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Abstract

The analysis of variance is a statistical technique widely used in the de-
sign of experiments and di�erent research areas. It has been modeled using a
classical or frequentist approach. With the computational power that is cur-
rently available, the Bayesian approach is an essential statistical tool related
to hypothesis testing. However, conformity with classical techniques, igno-
rance of Bayesian statistics, and lack of easy-to-use software are obstacles to
its frequent application. In this work, the use of a reproducible statistical
package in R is proposed. It presents options to perform an analysis of vari-
ance in a classical (frequentist) and Bayesian way when the assumptions of
the frequentist approach are not met or when a level of more speci�c inference
such as quantifying the evidence provided by a data set for a given hypothe-
sis, with the possibility of contributing to the understanding of the rejection
or not of the statistical hypotheses raised, through interactive graphics pre-
sented in an emerging Shiny panel.
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Resumen

El análisis de varianza es una técnica estadística ampliamente utilizada
en el diseño de experimentos y diferentes áreas de investigación. Ha sido
modelado utilizando un enfoque clásico o frecuentista. Con el poder com-
putacional que se tiene actualmente, el enfoque bayesiano es una herramienta
estadística esencial relacionada con las pruebas de hipótesis. Sin embargo,
la conformidad con técnicas clásicas, el desconocimiento de la estadística
bayesiana y la falta de software fácil de usar son obstáculos para su apli-
cación frecuente. En este trabajo, se propone el uso de un paquete es-
tadístico reproducible en R. Presenta opciones para realizar un análisis de
varianza de manera clásica (frecuentista) y bayesiana cuando no se cumplen
los supuestos del enfoque frecuentista o cuando se requiere un nivel de in-
ferencia más especí�co, como cuanti�car la evidencia proporcionada por un
conjunto de datos para una hipótesis dada, con la posibilidad de contribuir
a la comprensión del rechazo o no de las hipótesis estadísticas planteadas, a
través de grá�cos interactivos presentados en un panel Shiny emergente.

Palabras clave: ANOVA; Bayesiano; No paramétrico; Paramétrico; Soft-
ware R.

1. Introduction

In the realm of statistical methodologies, numerous techniques, each with dis-
tinct speci�cations, assumptions, advantages, and disadvantages, have been scru-
tinized based on their applicability to speci�c data frames; notably, the analysis
of variance (ANOVA) stands out, maintaining its position as a prevailing mode
(Kozak & Piepho, 2018). It is important to remember the variability that exists
between the pro�les of the users of the model since, just as researchers or statis-
ticians can use it, there are many cases in which people, who are not used to
studying statistical theory, use it as well. This is a potential reason for ANOVA to
be subject to multiple violations in its assumptions. It is generally assumed that
the residuals are normally distributed with mean 0 and variance σ2 to estimate
the unknown parameters in the model (Çelik & �eno§lu, 2018). This is probably
the best-known assumption, yet its validation is often mishandled. It is common
to see normality tests applied to raw data and not to residuals (Kozak & Piepho,
2018). Similarly, there are cases in which the assumption of homoscedasticity is
not evaluated in the best way. Other scenarios to consider are potential outliers
(Barnett et al., 1994) and missing values (Rubin, 1987). Once the test is shown
to apply to the data frame, reliable inferences can be made by validating the
assumptions.

If the assumptions are not met, especially the assumption of normality, the
immediate path that researchers usually take is to choose one of the non-parametric
tests (Flores et al., 2017). In the case of ANOVA, Kruskal-Wallis is used for the
same purposes. It does not assume normality in the residuals (Ostertagova et al.,
2014). However, these non-parametric tests, although it is said that they are not
linked to speci�c conditions, have a fundamental assumption, symmetry, which is
often not considered (Duller & Vorhauer, 2020). If the mean, median, and mode
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have the same value, it can be asserted that the statistical distribution of the
data is symmetric, which speeds up statistical inferences. Thus, applying tests
with medians and ranges becomes a plausible choice. If this is not true, it is good
practice to look for other methods that supply more reliable inferences. In addition
to this, it is known that non-parametric tests, as they belong to classical statistics,
use the p-value as a potential conclusion point. Increasing the sample size may
suggest statistical signi�cance due to some di�erences, although they may be small
(Jiménez-Paneque, 2016).

