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Abstract

This work provides Double Sampling (DS) inspection plans considering
the average lifetime as a quality characteristic which follows one parame-
ter polynomial exponential (OPPE) family of distributions. Exponential,
Lindley, Akash, Aradhana, Sujatha, length-biased Lindley, etc., are a few
particular cases of the OPPE family. The quality of a lot is computed in
this technique, by the lot average (µ) for �rst sample and, for the second
sample we have taken combined mean to measure the lot quality. Also, we
have estimated the optimum value of parameters of the proposed plan by
non-linear optimization approaches considering acceptable quality level and
rejectable quality level. A comparison part of the study is given, with re-
spect to the sample size, between the Double Sampling (DS) plan and the
Single Sampling (SS) plan for the variable. To describe the proposed work,
we have also taken one example.

Key words: Consumer's risk; Lindley distribution; Operating characteris-
tics curve; Producer's risk; Single sampling inspection plan.

Resumen

Este trabajo proporciona planes de inspección de doble muestreo (DS)
considerando la vida útil promedio como una característica de calidad que
sigue una familia de distribuciones polinomiales exponenciales (OPPE). Ex-
ponencial, Lindley, Akash, Aradhana, Sujatha, Lindley con sesgo de longitud,
etc., son algunos casos particulares de la familia OPPE. La calidad de un lote
se calcula en esta técnica, mediante el promedio del lote (µ) para la primera

aPh.D. E-mail: dssm1@redi�mail.com
bM.Sc. E-mail: svnbis007@gmail.com

211



212 Sudhansu S. Maiti & Shovan Biswas

muestra y, para la segunda muestra, hemos tomado la media combinada para
medir la calidad del lote. Además, hemos estimado el valor óptimo de los
parámetros del plan propuesto mediante enfoques de optimización no lineal
considerando el nivel de calidad aceptable y el nivel de calidad rechazable. Se
da una parte comparativa del estudio, con respecto al tamaño de la muestra,
entre el plan de Doble Muestreo (DS) y el plan de Muestreo Único (SS) para
la variable. Para describir el trabajo propuesto, también hemos tomado un
ejemplo.

Palabras clave: Curva de características de operación; Distribución Lind-
ley; Plan de inspección por muestreo único; Riesgo del Consumidor; Riesgo
del productor.

1. Introduction

The best achievement of an industry is to supply good products to the con-
sumers according to their satisfaction level. Therefore, the main key of success
for a company is to improve product quality. In this way, quality testing become
so important to every industrial house. Di�erent statistical tools and techniques
are used for this purpose. One of the most e�cient and useful lot monitoring
techniques is the acceptance sampling plan, which is very popular in the indus-
try. Basically, two acceptance sampling approaches are very conventional to the
industrialist. One is the attribute-type sampling approach, and the other is the
variable-type sampling approach. A crucial advantage of the variable type sam-
pling approach is that taking equal protection, it holds a smaller sample size than
the attribute type sampling approach. A variable-type sampling approach is ben-
e�cial in minimizing the monitoring cost in the situation of destructive testing.

Various industry has di�erent opinions on choosing the proper approach to
monitoring a lot, like Single Sampling (SS), Cascade Sampling (CS), Two stage
sampling (TSS), Double sampling (DS), etc. Before the 1990s, the DS plan for
attribute and variable characteristics was studied. The Bayesian approach to the
DS plan was also discussed.

Based on the Acceptable Quality Level (AQL) - Limiting Quality Level (LQL)
concept, Soundararajan & Arumainayagam (1990) introduced a generalised pro-
cedure for double sampling plan for attribute through example. Govindaraju &
Subramani (1992) gave some tables and procedures for �nding the double sampling
plan, conditional double sampling plan, link sampling plan, ChSP-4 and ChSP-
4A chain sampling plans involving minimum sum of producer's and consumer's
risks for speci�ed Acceptable Quality Level and Limiting Quality Level. Baillie
(1992) described double sampling plan for variable when the process standard
deviation was unknown. Arumainayagam & Soundararajan (1995) quick switch-
ing double sampling plan and compared with existing plan. Vijayaraghavan &
Soundararajan (1998) designed skip-lot sampling plan with double-sampling plan
as the reference plan by number of non-conforming units. Balamurali & Kalyana-
sundaram (1999) discussed conditional double sampling plan by various combina-
tions of entry parameters and compared with single sampling plan. Feldmann &
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Krumbholz (2002) introduced ASN-minimax double sampling plans for variables
where they used one-sided lower speci�cation limit. Considering Six Sigma Qual-
ity Levels, Radhakrishnan & Sivakumaran (2009) constructed of double sampling
plans by counting the number of non-conformities. Aslam et al. (2010) designed a
double sampling plan for a general life distribution considering a time-truncated
situation. Jamkhaneh & Gildeh (2012) constructed acceptance double sampling
plan using Fuzzy Poison Distribution. Sampath & Deepa (2012) proposed optimal
double sampling plan through some di�erent way that is called genetic algorithm.
Balamurali et al. (2012) explained another Bayesian double sampling plan under
Gamma-Poison Distribution by considering the number of non-conformities. Us-
ing double sampling plan as the reference plan, Balamurali & Subramani (2012)
constructed the skip-lot sampling plan of type SkSP-2 for optimal design. Aslam
et al. (2012) optimised the designing of an SkSP-V skip-lot sampling plan using
double-sampling plan as the reference plan. Vangjeli (2012) proposed the ASN-
minimax double sampling plans for variables using two-sided speci�cation limits
when the standard deviation is known. Nezhad et al. (2015) explained economic
optimal double sampling design with zero acceptance numbers. Nezhad & Sei�
(2017) designed the optimal double-sampling plan based on process capability in-
dex. Suresh & Usha (2016) constructed of Bayesian double sampling plan using
minimum angle method. Balamurali et al. (2018) described optimal designing of
an SkSP-R double sampling plan. Butt et al. (2019) proposed a double sampling
plan for selecting a better supplier comparing two suppliers with linear pro�les.
Balamurali et al. (2020) introduced a mixed double sampling plan based on process
capability index. Arizono et al. (2020) proposed a stage-independent double sam-
pling plan for variables considering acceptance quality loss limit inspection scheme.
Murugeswari et al. (2021) explained the optimal format of a skip-lot re-inspection
plan with a double sampling plan as a reference. Khired et al. (2021) introduced
the re�ned double sampling scheme with measures and application. Saranya et al.
(2022) proposed the design of double sampling inspection plans for life tests under
time censoring based on Pareto type IV distribution.

