sum of square error is SSv = 245.138
for Model 1b, and SSp = 245.885 for model 3) and it has better interpretation of
the regression parameters.

4. Conclusion

In this paper new parameterizations of the beta and beta-binomial distributions
are proposed in terms of the mean and variance parameters. From these new
parameterizations new beta and beta-binomial regression models are proposed
by assuming that appropriate functions of the mean and variance (precision)
parameters follow regression structures. The new regression models, improve the
parameter interpretation and the posterior parameter inferences.

From the new parameterizations of the beta distributions, a new parameter-
ization of the beta-binomial distribution is proposed by assuming that Y | n, π∗

follows a binomial distribution, where π∗ follows the(µ, σ2) beta distribution. From
this distribution, the beta binomial regression model is proposed by assuming
the mean and variance (precision) beta regression structures. The proposed µσ2

beta and beta binomial regression models are �tted respectively to the School
Absenteeism dataset and the Dyslexia Reading dataset. These applications
illustrate the good performance of the proposed models, in addition to the
advantage of the interpretation of the σ2 related to the interpretation of ν = p+ q
in beta regression models. In both models, the regression parameter estimates are
obtained by applying Bayesian methods using the OpenBugs software.

Many extensions of this paper can be developed. Appendix A proposes mean
and variance working variables to de�ne a Bayesian algorithm, like that proposed
in Cepeda-Cuervo (2001), to obtain the posterior regression parameter estimates.
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The respective frequentist parameter estimates can be obtained by applying
maximum likelihood methods to de�ne and develop a Fisher scoring algorithm.
Based on the advantages of the mean and variance (precision) parameterization of
the beta distribution, a new parameterization of the tilted beta and tilted beta-
binomial distributions can also be proposed.[
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Appendix A. Appendix

Appendix A.1. Bayesian Method

To propose a Bayesian method to �t the µσ2-beta regression models, a prior
distribution for θ = (β,λ)′ should be speci�ed. Following the Bayesian method
proposed in Cepeda-Cuervo (2001), normal prior distribution should be assumed
for the mean and variance regression parameters. Thus, given that the posterior
distribution π(β, λ | data) is analytically intractable, samples of β and λ can be
obtained from the full conditional posterior distributions, denoted by πβ and πλ,
respectively, updated by applying the Metropolis-Hastings algorithm.

This methods involves setting working variables to build kernel transition
functions, established from the posterior distribution obtained from the
combination of a normal working model and the normal prior distributions. When
the mean link is assumed to be the logit function, the mean working variable (A.1),
presented in Cepeda-Cuervo (2001), Cepeda & Gamerman (2005) and Cepeda-
Cuervo & Garrido (2015), is used to build the mean kernel transition function.

Ỹi = xt
iβ

(c) +
Yi − µ

(c)
i

µ
(c)
i (1− µ

(c)
i )

, i = 1, . . . n. (A.1)

The kernel transition function is obtained from a combination of the prior
distribution and the working observational models obtained by assuming that the
working variable (A.1) follows a normal prior distribution. To obtain samples of
the posterior conditional distribution πλ, when g(σ2

i ) = logit(4σ2
i ) is assumed as
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link function, the variance working variable is built from ti = (Yi−µi)
2, a random

variable ti such that E(ti) = σ2
i , from the �rst order Taylor approximation of

logit(4t) around the current value σ
2(c)
i of σ2

i . Thus, the working variable is given
by:

Ỹi = z′
iλ

(c) +
(Yi − µ

(c)
i )2)− σ2

i

4σ2
i (1− 4σ2

i )
− 1, i = 1, . . . n, (A.2)

and the kernel transition functions, as for the mean regression parameters, is
obtained from the combining the conditional prior distribution and the working
observational model obtained by assuming that the working observational variable
(A.2) follows a normal distribution.

Appendix A.2. Maximum Likelihood Parameter Estimates

Given that in the µσ2-beta regression models, the likelihood function is given
by L(β, λ) =

∏n
i=1 L(µi, σ

2
i ), where L(µi, σ

2
i ) is given by (9), 0 < µi < 1 and

0 < σ2
i < 1

4 , h(µi) = η1i, g(4σi
2) = η2i, η1i = xtβ and η2i = ztλ. Thus, the

�rst-order derivatives of the i-th components of ℓ(β, γ) = log(L(β, γ)) are given
by:

∂ℓi
∂βr

=
∂ℓi
∂µi

∂µi

∂η1i

∂η1i
∂βr

(A.3)

∂ℓi
∂λs

=
∂ℓi
∂σ2

i

∂σ2
i

∂η2i

∂η2i
∂λs

, (A.4)

The second-order derivatives of the logarithm of the likelihood function should be
obtained:

∂2ℓi
∂βs∂βr

=
( ∂2ℓi
∂βs∂µi

) ∂µi

∂η1i

∂η1i
∂βr

+
∂ℓi
∂µi

∂

∂βs

( ∂µi

∂η1i

∂η1i
∂βr

)
(A.5)

∂2ℓi
∂λs∂βr

=
( ∂2ℓi
∂λs∂µi

) ∂µi

∂η1i

∂η1i
∂βr

+
∂ℓi
∂µi

∂

∂λs

( ∂µi

∂η1i

∂η1i
∂βr

)
(A.6)

∂2ℓi
∂λk∂λs

=
( ∂ℓi
∂λk∂σ2

i

) ∂σ2
i

∂η2i

∂η2i
∂λs

+
∂ℓi
∂σ2

i

∂

∂λk

( ∂σ2
i

∂η2i

∂η2i
∂λs

)
(A.7)

Thus, the maximum likelihood estimates of β and γ can be obtained, for
example, by applying the Newton-Raphson algorithm.
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