While traditional frequentist statistics pose certain challenges, especially in
complex experimental designs, there are many other ways to approach analysis of
variance use cases. The Bayesian approach to variance analysis not only addresses
these inherent di�culties but also provides a uni�ed framework for understanding
data variability and uncertainty. As highlighted by Wedel & Dong (2020), this
method o�ers a holistic perspective, bridging gaps that are often encountered in
classical statistical methodologies

Furthermore, Bayesian inference provides more opportunities for users allowing
knowledge to be updated based on data and previous knowledge about a speci�c
case. You can even monitor the evidence until the result is convincing enough or
the available resources have been exhausted (Wagenmakers et al., 2018). Never-
theless, using Bayesian inference techniques is less frequent than using classical
inference (Pambabay-Calero et al., 2020). It may be due to three causes:

� That the data meet the necessary assumptions for the correct use of classic
ANOVA

� Lack of knowledge of Bayesian models.

� Absence of an easy-to-use computational complement.

These three points are not exclusive because the probability that someone will
feel satis�ed with the classical methods can increase if ignorance of the Bayesian
approach methods or if no theoretical knowledge of software channels is added. It
allows it to be put into practice with relative ease. It is known that the Bayesian
analysis of variance is better addresses the di�culties caused by the lack of validity
in the assumptions of classical statistics. The �rst cause presented above can
already be discarded; more advantages are added to this. While the classic ANOVA
concludes considering the p-value and the level of signi�cance determined, having
as options Reject the null hypothesis or there is no statistical evidence to reject
the null hypothesis. The Bayesian approach allows quantifying how much evidence
a data set provides for a hypothesis (Wedel & Dong, 2020). The Bayes factor
quanti�es the relative predictive performance of rival models. In addition, there
is no need to limit the value of the Bayes factor. Finally, unlike the p-value, with
the Bayes factor, there is no need to establish a critical point or rejection zone to
perform a hypothesis test (van den Bergh et al., 2020). However, it is necessary
to include values that help the interpretation of the Bayes factor.

A signi�cant impediment to the widespread adoption of Bayesian tests is possi-
bly the lack of easy- to-use software for mainstream statistical problems
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(Wagenmakers et al., 2018). Currently, many researchers or people seeking the
application of analysis of variance, with su�cient theoretical knowledge or not,
have some tools at their disposal, the aov function of the stats package in R
(Collyer & Adams, 2018), the analysis of variance module of STATA (StataCorp.,
2019), the ANOVA procedure in SAS.(SAS Institute Inc., 1999), among others.
For this article, we will use the statistical software R (R Core Team, 2012). The
idea of acquiring other statistical programs with Bayesian inference implements,
such as JASP (van den Bergh et al., 2020), is not unreasonable. However, what
would happen if an interactive statistical complement that can be reproduced
from R for the Bayesian ANOVA test is presented? The likelihood that the person
reading this article will be completely satis�ed with the classical methods may be
reduced. Until recently, these tests had not been implemented in any software,
much less user-friendly software (Wagenmakers et al., 2018). The question stops
being in a utopian sense since that complement now exists, the interactivity that
it possesses makes it friendly, and the Bayesian procedures make it reliable.

An example is presented with the database of an experiment where the capacity
of the vetiver plant (Chrysopogon zizanioides) was analyzed to remove �ve pharma-
ceutical products classi�ed as contaminants from the water (Checa-Artos et al.,
2021), For this example, only the contaminating substance SULFAMETHOXA-
ZOLE will be considered. The diagnosis of the statistical tests of these data is
presented in Table 1. For the decision, an α (Type 1 error) = 0.05 is considered.