But, no author considers the Lindley distribution [see, Lindley (1958), Ghi-
tany et al. (2008)] as a lifetime quality model in the context of a variable type
double sampling approach. And, hardly any author incorporated combined mean
as a lifetime quality characteristic when drawing 2nd sample. Lindley distribution
has recently gained momentum as it has more �exibility with respect to mean
remaining life, failure rate, etc. In the acceptance sampling plan work, Tripathi
et al. (2020) and Biswas & Maiti (2022) applied Lindley distribution as a lifetime
model. In this paper, we have tried to establish a double sampling inspection
plan based on the combined mean for Lindley distribution, and we expect that it
would be more e�cient than the single sampling inspection plan recommended by
Mukherjee & Maiti (2014).

We have also incorporated the OPPE distributed characteristic in the double
sampling plan. The sampling plan is executed based on the mean only. We do not
consider speci�cation limits or other criteria. Since this di�ers from previous ap-
proaches, we compare the proposed plan with the SS plan developed by Mukherjee
& Maiti (2014).
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We have emphasized di�erent sections of the work in di�erent ways. Section
2 explains the technique of the DS approach. There is a short description of
estimation of plan parameters for OPPE model in Section 3. The parameters of the
plan that we estimated by considering both exponential and Lindley distribution.
A comparison of the proposed DS plan with the SS plan is presented in Section
4. Section 5 describes the applied part of our work through some real datasets.
Finally, a concluding remarks is pivoted in Section 6.

2. Double Sampling Inspection Plan

Let, X be the lifetime quality measure under any distributional assumption
and the quality is measured by mean (µ). Now, the DS plan for variable is as
follows.

Let us assume that the lifetime of the units follows a speci�ed probability
distribution with unknown mean µ. We consider that larger the value of µ better
is the quality. Suppose, µ0 and µ1 denote the AQL and LQL based on the mean
respectively.

Step 1: Choose the values of (µ0, µ1) at producer's risk (α) and consumer's risk (β).

Step 2: Take a random sample of size n1, say (X11, X12, . . . , X1n1
), from the lot.

Suppose, X1i be the lifetime of ith unit, and compute the sample mean

X̄1 = 1
n1

n1∑
i=1

X1i.

Step 3: Accept the lot if X̄1 ≥ c1, reject the lot if X̄1 < c2; and, if c2 ≤ X̄1 < c1
then, follow Step-4.

Step 4: Draw the 2nd random sample of size n2, say (X21, X22, . . . , X2n2), from the

lot and compute the sample mean X̄2 = 1
n2

n2∑
i=1

X2i. Also, take n = n1 + n2

and, compute the combined mean, ¯̄X = n1X̄1+n2X̄2

n1+n2
. Then, accept the lot if

¯̄X ≥ c2, reject the lot if
¯̄X < c2.

Therefore, the Operating characteristic (OC) function of the proposed DS plan is

L(µ) = Probability of accepting a lot with quality µ

= P
(
X̄1 ≥ c1|µ

)
+ P

(
c2 ≤ X̄1 < c1|µ

)
P
(
¯̄X ≥ c2|µ

)
= P

(
n1∑
i=1

X1i ≥ n1c1|µ

)
+

[
P

(
n1∑
i=1

X1i ≥ n1c2|µ

)

−P

(
n1∑
i=1

X1i > n1c1|µ

)]
P

(
n1∑
i=1

X1i +

n2∑
i=1

X2i ≥ (n1 + n2)c2|µ

)
= L1(µ) + [L2(µ)− L1(µ)]Lp(µ), (1)
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where, L1(µ) = P

(
n1∑
i=1

X1i ≥ n1c1|µ
)
, L2(µ) = P

(
n1∑
i=1

X1i > n1c2|µ
)
,

and, Lp(µ) = P

(
n1∑
i=1

X1i +
n2∑
i=1

X2i ≥ (n1 + n2)c2|µ
)
.

A submitted lot may be accepted or rejected in an acceptance sampling plan
based on sampled items from the lot(s). The probability of rejecting a good lot
by the customer under any plan is called the producer's risk and is denoted by
Pp, while the probability of accepting a bad lot by the customer is called the
consumer's risk, which is denoted by Pc. The producer's risk and the consumer's
risk for the proposed plan are

Pp(µ0) = 1− L(µ0)

= 1− L1(µ0)− [L2(µ0)− L1(µ0)]Lp(µ0)

= 1− P

(
n1∑
i=1

X1i ≥ n1c1|µ0

)
−

[
P

(
n1∑
i=1

X1i ≥ n1c2|µ0

)

−P

(
n1∑
i=1

X1i > n1c1|µ0

)]
P

(
n1∑
i=1

X1i +

n2∑
i=1

X2i ≥ (n1 + n2)c2|µ0

)
(2)

and,

Pc(µ1) = L(µ1)

= L1(µ1) + [L2(µ1)− L1(µ1)]Lp(µ1)

= P

(
n1∑
i=1

X1i ≥ n1c1|µ1

)
+

[
P

(
n1∑
i=1

X1i ≥ n1c2|µ1

)

−P

(
n1∑
i=1

X1i > n1c1|µ1

)]
P

(
n1∑
i=1

X1i +

n2∑
i=1

X2i ≥ (n1 + n2)c2|µ1

)
(3)

where, µ0 and µ1 are AQL and LQL respectively.

3. Estimation of the Plan Parameters

The consumer often establishes a sampling plan for a continuous supply of raw
materials regarding an AQL. AQL represents the minimum level of quality for
the supplier's process that the consumer would consider acceptable at a process
average. Note that AQL is a property of the supplier's manufacturing process,
not a property of the sampling plan. The consumer will often design the sampling
procedure so that the OC curve gives a high probability of acceptance at AQL.
The consumer will also be interested in the other end of the OC curve, i.e., in
the protection obtained for an individual lot of poor quality. In such a situation,
the consumer may establish an LQL. It is the minimum level of quality that the
consumer is ready to accept in an individual lot. It is to be noted that LQL is
also not a characteristic of the sampling plan but is a level of lot quality speci�ed
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by the consumer. It is possible to design a sampling plan that gives the speci�ed
probability of acceptance at LQL. Subsequently, the plan parameters are deter-
mined to minimize the sample size n such that α is satis�ed at AQL(µ0) and β is
met at LQL(µ1). Thus, consider the following non-linear optimization problem.