Table 1: Statistical diagnosis for the di�erent tests

Assumptions Test p-value Value Decision

Normality of residuals Kolmogorov-Smirnov 0.3832 Is met

Shapiro-Wilk 0.3865

Homoscedasticity of the residuals Bartlett Test < 2.2x10−16 Is not met

Symmetry of the residuals 0.1290* Is not met

Independence of the residuals Durbin Watson 0.006 Is not met
* Asymmetry coe�cient

To be able to apply classic ANOVA, the assumptions in Table 1 must be met.
However, this is not the case since the only assumption met is normality, while
the assumptions of homoscedasticity, symmetry, and independence are not met.
Therefore, to decide which path to take, given the inconvenience of not meeting
the assumptions, a decision diagram was designed, systematically facilitating the
statistical technique selection, depending on the compliance or non-compliance of
assumptions.

Figure 1 shows a �owchart, where the assumptions are mentioned and the avail-
able ways according to their meeting are established, ending with the technique
applicable to the data frame.
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The journey begins at the decision diamond a, where the assumption of nor-
mality of the residuals is questioned. If met, we proceed to diamond b where the
assumption of homoscedasticity of the residuals is asked if met. If this assumption
is validated, we move on to diamond c, where the assumption of independence
of the residuals is questioned. If the assumption is favorable, it is good practice
to apply the classic ANOVA model. However, if the assumption of independence,
homoscedasticity, or normality, mentioned in the decision diamonds c, b and a

respectively, are not met, we evaluate the assumption of symmetry of the residu-
als (diamonds d, e and k), If the assumption is met, the recommended technique
is Kruskal Wallis; if not met, an analysis of variance from the Bayesian approach
is advised. It is important to mention that the process can start directly with
Bayesian ANOVA to avoid evaluating assumptions.

The most appropriate technique to be used will be decided using Table 1 and
the �ow chart, reviewed in Figure 1, subjecting the data set systematically to
the assumptions suggested in the graph. We begin by evaluating the assumption
of normality of the residual, the diagnosis of the data frame, observed in Table
1, indicates that it is met. This answer leads to the next question, which deals
with homoscedasticity. Table 1 shows that this assumption is not met. From this
point, the classic ANOVA application is dropped. Following the path suggested by
the diagram is the symmetry assumption, which is not met either. Therefore the
non-parametric equivalent, Kruskal Wallis, should not be considered. Finally, the
path suggested by the diagram is applying the analysis of variance with a Bayesian
approach.

In the following, Section 2, �Materials and Methods�, examines the classical
ANOVA model, the Bayesian ANOVA model, and lays the foundation for an il-
lustrative example. Subsequently, in Section 3, the package, its availability, and
functions are introduced. In Section 4, the main results obtained from analyzing
the data set of the illustrative example using AovBay are presented. Finally,
Section 5 provides a discussion, followed by an annex in Section Appendix B.

2. Materials and Methods

2.1. One-Way ANOVA

When we only have one factor, the ANOVA model can be denoted as follows:

Yij = µi + ϵij ; i = 1, . . . , k , j = 1, . . . , ni (1)

where

� i represents the ith treatment of the factor, and the total number of treat-
ments is denoted by k.

� j represents observation j, the maximum number of j is ni, meaning the
total number of observations in treatment i.
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� Yij is the value taken by the response variable in the jth observation of the
ith treatment.

� µi is the mean of the ith treatment.

� ϵij is the random error, independent and identically distributed normally
with mean 0 and variance σ2.

� n = n1 + n2 + · · ·+ nk.

The classical analysis of variance focuses on testing the following hypotheses:

H0 : µ1 = µ2 = · · · = µk = µ versus H1 : µi ̸= µ for some i

The alternate hypothesis indicates that at least one µi (Treatment mean i) is
di�erent from the others.

The analysis of variance model compares the variations between groups (treat-
ments) and within groups (Ostertagova et al., 2013). If there is no e�ect of the
factor in the response variable, these variations will not be di�erent. Otherwise,
the di�erence between them will be re�ected in the F statistic, and the null hy-
pothesis will be rejected.

To attain the F , statistic, it is necessary to obtain the variation sources and
the degrees of freedom. The square sum of SSTR treatments with k − 1 degrees
of freedom, the square sum of the SSE residuals with n − k degrees of freedom,
and the total square sum SSTO with n− 1 degrees of freedom. The F statistic is
as follows:

F =
SSTR/(k − 1)

SSE/(n− k)
(2)

It is known that under the null hypothesis H0 the test statistic F follows an
Fk−1,n−k, distribution and under the alternate hypothesis as a non-central Fk−1,n−k,λ,
is distributed where λ is the decentralization parameter (Solari et al., 2008).

2.2. Bayesian ANOVA

The Bayesian paradigm, rooted in Bayes' theorem, provides a statistical ap-
proach that facilitates the updating of probabilities as new evidence emerges. Con-
trary to frequentist statistics, which focuses on observed frequencies, Bayesian statis-
tics interprets probability as a degree of belief or certainty. This perspective allows
for the integration of prior knowledge through prior distributions and their sub-
sequent updating with observed data to derive posterior distributions. While it
offers advantages in terms of flexibility and quantifying uncertainty, it also poses
challenges, such as the requirement for advanced computational techniques and the
inherent subjectivity in selecting prior distributions (Rendón-Macías et al., 2018).

Bayesian inference's main objective is to update knowledge through observa-
tions, which can be called learning (van den Bergh et al., 2020). In the one-way
analysis of variance, the null hypothesis is initially proposed. This hypothesis
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indicates that there is no e�ect on the mean of the distribution of the response
variable or on the alternative hypothesis, which considers the scenarios in which
this does not happen. With the Bayesian ANOVA, it is possible to determine
which hypothesis is most probable by comparing the subsequent probabilities of
each candidate model. If the scope is limited to one-way models, the candidate
models are the null model Θ0, which considers a single constant mean, and the
model that considers the e�ect of the treatments on the dependent variable Θ1. To
reach the subsequent model comparison, one must start from the prior knowledge
and include the plausibility of the data.

2.2.1. Prior

Once the hypotheses are identi�ed, their previous or prior probability π(Θi) is
determined. Having two hypotheses, the ratio between them is usually calculated:

π(Θ1)

π(Θ0)
(3)

so that π(Θ1) and π(Θ0) are the prior probabilities of the alternative and null
hypotheses, respectively. Having this ratio, there are three scenarios (Rendón-
Macías et al., 2018).

1. The ratio is equal to 1; this implies that the two hypotheses are equally
probable.

2. The ratio is greater than 1; previous information indicates that the alterna-
tive hypothesis is more likely.

3. The ratio is less than 1; it is previously known that the null hypothesis is
more likely.

2.2.2. Likelihood

Once the prior probabilities are in place, to update the knowledge, the infor-
mation provided by the data (y), the sampling distribution or distribution of the
data p(y|Θi) are required. The Bayesian inference indicates that two probability
models p(y|Θ) with the same likelihood function produce the same inference for
any hypothesis, under the assumption of equal prior probabilities.

2.2.3. Posterior

If we condition the known value of the data, using the conditional probability theory
or Bayes rule, the posterior density p(Θ|y) can be obtained (Gelman et al., 2013).

p(Θ|y) ∝ π(Θ)p(y|Θ) (4)

where, π(Θ) is the prior probability and p(y|Θ) the likelihood.

Revista Colombiana de Estadística - Applied Statistics 47 (2024) 87�109



AovBay 95

2.2.4. Bayes Factor

The Bayes factor (FB), analogous to the likelihood ratio, uses prior knowledge
to transform them into inferences, that is, to determine that a conclusion is correct
or incorrect based on probabilities (Goodman, 1999). Being a ratio, it can be
expressed as follows:

FB01 =
p(y|Θ0)

p(y|Θ1)
(5)

Where p(y|Θ0) and p(y|Θ1) are the data distributions under the null and alternate
hypotheses, respectively.

If FB10, is required, just get the reciprocal of FB10, FB01 = 1
FB10

(Rouder
et al., 2012).

This likelihood ratio can be used to �nd a ratio that involves further knowledge
by looking at the equation 4.

p(Θ0|y)
p(Θ1|y)

=
p(y|Θ0)

p(y|Θ1)

π(Θ0)

π(Θ1)
= FB01

π(Θ0)

π(Θ1)
(6)

where π(Θ0)
π(Θ1)

is the ratio stated in equation 3.