Minimize n, subject to

Pp(µ0) = 1− L(µ0) ≥ (1− α), (4)

and

Pc(µ1) = L(µ1) ≤ β. (5)

To determine ni and ci for i = 1, 2; �rst we �x a value of ni and then choose
that ci for which (4) is satis�ed. In this way, one can have several combinations
of (n1, n2, c1, c2) for which (4) is true. Hence, that pair of (n1, n2, c1, c2) is chosen
for which (5) is to be satis�ed and will be very nearer to β, if not exactly equal.
This procedure is to be followed in all the considered models under discussion.

Suppose X is the quality characteristic that follows any one of the distributions
mentioned earlier with scale parameter θ. The OC function, producer's risk, and
consumer's risk of the plan for the considered models are given in the sequel.

3.1. One Parameter Polynomial Exponential Family

of Distribution

Bouchahed & Zeghdoudi (2018) have proposed the distribution known as one
parameter polynomial exponential (OPPE) family of distribution. The pdf of a
random variable X from OPPE distribution can be written as

f(x) = h(θ)p(x)e−θx;x, θ > 0,

where, h(θ) = 1
r∑

k=0

ak
Γ(k+1)

θk+1

and, p(x) =
r∑

k=0

akx
k, with known non-negative con-

stants, ak's and known non-negative integer, r.
The distribution can also be written as

f(x) = h(θ)

r∑
k=0

akx
ke−θx

=

r∑
k=0

ak
Γ(k+1)
θk+1 fGA(x; k + 1, θ)

r∑
k=0

ak
Γ(k+1)
θk+1

, (6)

where, fGA(x; k + 1, θ) is the pdf of gamma distribution with shape parameter
(k + 1) and scale parameter θ.
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The OC function is given by (detailed derivation is in Appendix)

L(θ) = L1(θ) + [L2(θ)− L1(θ)]Lp(θ)

= 1− {h(θ)}n1
∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))
qk θ

−
r∑

k=0

(k+1)qk

×Γ

(
θn1c1,

r∑
k=0

(k + 1)qk

)
+

[
{h(θ)}n1

∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

×
r∏

k=0

(akΓ(k + 1))
qk θ

−
r∑

k=0

(k+1)qk
Γ

(
θn1c1,

r∑
k=0

(k + 1)qk

)
− {h(θ)}n1

×
∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))
qk θ

−
r∑

k=0

(k+1)qk

×Γ

(
θn1c2,

r∑
k=0

(k + 1)qk

)][
1− {h(θ)}(n1+n2)

∑
q0

∑
q1

· · ·
∑
qr

(n1 + n2)!

q0!q1! · · · qr!

×
r∏

k=0

(akΓ(k + 1))
qk θ

−
r∑

k=0

(k+1)qk
Γ

(
θ(n1 + n2)c2,

r∑
k=0

(k + 1)qk

)]
. (7)

The parameters of the plan are determined to minimize the sample size n =
n1 + n2 by the following non-linear optimization problem.

Pp(θ0) ≥ 1− α and, Pc(θ1) ≤ β.

ie. Minimize n = n1 + n2, subject to

1− {h(θ0)}n1
∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))qk θ0
−

r∑
k=0

(k+1)qk

×Γ

(
θ0n1c1,

r∑
k=0

(k + 1)qk

)
+

{h(θ0)}n1
∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))qk

×θ0
−

r∑
k=0

(k+1)qk
Γ

(
θ0n1c1,

r∑
k=0

(k + 1)qk

)
− {h(θ0)}n1

∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

×
r∏

k=0

(akΓ(k + 1))qk θ0
−

r∑
k=0

(k+1)qk
Γ

(
θ0n1c2,

r∑
k=0

(k + 1)qk

)[1− {h(θ0)}(n1+n2)

×
∑
q0

∑
q1

· · ·
∑
qr

(n1 + n2)!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))qk θ0
−

r∑
k=0

(k+1)qk

×Γ

(
θ0(n1 + n2)c2,

r∑
k=0

(k + 1)qk

)]
≥ 1− α,
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and,

1− {h(θ1)}n1
∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))qk θ1
−

r∑
k=0

(k+1)qk

×Γ

(
θ1n1c1,

r∑
k=0

(k + 1)qk

)
+

{h(θ1)}n1
∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))qk

×θ1
−

r∑
k=0

(k+1)qk
Γ

(
θ1n1c1,

r∑
k=0

(k + 1)qk

)
− {h(θ1)}n1

∑
q0

∑
q1

· · ·
∑
qr

n1!

q0!q1! · · · qr!

×
r∏

k=0

(akΓ(k + 1))qk θ1
−

r∑
k=0

(k+1)qk
Γ

(
θ1n1c2,

r∑
k=0

(k + 1)qk

)[1− {h(θ1)}(n1+n2)

×
∑
q0

∑
q1

· · ·
∑
qr

(n1 + n2)!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))qk θ1
−

r∑
k=0

(k+1)qk

×Γ

(
θ1(n1 + n2)c2,

r∑
k=0

(k + 1)qk

)]
≤ β.

We will go ahead with two particular choices.

� For r = 0, a0 = 1, OPPE reduces to the exponential distribution with
parameter θ.

� For r = 1, a0 = 1, a1 = 1, OPPE reduces to the Lindley distribution with
parameter θ.