In this way, it can be concluded with the subsequent knowledge. The Bayes
factor is responsible for the change in beliefs, re�ected in the ratio of the posterior
probabilities (Rouder et al., 2012).

The Bayesian Factor, pivotal in Bayesian statistics, facilitates a quantitative
juxtaposition of evidence between competing hypotheses, capitalizing on its ability
to assimilate prior information and its detachment from p-values. Nonetheless,
its deployment can be computationally demanding, and the subjective selection
of prior distributions, coupled with the imperative for adept interpretation and
the potential for inconclusive outcomes, mandates that scholars approach this
instrument with discernment and profound acumen (Ramos-Vera, 2021; Guillen &
Chaparro, 2021; Lintusaari et al., 2017)

2.3. Illustrative Example

We used a study in which �ve pharmaceutical products, aqueous solutions
were prepared using ultrapure methanol at four concentrations: 3 mg/L, 6 mg/L,
9 mg/L, 12 mg/L and four sampling times. Later the vetiver species was intro-
duced (Chrysopogon zizanioides), the experiment was carried out under speci�c
conditions. The response variable is the percentage of removal of these pollutants.
If the reader wants to delve into this investigation, carried out with response sur-
faces, see Checa-Artos et al. (2021).

In this example, the polluting substance SULFAMETOXAZOLE is used. The
concentration of the pollutant (in ppm) is delimited as a factor.

Table 2 shows that it is not a balanced design since the number of experimental
units is not the same at each factor level. Therefore, to perform the complete
analysis of this data set, the AovBay, package will be used, described below.
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Table 2: Illustrative example data description

Treatments Experimental units

Concentration 3 4

Concentration 6 2

Concentration 9 2

Concentration 12 4

3. The Package

3.1. Availability

The package AovBay (Rojas-Campuzano & Pambabay-Calero, 2021) is avail-
able from the Comprehensive R Archive Network at https://cran.r-project.
org/web/packages/AovBay/. It can be downloaded as follows:

install.packages('AovBay')

3.2. Functions and Arguments

It includes the aovbayes(), function, which only has the argument data, corre-
sponding to the data set. The function can be called as follows:

library(AovBay)

data("PollutionData")

aovbayes(PollutionData)

The output of this statement is a shiny panel, where a window dedicated to loading
or updating the data set is displayed. This window can be seen in Figure 2.

Figure 2: Partial data upload window, upload from the function
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It is even possible to access the shiny panel, calling the function without spec-
ifying any argument, as follows:

library(AovBay)

aovbayes()

The user can enter the database from the panel without entering it in R. The
output can be seen in Figure 3.

Figure 3: Data upload window, upload from the panel

The function does not contain more arguments; however, this does not mean
that the user receives a �xed, unchangeable output. It is possible to change ar-
guments in the statistical tests or simulations within the pop-up application in a
friendly and reactive way. The latter implies that if any argument is changed, the
output will be refreshed and presented based on the new argument without the
need to rerun the function.

A menu is presented, where the assumptions, a window with the output of the
classic ANOVA, another with Kruskal Wallis, and another with Bayesian ANOVA
are made available to the user, as seen in Figure 4.

Figure 4: Emergent shiny panel menu
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4. Results

For the description of the results, the diagram of techniques is used according
to the compliance of the assumptions reviewed in Figure 1.

4.1. Assumptions

The package allows the evaluation of assumptions graphically and through
statistical tests. First, the conclusion is presented, based on the p-value of the
applied test and the α (type 1 error) with which the user wishes to carry out the
contrasts. If this value is not to be changed, α = 0.05 remains. Subsequently, an
account of the validated assumptions is made, and the appropriate technique is
suggested.

4.1.1. Normality of Residuals

To evaluate the assumption of normality of the residual, the Kolmogórov-
Smirnov test is used with the Lilliefors correction. The Shapiro-Wilk test was used
because the sample size is less than 30 (Gandica de Roa, 2020). The aovbayes()
function evaluates this condition and returns the appropriate residual normality
test. Finally, based on the p-value and the α (type 1 error) selected by the user,
the decision is presented. Additionally, there is the QQ plot, which contributes to
the veri�cation of the inference.