3.1.1. Exponential Distribution

Let X be a quality characteristic following an exponential distribution with
parameter θ. The pdf of the quality characteristic is given as

f(x) = θe−θx;x > 0, θ > 0, (8)

where θ is the scale parameter. The population mean of the exponential distribu-
tion is µ = 1

θ . It is to be noted that if a 1st random sample (X11, X12, . . . , X1n1)
of size n1 is drawn from the exponential distribution, then the distribution of

U1 =
n1∑
i=1

X1i is a gamma distribution with parameters n1, the shape and θ, the

scale. Similarly, if a 2nd random sample (X21, X22, . . . , X2n2) of size n2 is drawn

from the exponential distribution, then the distribution of U2 =
n2∑
i=1

X2i is also a

gamma distribution with parameters n2, the shape and θ, the scale. If we take

U = U1 + U2 =
n1∑
i=1

X1i +
n2∑
i=1

X2i, then u follows a gamma distribution with pa-

rameters n = n1 + n2, the shape and θ, the scale. For a given value of µ, one can
�nd the value of θ, and hence the OC function can be treated as a function of θ.
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Again,

L1(θ) = P

(
n1∑
i=1

X1i ≥ n1c1|θ

)
= 1− Γ(θn1c1, n1),

L2(θ) = P

(
n1∑
i=1

X1i ≥ n1c2|θ

)
= 1− Γ(θn1c2, n1),

Lp(θ) = P

(
n1∑
i=1

X1i +

n2∑
i=1

X2i ≥ (n1 + n2)c2|θ

)
= 1− Γ [θ(n1 + n2)c2, (n1 + n2)] .

Therefore, the OC function for the exponentially distributed quality character-
istic of the proposed sampling inspection plan is given by

L(θ) = L1(θ) + [L2(θ)− L1(θ)]Lp(θ)

= 1− Γ(θn1c1, n1) + [1− Γ(θn1c2, n1)− 1 + Γ(θn1c1, n1)]×
{1− Γ [θ(n1 + n2)c2, (n1 + n2)]}

= 1− Γ(θn1c1, n1) + [Γ(θn1c1, n1)− Γ(θn1c2, n1)]×
{1− Γ [θ(n1 + n2)c2, (n1 + n2)]} , (9)

where, Γ(ν, n) = 1
Γ(n)

ν∫
0

e−ttn−1dt.

Now, the producer's risk and the consumer's risk are given as :

Pp(θ0) = 1− L(θ0)

= 1− 1 + Γ(θ0n1c1, n1)− [Γ(θ0n1c1, n1)− Γ(θ0n1c2, n1)]×
{1− Γ [θ0(n1 + n2)c2, (n1 + n2)]}

= Γ(θ0n1c1, n1)− [Γ(θ0n1c1, n1)− Γ(θ0n1c2, n1)]×
{1− Γ [θ0(n1 + n2)c2, (n1 + n2)]} ,

and,

Pc(θ1) = L(θ1)

= 1− Γ(θ1n1c1, n1) + [Γ(θ1n1c1, n1)− Γ(θ1n1c2, n1)]×
{1− Γ [θ1(n1 + n2)c2, (n1 + n2)]} .

The plan's parameters are determined to minimize the total sample size n =
n1 + n2 by the following non-linear optimization problem.

Minimize n, subject to

1− Γ(θ0n1c1, n1) + [Γ(θ0n1c1, n1)− Γ(θ0n1c2, n1)]×
{1− Γ [θ0(n1 + n2)c2, (n1 + n2)]} ≥ (1− α) (10)
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and,

1− Γ(θ1n1c1, n1) + [Γ(θ1n1c1, n1)− Γ(θ1n1c2, n1)]×
{1− Γ [θ1(n1 + n2)c2, (n1 + n2)]} ≤ β. (11)

3.1.2. Lindley Distribution

Let X be a quality characteristic following a Lindley distribution with param-
eter θ. The pdf of the quality characteristic is given as

f(x) =
θ2(1 + x)e−θx

θ + 1
;x > 0, θ > 0, (12)

where θ is the scale parameter of the distribution. The population mean of the

Lindley distribution is µ = (θ+2)
θ(θ+1) (see, Lindley, 1958; Ghitany et al., 2008).

If (X11, X12, . . . , X1n1) be a 1st random sample of size n1 from the Lindley

with parameter θ, then the pdf of U1 =
n1∑
i=1

X1i is

g(u1;n1, θ) =

n1∑
k=0

P(k,n1)(θ).f(GA)(u1; 2n1 − k, θ),

where,

P(k,n1)(θ) =

(
n1

k

)
θk

(1 + θ)n1
,

and

f(GA)(u1; 2n1 − k, θ) =
θ(2n1−k)

Γ(2n1 − k)
u1

(2n1−k)−1e−θu1 .

Hence, U1 have the probability density function of gamma distribution with shape
and scale parameters (2n1 − k) and θ, respectively (see, Al-Mutairi et al., 2013).

Again, (X21, X22, . . . , X2n2
) be a 2nd random sample of size n2 from the Lindley

with parameter θ, then the pdf of U2 =
n2∑
i=1

X2i is

g(u2;n2, θ) =

n2∑
k=0

P(k,n2)(θ).f(GA)(u2; 2n2 − k, θ),

where,

P(k,n2)(θ) =

(
n2

k

)
θk

(1 + θ)n2

and,

f(GA)(u2; 2n2 − k, θ) =
θ(2n2−k)

Γ(2n2 − k)
u2

(2n2−k)−1e−θu2 .

So, U2 has the pdf of gamma distribution with shape and scale parameters (2n2−k)
and θ, respectively.
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If we take n = n1+n2 and U = U1+U2 =
n1∑
i=1

X1i+
n2∑
i=1

X2i, then U have quite

similar distribution as following.

g(u;n, θ) =

n∑
k=0

P(k,n)(θ).f(GA)(u; 2n− k, θ),

where,

P(k,n)(θ) =

(
n

k

)
θk

(1 + θ)n

and

f(GA)(u; 2n− k, θ) =
θ(2n−k)

Γ(2n− k)
u(2n−k)−1e−θu.

Here, U has the pdf of gamma distribution with shape and scale parameters
(2n− k) and θ, respectively.

Again,

L1(θ) = P

(
n1∑
i=1

X1i ≥ n1c1|θ

)

= 1−
n1c1∫
0

g(u1;n1, θ)du1

= 1−
n1∑
k=0

(
n1

k

)
θk

(1 + θ)n1
Γ(θn1c1, 2n1 − k),

L2(θ) = P

(
n1∑
i=1

X1i ≥ n1c2|θ

)

= 1−
n1c2∫
0

g(u1;n1, θ)du1

= 1−
n1∑
k=0

(
n1

k

)
θk

(1 + θ)n1
Γ(θn1c2, 2n1 − k),

Lp(θ) = P

(
n1∑
i=1

X1i +

n2∑
i=1

X2i ≥ (n1 + n2)c2|θ

)

= 1−
nc2∫
0

g(u;n, θ)du

= 1−
n∑

k=0

(
n

k

)
θk

(1 + θ)n
Γ(θnc2, 2n− k).
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Therefore, the OC function for the Lindley distributed quality characteristic
of the proposed DS plan is given by

L(θ) = L1(θ) + [L2(θ)− L1(θ)]Lp(θ)

= 1−
n1∑
k=0

(n1

k

) θk

(1 + θ)n1
Γ(θn1c1, 2n1 − k) +

[
1−

n1∑
k=0

(n1

k

) θk

(1 + θ)n1
Γ(θn1c2, 2n1 − k)

−1 +

n1∑
k=0

(n1

k

) θk

(1 + θ)n1
Γ(θn1c1, 2n1 − k)

]{
1−

n∑
k=0

(n
k

) θk

(1 + θ)n
Γ(θnc2, 2n− k)

}

= 1−
n1∑
k=0

(n1

k

) θk

(1 + θ)n1
Γ(θn1c1, 2n1 − k) +

[
n1∑
k=0

(n1

k

) θk

(1 + θ)n1
Γ(θn1c1, 2n1 − k)

−
n1∑
k=0

(n1

k

) θk

(1 + θ)n1
Γ(θn1c2, 2n1 − k)

]{
1−

n∑
k=0

(n
k

) θk

(1 + θ)n
Γ(θnc2, 2n− k)

}
,

(13)

where, Γ(ν, n) = 1
Γ(n)

ν∫
0

e−ttn−1dt.

Now, the producer's risk and the consumer's risk are given by

Pp(θ0) = 1− L(θ0)

=

n1∑
k=0

(n1

k

) θk0
(1 + θ0)n1

Γ(θ0n1c1, 2n1 − k)−
[

n1∑
k=0

(n1

k

) θk0
(1 + θ0)n1

Γ(θ0n1c1, 2n1 − k)

−
n1∑
k=0

(n1

k

) θk0
(1 + θ0)n1

Γ(θ0n1c2, 2n1 − k)

]{
1−

n∑
k=0

(n
k

) θk0
(1 + θ0)n

Γ(θ0nc2, 2n− k)

}
,

(14)

and,

Pc(θ1) = L(θ1)

= 1−
n1∑
k=0

(n1

k

) θk1
(1 + θ1)n1

Γ(θ1n1c1, 2n1 − k) +

[
n1∑
k=0

(n1

k

) θk1
(1 + θ1)n1

Γ(θ1n1c1, 2n1 − k)

−
n1∑
k=0

(n1

k

) θk1
(1 + θ1)n1

Γ(θ1n1c2, 2n1 − k)

]{
1−

n∑
k=0

(n
k

) θk1
(1 + θ1)n

Γ(θ1nc2, 2n− k)

}
.

(15)

The plan's parameters are determined to minimize the sample size n = n1+n2

by the following non-linear optimization problem.

Minimize n, subject to

1 −
n1∑
k=0

(n1

k

) θk
0

(1 + θ0)n1
Γ(θ0n1c1, 2n1 − k) +

[ n1∑
k=0

(n1

k

) θk
0

(1 + θ0)n1
Γ(θ0n1c1, 2n1 − k) −

n1∑
k=0

(n1

k

)

×
θk
0

(1 + θ0)n1
Γ(θ0n1c2, 2n1 − k)

]{
1 −

n∑
k=0

(n
k

) θk
0

(1 + θ0)n
Γ(θ0nc2, 2n − k)

}
≥ (1 − α),

(16)

Revista Colombiana de Estadística - Applied Statistics 47 (2024) 211�235



Double Sampling Plan for OPPE Model Using Combined Mean 223

and,

1−
n1∑
k=0

(n1

k

) θk1
(1 + θ1)n1

Γ(θ1n1c1, 2n1 − k) +

[
n1∑
k=0

(n1

k

) θk1
(1 + θ1)n1

Γ(θ1n1c1, 2n1 − k)

−
n1∑
k=0

(n1

k

) θk1
(1 + θ1)n1

Γ(θ1n1c2, 2n1 − k)

]{
1−

n∑
k=0

(n
k

) θk1
(1 + θ1)n

Γ(θ1nc2, 2n− k)

}
≤ β.

(17)

Table 1: Values of (n1, n2, c1, c2) for DS Plan and (n, c) for SS Plan in Lindley and
Exponential Distribution respectively, for given, α = 0.01, β = 0.01

Lindley Distribution Exponential Distribution

µ θ DS Plan SS Plan θ DS Plan SS Plan

µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c θ0 θ1 n (n1, n2) c1 c2 n c

70 30 0.0282 0.0646 17 (8,9) 30.70 21.20 17 44.76 0.0143 0.0333 28 (14,14) 30.07 18.07 31 44.10

70 35 0.0282 0.0556 23 (11,12) 35.84 26.34 24 48.33 0.0143 0.0286 43 (22,21) 36.97 28.47 46 48.25

70 40 0.0282 0.0488 35 (17,18) 41.94 34.44 37 52.19 0.0143 0.0250 65 (33,32) 42.30 34.80 70 52.02

60 40 0.0328 0.0488 65 (32,33) 41.98 37.28 69 48.59 0.0167 0.0250 125 (63,62) 42.24 37.04 133 48.56

60 35 0.0328 0.0556 38 (19,19) 37.11 31.61 40 45.28 0.0167 0.0286 71 (36,35) 37.16 30.96 76 45.16

60 30 0.0328 0.0646 23 (11,12) 30.64 22.14 24 41.42 0.0167 0.0333 43 (22,21) 31.70 24.70 46 41.35

We have presented plan parameter values (n1, n2, c1, c2) for DS Plan and (n, c)
for single sampling plan with respect to some speci�ed values of θ0, θ1, α and β
in the Tables 1-5. We have used R software for calculation purposes; the R codes
may be available from the corresponding author upon request.