Figure 5: Normality of the residual, assumption of the classical approach, package
output

Figure 5 presents the output provided by the package when evaluating the nor-
mality of the residuals with the data from the illustrative example. The Shapiro-
Wilk test suggests that the residuals can come from a normal distribution. The
QQ plot shows this inference.

Following the route proposed in Figure 1, the next step is to verify if the
assumption of homoscedasticity of the residuals of the ANOVA model, shown in
equation 1, is met.
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4.1.2. Homoscedasticity of the Residuals

The assumption of homoscedasticity of the residuals is veri�ed with the Bartlett
test, which aims to prove that the variances in the k populations, determined by the
treatments, are the same (Aslam, 2020). The graph of residuals versus Adjusted
Values also identi�es possible sections in which the variance is not the same.

Figure 6: Homoscedasticity of the residual, assumption of the classical approach,
package output

The result of the Bartlett test is observed in Figure 6. Thep-value is very
close to zero, concluding that the homoscedasticity assumption is not met. This
is con�rmed with the graph of residuals versus adjusted values, where the increase
in variance is appreciated as one moves to the right, showing heteroscedasticity.

By not meeting this assumption, the diagram presented in Figure 1 suggests
testing the assumption of symmetry. However, to �nish the assumptions related to
parametric statistics, the assumption of independence of the residuals is presented.

4.1.3. Independence of the Residuals

The assumption of independence is veri�ed with the Durbin Watson test. The
presence of autocorrelation in the residuals of the linear model is contrasted. This
happens when the sequential residuals are correlated so that if the residuals are
plotted against time, graphic patterns are obtained. This behavior is called �rst-
order autoregressive.

The Durbin Watson test is observed in Figure 7. Thep-value is very close to
zero; it can be inferred that it is highly probable that there are autocorrelations,
that is, that the independence assumption is not met.

4.1.4. Symmetry of the Residuals

The assumption of symmetry is tested with the coe�cient of skewness. A
symmetric distribution has an asymmetry coe�cient equal to 0. Therefore, the
cases in which this is not met are considered responsible for the non-validation of
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Figure 7: Independence of the residual, assumption of the classical approach,
package output

the assumption. In addition, the histogram of the residuals is included to verify
that the symmetry is present immediately.

Figure 8: Symmetry of the residual, assumption of the non-parametric approach, pack-
age output

Figure 8 shows the coe�cient of skewness is positive; there is a bias in the right
tail. Therefore, the symmetry assumption is not met, and consequently, the use
of non-parametric statistics is discarded.

4.2. Appropriate Technique Selection

Once the assumptions have been analyzed, the next step is to select the appro-
priate technique. To this end, the package provides a suggestion to the user.

Figure 9: Recommended technique based on compliance with assumptions, package
output
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Depending on the compliance with the assumptions, the available techniques,
and the most appropriate ones are presented. Figure 9 shows the package sug-
gestion of the most appropriate technique based on the assumptions. The red
color indicates that the test is not feasible due to non-compliance with the statis-
tical assumptions. While the green color indicates that making use of this test is
feasible.

4.3. Bayesian Analysis of Variance

The packages BayesFactor (Morey & Rouder, 2018) and rstan (Stan Devel-
opment Team, 2020). were used to obtain the results of the analysis of variance
with a Bayesian approach. The �rst step is specifying the prior of the alternative
model. A scenario is proposed in which it is not known if the factor a�ects the
response variable. Therefore, the prior probability will remain with a 0.5 value.
The number of iterations for Monte Carlo1 , simulations is initially set to 1000 as
the minimum reference number (Flegal et al., 2008). However, if the user wants
to increase the value of this argument, they have the option of doing so. Similarly,
it is possible to choose the number of Markov2, chains. Increasing this number
provides the user with a multiplication e�ect of the sample size, decreasing the
sampling error and the autocorrelation. In addition, this reduces the probability
that the chain will focus on a local optimum.