To ensure quality, minimize risk from the producer's side of rejecting a good
lot or from the consumer's side of accepting a bad one. It is natural to inspect a
large sample, which is re�ected in the tables. For example, in Table 3, for µ0 = 60
and µ1 = 40, the values of (n1, n2, c1, c2) for DS Plan is (45, 44, 43.01, 37.41)
for exponential distribution and (23, 23, 43.60, 38.60) for Lindley distribution
respectively, whereas, the corresponding (n, c) values of exponential and Lindley
distribution for Single Sampling Plan (SSP) are (95, 50.25) and (50, 50.34).

So, a proper sampling plan and model selection for the quality characteristic is
essential in saving cost and time in the industry. It is evident from Tables 1-5 that,
on the one hand, the optimal sample size (total) in the DS plan is generally less
than that of the SS plan. On the other hand, if the quality characteristic data �ts
the Lindley distribution better than the exponential distribution, then the sample
needed for making a decision based on the DS plan is less. Hence, the use of DS
plan is more economical.

Table 2: Values of (n1, n2, c1, c2) for DS Plan and (n, c) for SS Plan in Lindley and
Exponential Distribution respectively, for given, α = 0.02, β = 0.01

Lindley Distribution Exponential Distribution

µ θ DS Plan SS Plan θ DS Plan SS Plan

µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c θ0 θ1 n (n1, n2) c1 c2 n c

70 30 0.0282 0.0646 15 (7,8) 31.29 21.79 15 45.96 0.0143 0.0333 26 (13,13) 31.77 21.77 27 45.18

70 35 0.0282 0.0556 20 (10,10) 37.09 28.09 21 49.33 0.0143 0.0286 38 (19,19) 37.52 28.52 40 49.19

70 40 0.0282 0.0488 30 (15,15) 42.70 34.70 32 52.96 0.0143 0.0250 58 (29,29) 43.06 35.26 62 52.97

60 40 0.0328 0.0488 57 (28,29) 42.51 37.81 61 49.22 0.0167 0.0250 110 (55,55) 42.73 37.23 117 49.17

60 35 0.0328 0.0556 33 (16,17) 37.27 31.27 35 45.99 0.0167 0.0286 62 (31,31) 37.59 31.09 66 45.82

60 30 0.0328 0.0646 20 (10,10) 31.71 23.71 21 42.28 0.0167 0.0333 38 (19,19) 32.17 24.67 40 42.16
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Table 3: Values of (n1, n2, c1, c2) for DS Plan and (n, c) for SS Plan in Lindley and
Exponential Distribution respectively, for given, α = 0.05, β = 0.01

Lindley Distribution Exponential Distribution

µ θ DS Plan SS Plan θ DS Plan SS Plan

µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c θ0 θ1 n (n1, n2) c1 c2 n c

70 30 0.0282 0.0646 12 (6,6) 33.52 24.52 12 47.94 0.0143 0.0333 21 (11,10) 33.88 23.88 22 47.39

70 35 0.0282 0.0556 17 (8,9) 38.20 29.20 17 51.20 0.0143 0.0286 31 (16,15) 39.49 30.49 33 51.23

70 40 0.0282 0.0488 25 (12,13) 43.83 35.83 26 54.59 0.0143 0.0250 46 (23,23) 44.12 35.62 50 54.55

60 40 0.0328 0.0488 46 (23,23) 43.60 38.60 50 50.34 0.0167 0.0250 89 (45,44) 43.76 37.86 95 50.25

60 35 0.0328 0.0556 27 (13,14) 38.38 31.88 28 47.26 0.0167 0.0286 50 (25,25) 38.65 31.45 54 47.23

60 30 0.0328 0.0646 17 (8,9) 32.64 24.63 17 43.89 0.0167 0.0333 31 (16,15) 33.82 25.82 33 43.91

Table 4: Values of (n1, n2, c1, c2) for DS Plan and (n, c) for SS Plan in Lindley and
Exponential Distribution respectively, for given, α = 0.02, β = 0.02

Lindley Distribution Exponential Distribution

µ θ DS Plan SS Plan θ DS Plan SS Plan

µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c θ0 θ1 n (n1, n2) c1 c2 n c

70 30 0.0282 0.0646 13 (7,6) 31.23 20.13 13 44.39 0.0143 0.0333 24 (12,12) 30.44 19.44 25 44.33

70 35 0.0282 0.0556 19 (9,10) 35.40 24.40 19 48.37 0.0143 0.0286 34 (17,17) 35.85 24.85 36 48.17

70 40 0.0282 0.0488 28 (14,14) 41.82 33.82 29 52.16 0.0143 0.0250 51 (26,25) 41.67 32.67 55 52.01

60 40 0.0328 0.0488 50 (25,25) 41.49 35.49 54 48.57 0.0167 0.0250 97 (49,48) 41.77 35.57 104 48.54

60 35 0.0328 0.0556 29 (14,15) 35.69 25.69 31 45.18 0.0167 0.0286 55 (28,27) 36.51 29.01 59 45.07

60 30 0.0328 0.0646 19 (9,10) 30.26 20.26 19 41.46 0.0167 0.0333 34 (17,17) 30.72 20.72 36 41.29

Table 5: Values of (n1, n2, c1, c2) for DS Plan and (n, c) for SS Plan in Lindley and
Exponential Distribution respectively, for given, α = 0.05, β = 0.02

Lindley Distribution Exponential Distribution

µ θ DS Plan SS Plan θ DS Plan SS Plan

µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c θ0 θ1 n (n1, n2) c1 c2 n c

70 30 0.0282 0.0646 10 (5,5) 29.82 16.82 10 46.04 0.0143 0.0333 19 (10,9) 32.21 20.71 19 45.84

70 35 0.0282 0.0556 15 (7,8) 35.89 24.39 15 50.08 0.0143 0.0286 28 (14,14) 37.53 27.53 29 50.08

70 40 0.0282 0.0488 22 (11,11) 42.69 34.19 23 53.67 0.0143 0.0250 41 (21,20) 42.96 33.46 44 53.59

60 40 0.0328 0.0488 40 (20,20) 42.38 36.38 43 49.61 0.0167 0.0250 79 (40,39) 42.82 36.42 83 49.59

60 35 0.0328 0.0556 22 (11,11) 36.43 27.93 25 46.55 0.0167 0.0286 44 (22,22) 37.31 29.31 47 46.37

60 30 0.0328 0.0646 15 (7,8) 30.69 20.69 15 42.93 0.0167 0.0333 28 (14,14) 32.14 23.14 29 42.92

4. Comparative Study

The proposed DS plan is based on the sample means for the �rst sample and
combined mean for the second sample, which is di�erent from other DS plans
(based on the number of non-conforming, percentage of non-conforming, variance,
speci�cation limits, minimum angle method, cost function, ASN-minimax, process
capability index, etc.) exist in literature. Therefore, there is little scope to compare
the current DS plan with other DS plans. However, we have compared the plan
with the corresponding SS Plan. A comparative study is also made for the Lindley
as well as the exponentially distributed quality characteristic.

The features of the proposed DS plan are studied under di�erent conditions of
the plan parameters. Tables 1−5 display the plan parameters (n = n1+n2, c1, c2)
for DS plan and (n, c) for the Lindley as well as the exponentially distributed
quality characteristic with various producer's risk, α and consumer's risk, β. By
studying the nature of the distribution of the quality characteristic through model
selection methods and with the help of the Tables, practitioners can determine the
size of a sample required for inspection and the associated rules for lot sentencing.

It is observed from the Tables that
(i) the required sample size, n, decreases as α and/or β risk increases. For example,

Revista Colombiana de Estadística - Applied Statistics 47 (2024) 211�235



Double Sampling Plan for OPPE Model Using Combined Mean 225

a sample of size n = 38 is required for (α, β) = (0.01, 0.01), n = 33 for (α, β) =
(0.02, 0.01), n = 29 for (α, β) = (0.02, 0.02) under the same quality conditions
(µ0, µ1) = (60, 35). This indicates that relatively smaller sample size is needed
as long as the producer and/or consumer is ready to su�er larger risks for making
incorrect decisions.
(ii) The required sample size, n, decreases as the di�erence between µ0 and µ1

increases. For example, a sample of size n = 15 is required for (µ0, µ1) = (60, 30)
and a sample of size n = 40 is required for (µ0, µ1) = (60, 40) under the same risk
conditions, i.e., (α, β) = (0.05, 0.02). This indicates that comparatively, smaller
sample size is required because it becomes easier to make correct decisions if the
di�erence between two speci�ed quality levels increases.
(iii) The sample sizes for the Lindley distributed quality characteristic is smaller
than that for the exponentially distributed one.
(iv) The sample sizes for DS plan is smaller than that for SS Plan.

5. Examples and Data Analysis

The data is from Lawless (2003), that speci�es the number of cycles to failure
for twenty-�ve 100 cm specimens of yarn, tested at a particular strain level, shown
in the following.

Table 6: The number of cycles to failure data

15 20 38 42 61

76 86 98 121 146

149 157 175 176 180

180 198 220 224 251

264 282 321 325 653

From Table-7, we �nd that the OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1
best �ts the data as the value of AIC is the least. The histogram and �tted
distributions have been shown in Figure 1.

Table 7: Comparison between exponential and OPPE distribution with r = 1, a0 = 0.8,
a1 = 0.1 for Data Set

Distribution Estimate of θ Negative Log-likelihood AIC

Exponential 0.005605705 154.5895 311.1790

OPPE distribution with

r = 1, a0 = 0.8, a1 = 0.1
0.01076875 152.4577 306.9154

Table 8 indicates the estimation of plan parameters for the Data Set, using
exponential and OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1 if we consider
the producer's value, µ0 = 305 and producer's risk, α = 0.02, and for consumer's
value, µ1 = 125, and consumer's risk, β = 0.01. We summarize the analysis and
decision for this data set in Table 10. The decision is the same for the single
sampling plan and for the double sampling plan (on the basis of 1st sample) in
the case of exponential distribution and OPPE distribution for r = 1, a0 = 0.8,
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Figure 1: Histogram and �tted distributions for the Data Set.

and a1 = 0.1. Here, the sample size is minimum(n, n1), i.e., we need to draw just
n1 = 6, sample observations for the double sampling inspection plan using OPPE
distribution for r = 1, a0 = 0.8, a1 = 0.1 (that is a better �t in this data). OC
curves for Exponential distribution and OPPE distribution for r = 1, a0 = 0.8,
a1 = 0.1 have been presented respectively in Figure 2, and it is observed that the
OC curve under the DS Plan for OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1
assumption is steeper than the others. This fact also justi�es more protection to
the customers.

Table 8: Plan Parameter Estimation for the Data Set, using exponential and OPPE
distribution for r = 1, a0 = 0.8, a1 = 0.1, for given α = 0.02, β = 0.01,
where, µ0 = 305, µ1 = 125

Distribution µ = 178.32 θ DS plan SS plan
µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c

Exponential
305 125

0.0033 0.0080 21 (11,10) 126.30 78.30 25 193.15
OPPE with r = 1,
a0 = 0.8, a1 = 0.1

0.0065 0.0159 12 (6,6) 125.74 75.74 13 195.79

Table 9: Plan Parameter Estimation for the Data Set, using exponential distribution
and OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1, for given α = 0.05, β =
0.02, where, µ0 = 240, µ1 = 120

Distribution µ = 178.32 θ DS plan SS plan
µ0 µ1 θ0 θ1 n (n1, n2) c1 c2 n c

Exponential
240 120

0.0042 0.0083 23 (12,11) 120.00 70.00 29 171.69
OPPE with r = 1,
a0 = 0.8, a1 = 0.1

0.0083 0.0165 14 (7,7) 123.53 43.53 15 172.46

Table 9 indicates the estimation of plan parameters for the Data Set, using
exponential distribution and OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1 if
we consider the producer's value, µ0 = 240 and producer's risk, α = 0.05, and for
consumer's value, µ1 = 120, and consumer's risk, β = 0.02. We summarize the
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analysis and decision for this data set in Table 11. We can't take decision if we
perform single sampling plan using exponential distribution as there is not enough
sample to conclude. And, for single sampling plan using OPPE distribution for
r = 1, a0 = 0.8, a1 = 0.1, our decision is to reject the lot. On the other hand,
we need to take 2nd sample under double sampling plan using both exponential
distribution and OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1 and �nally accept
the lot on the basis of combined sample. In this situation, double sampling plan
using OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1 also, provides more bene�ts
as the sample size, n = 14 have drawn, which is, again, least.