The Bayesian analysis of variance table, visible in Figure 10, presents the prior
probabilities of the alternative model and the null model; subsequently, it shows
the Bayes factor, BF10 = 18.359, This means that the alternative model consid-
ering the e�ect of the concentration of SULFAMETOXAZOLE on the percentage
of removal of the pollutant in the presence of the vetiver species (Chrysopogon
zizanioides), is 18,359 times more likely than the null model, which only considers
the large mean. Therefore, according to the scale of interpretation values of the
Bayes factor, revised in Gelman et al. (2013), there is strong evidence in favor of
the rejection of the null hypothesis.

Additionally, in Figure 10, there is a Table showing the posterior mean Mean,
the standard error of the mean of the SE Mean, parameter, the standard deviation
of the SD parameter, the 2.5, 25, 50, 75, 97.5 percentiles, the estimated e�ective
sample size n e� 3 and the potential downscaling statistic Rhat4, for the subsequent
distributions of the overall mean, the deviation between groups, deviation within
groups, and each treatment.

As part of the method, the Markov chain method is used, which, through a
Monte Carlo simulation, presents the subsequent distribution of the mean, vari-
ance, and treatments. This can be seen in Figure 12.

1Markov chain is a popular tool in the random systems environment, where the simulation of
each value is tied only to the immediately preceding value (Li et al., 2020)

2The Monte-Carlo Markov chain (MCMC) is a widely used method for estimating subsequent
distributions in Bayesian inference (Pambabay-Calero et al., 2021)

3The generated Markov chain has approximately the same precision that would be obtained
from an independent sample of n e� size (Ruppert, 2011). The higher this value, the better

4When Rhat is close enough to 1, the diagnosis declares convergence (Vats & Knudson, 2021)
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Figure 10: Bayes factor and subsequent summary. Bayesian analysis of variance,
package output

Abbreviations: BF, Bayes Factor; par, Parameter; se_mean, Mean
Squared Error; sd, Standard Desviation; n_e�, E�ective sample size;
Rhat, potential scale reduction factor on split chains: Mu, Mean.

Figure 11: Markov Chains with 1000 iterations

In Figure 11 you can see the Markov chains and the statistical distributions
generated by the MCMC method. It is observed that, with the treatment that
considers a concentration of 3 mg/L, there is a di�erent behavior, observable in
the density curves. There is a shift to the right, while the distributions of the
treatments with 6 mg/L, 9 mg/L, and 12 mg/L are close together, even almost
entirely overlapping. This can also be evidenced in the Markov chains, shown in
Figure 11. The blue line, corresponding to the treatment with 3 mg/L of pollutant
concentration, is higher than the others, corresponding to the other treatments.
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Figure 12: Posterior marginal distributions

Work is underway on the new version of the AovBay package, in which the
Evans relative belief ratio will be incorporated.

5. Discussion

This article emphasizes the advantages of using the Bayes factor before thep-
value. However, the test of statistical assumptions, parametric and non-parametric
contrasts, being part of classical statistics, continue to depend on this value. Even
the decision that is presented in the shiny panel, when evaluating the assumptions,
is the result of the interpretation of the test using thep-value. The Bayes factor is
invariant before linear transformations and is more computationally stable because
it has algorithms de�ned for sampling and obtaining the subsequent distributions.
However, when it comes to statistical inference, thep-value is more used in most
statistical contrasts. According to Rouder et al. (2012), this may be since it is not
usual to �nd formulas or computational tools based on the Bayes factor that is
easy to use. The AovBay package breaks this paradigm, demonstrating that it is
possible to incorporate Bayesian inference, R statistical software, and interactivity,
responsible for the easy use of the tool.

Table 2, which describes the data for the illustrative example, indicates that
there are few experimental units in each treatment in addition to not being a bal-
anced design. It isn't easy to describe the behavior of a population when there
are only two observations. When performing the Bayesian analysis of variance,
this is no longer an inconvenience since, when the Markov Monte-Carlo chains
are generated, the subsequent distribution of these populations, belonging to the
treatments, is obtained with the number of iterations that the user wants to per-
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form. It is easier and more convenient to infer on a population with 1000 (or more)
observations than with 2, as are the treatments with concentrations 6 mg/L and
9 mg/L (Table 2). Furthermore, when comparing the subsequent distributions
with the density curves, it is no longer necessary to make multiple comparisons of
means, as in the case of classical analysis of variance.

The results of the analysis of variance with a Bayesian approach, obtained with
the proposed tool, re�ect that there are signi�cant di�erences in the concentration
levels of the pollutant. If the subsequent density curves presented in Figure 12,
are analyzed, the treatment with 3 mg/L presents a shift to the right, away from
the other curves, a behavior that is also seen in the Markov chains, also shown
in Figure 11. In this case, the line that corresponds to the simulations of the
distribution of the population from the treatment with 3 mg/L is higher than the
others. With this outcome, it can be inferred that the treatment with 3 mg/L is
responsible for a higher percentage of pollutant removal.

The results obtained by Checa-Artos et al. (2021),using response surfaces, indi-
cate that it would be necessary to �nd the optimum removal percentage to reduce
the concentrations in the case of the sulfamethoxazole pollutant. Still, due to the
conditions of the experiment, the 3 mg/L concentration is considered the best op-
tion to obtain a higher percentage of pollutant removal. Therefore, the conclusion
obtained with the results of the AovBay package is the same as that obtained in
the study of response surfaces.

If the user wishes to compare the result obtained with the Bayesian approach
and the one obtained with classical statistics. In that case, the emerging shiny
panel also includes the classical analysis of variance, with post hoc test and the
non-parametric equivalent of Kruskal Wallis, visible in Figures B1, B2 and B3,
respectively.

In the case of analysis of variance, the proposed tool to decide which tech-
nique to apply provides researchers with ease in interpreting the statistical results
through detailed data analysis and the interactivity achieved with the highcharter
packages and shiny within RStudio. Although initially the most appropriate tool
is recommended, depending on the compliance of assumptions, the shiny panel
presents the three approaches to the analysis of variance so that data analysts and
users of this tool can assess it and make appropriate decisions.

Due to those mentioned above, the analysis of univariate variance aims to test
linear hypotheses about the in�uence of the di�erent levels of one or more factors
on the behavior of a variable (one-dimensional). Thus, future work intends to
carry out an interactive tool for the multivariate analysis of variance (MANOVA),
which considers a vector (multidimensional) of variables.[
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Appendix A. Relevant Formulas

Appendix A.1. One-way ANOVA

Yij = µi + ϵij ; i = 1, . . . , k , j = 1, . . . , ni

where

� i represents the ith treatment of the factor, and the total number of treat-
ments is denoted by k.
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� j represents observation j, the maximum number of j is ni, meaning the
total number of observations in treatment i.

� Yij is the value taken by the response variable in the jth observation of the
ith treatment.

� µi is the mean of the ith treatment.

� ϵij is the random error, independent and identically distributed normally
with mean 0 and variance σ2.

� n = n1 + n2 + · · ·+ nk.

Appendix A.2. F statistic

F =
SSTR/ (k − 1)

SSE/ (n− k))

Appendix A.3. Prior

The ratio between two priori probabilities

π(Θ1)

π(Θ0)

so that π(Θ1) and π(Θ0) are the prior probabilities of the alternative and null
hypotheses, respectively.

Appendix A.4. Posterior

The posterior density p(Θ|y) can be obtained.

p(Θ|y) ∝ π(Θ)p(y|Θ)

where, π(Θ) is the prior probability and p(y|Θ) the likelihood.

Appendix A.5. Bayes Factor

The Bayes factor (FB) can be expressed as follows:

FB01 =
p(y|Θ0)

p(y|Θ1)

Where p(y|Θ0) and p(y|Θ1) are the data distributions under the null and alternate
hypotheses, respectively.
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Appendix B. Annexes

Figure B1: Analysis of variance from the classical approach, package output

Figure B2: Post Hoc Tests (Classic Anova), Package output

Figure B3: Kruskal Wallis (Non-parametric analysis of variance), package output
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