Table 10: Sampling Inspection plans for Data Set, at level α = 0.02, β = 0.01

Distribution Sampling Plan (n, n1, n2) c1 c2 n c mean/combined mean Decision

Exponential

Single Sampling

Inspection Plan
� � � 25 193.15 X̄ = 178.32 Reject the lot

Double Sampling

Inspection Plan

(1st Sample)

(21,11,10) 126.30 78.30 � � X̄1 = 77.45
Reject the lot on the

basis of 1st sample

OPPE with r = 1,

a0 = 0.8, a1 = 0.1

Single Sampling

Inspection Plan
� � � 13 195.79 X̄ = 91.08 Reject the lot

Double Sampling

Inspection Plan

(1st Sample)

(12,6,6) 125.74 75.74 � � X̄1 = 42.00
Reject the lot on the

basis of 1st sample

Table 11: Sampling Inspection plans for Data Set, at level α = 0.05, β = 0.02

Distribution Sampling Plan (n, n1, n2) c1 c2 n c
sample mean /

combined mean
Decision

Exponential

Single Sampling

Inspection Plan
� � � 29 171.69 ���

Not enough sample

observations to take decision

Double Sampling

Inspection Plan

(1st Sample)

(23,12,11) 120.00 70.00 � � X̄1 = 84.08
Need to draw 2nd sample

of size n2 = 11

Double Sampling

Inspection Plan

(Combined Sample)

(23,12,11) 120.00 70.00 � � ¯̄X = 151.30
Accept the lot and on the

basis of combined sample

OPPE with r = 1,

a0 = 0.8, a1 = 0.1

Single Sampling

Inspection Plan
� � � 15 172.46 X̄ = 102.67 Reject the lot

Double Sampling

Inspection Plan

(1st Sample)

(14,7,7) 123.53 43.53 � � X̄1 = 48.29
Need to draw 2nd sample

of size n2 = 7

Double Sampling

Inspection Plan

(Combined Sample)

(14,7,7) 123.53 43.53 � � ¯̄X = 97.14
Accept the lot and on the

basis of combined sample
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Figure 2: OC curve for the single sampling plan and double sampling plan for both
exponential distribution and OPPE distribution for r = 1, a0 = 0.8, a1 = 0.1
for the Data Set.

6. Concluding Remarks

In this article, we have discussed the DS sampling inspection plans for the
variable for the OPPE family of distributions. The plan parameters are estimated
based on a two-point OC curve approach, the AQL and the LQL. In a comparison
study, we have observed that the DS sampling inspection plans for the OPPE
family of distributions works more e�ciently in terms of sample size rather than
an SS inspection plan. In other words, the plan for the double sampling required
a smaller sample size to draw a verdict about acceptance or rejection of the lot
compared to an SS inspection plan since it has more �exibility in �tting the data.
The DS plan is recommended using the OPPE family of distributions. Tables of
plan parameters have been obtained through computational techniques at various
values of [AQL(µ0), α], [LQL(µ1), β] for ready reference for practitioners. The
proposed DS plan has more bene�ts of achieving the goal of cost and time saving
of the organization's quality monitoring process. Also, the sampling plan has
been explained through a real-life example. We expect the industrial engineers
and statisticians to implement the DS sampling approach to OPPE distributed
lifetime data e�ectively.
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Appendix A.

We discuss the derivation of the sampling distributions of the sum of the �rst
sample and that of the sum of the combined sample (both the �rst and second
samples).

If X1, X2, . . . , Xn are i.i.d. random variables from the Oppe distribution with

parameter θ, then the derivation of the distribution of Z =
n∑

i=1

Xi is as follows.

Let X ∼ Oppe(θ), then the moment generating function of X will be

Mx(t) = E(etx)

=

∞∫
0

etxf(x)dx

=

∞∫
0

etxh(θ)

r∑
k=0

akx
ke−θxdx

= h(θ)

r∑
k=0

ak

∞∫
0

e−(θ−t)xx(k+1)−1dx

= h(θ)

r∑
k=0

ak
Γ(k + 1)

(θ − t)k+1
,

and, the moment generating function of Z =
n∑

i=1

Xi will be

Mz(t) = E(etz)

= E

(
e
t

n∑
i=1

Xi

)
=
{
E(etx)

}n
= {h(θ)}n

{
r∑

k=0

ak
Γ(k + 1)

(θ − t)k+1

}n

= {h(θ)}n
{

r∑
k=0

ak
Γ(k + 1)

θk+1

(
1− t

θ

)−(k+1)
}n

= {h(θ)}n
∑
q0

∑
q1

· · ·
∑
qr

n!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))
qk ×

θ
−

r∑
k=0

(k+1)qk
(
1− t

θ

)−
r∑

k=0

(k+1)qk

.
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Hence, the distribution of Z =
n∑

i=1

Xi is given by

f(z) = {h(θ)}n
∑
q0

∑
q1

· · ·
∑
qr

n!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))
qk ×

θ
−
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(k+1)qk
fGA

(
z,
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(k + 1)qk, θ

)

= {h(θ)}n
∑
q0

∑
q1

· · ·
∑
qr

n!

q0!q1! · · · qr!

r∏
k=0

(akΓ(k + 1))
qk ×

θ
−
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k=0

(k+1)qk θ
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(k+1)qk

Γ

(
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(k + 1)qk

)z
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k=0

(k+1)qk−1
e−θz

= {h(θ)}n
∑
q0

∑
q1

· · ·
∑
qr

n!

q0!q1! · · · qr!
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k=0

(k+1)qk−1
e−θz

Γ

(
r∑

k=0

(k + 1)qk

) . (A1)

If (X11, X12, . . . , X1n1) be a 1st random sample of size n1 from the Oppe dis-

tribution with parameter θ, then the pdf of U1 =
n1∑
i=1

X1i is

g(u1;n1, θ) = {h(θ)}n1
∑
q0

∑
q1

· · ·
∑
qr
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Next,

L1(θ) = P

(
n1∑
i=1

X1i ≥ n1c1|θ

)
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Similarly,

L2(θ) = P
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.

And, if (X21, X22, . . . , X2n2
) be a 2nd random sample of size n2 [say, n = n1 + n2]

from the Oppe distribution, also with parameter θ, then the pdf of U = U1+U2 =
n1∑
i=1

X1i +
n2∑
i=1

X2i is given by
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Therefore,
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