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Abstract

Noninvasive DNA sampling has become increasingly popular in wildlife
research and conservation because it allows scientists to gather valuable ge-
netic information without disturbing or harming the animals. However, the
correct identi�cation of the species or individuals in the sample is virtu-
ally impossible when using this kind of sampling. Consequently, it becomes
essential to consider the errors hidding true identities in order to improve
the quality of the data. Errors, if left unaddressed, can have a considerable
impact on the accuracy of statistical inferences drawn from the data. This
paper endeavours to review some research about misidenti�cation problems
and how Bayesian models and Markov Chain Monte Carlo (MCMC) methods
can be applied. In addition, a hypothetical scenario is presented to illustrate
how genetic material can serve as unique identi�er of individuals, and to
highlight the potential di�culties that may arise if a proposal distribution
for the MCMC simulations is inappropriately chosen.

Key words: Noninvasive DNA sampling; Misidenti�cation; Latent indivi-
dual; MCMC; Reversibility.

Resumen

El muestreo de ADN no invasivo se ha vuelto cada vez más popular
en la investigación y conservación de vida silvestre, ya que permite a los
cientí�cos recopilar información genética valiosa sin perturbar ni lesionar a
los animales. Sin embargo, la correcta identi�cación de la especie o indi-
viduos en la muestra es prácticamente imposible cuando se utiliza este tipo
de muestreo. En consecuencia, es fundamental considerar los errores que
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ocultan las verdaderas identidades con el �n de mejorar la calidad de los
datos. Si los errores no se abordan, pueden tener un impacto considerable
en la precisión de las inferencias estadísticas obtenidas a partir de los datos.
Este artículo se propone revisar algunas investigaciones sobre problemas de
identi�cación errónea y cómo se pueden aplicar los modelos bayesianos y los
métodos de Monte Carlo basados en cadenas de Markov (MCMC). Además,
se presenta un escenario hipotético para ilustrar cómo el material genético
puede servir como identi�cador único de los individuos, y resaltar las di-
�cultades potenciales que pueden surgir si se elige inapropiadamente una
distribución de propuestas para las simulaciones de MCMC.

Palabras clave: Muestreo de ADN no invasivo; Identi�cación errónea; In-
dividuo latente; Métodos MCMC; Reversibilidad.

1. Introduction

In research involving data, there is always a risk that data may be compromised
by several sources of corruption, causing errors that may be both subtle and un-
avoidable. Common issues include duplicated or incorrectly reported observations,
as well as missing data. For instance, when conducting laboratory experiments,
data can be a�ected by environmental conditions, equipment malfunctions, and
other factors beyond the researcher's control. Surveys can collect also contami-
nated observations, for example, responses may contain false information of the
participants due to unintentional misspelling, respondent mistakes, either inten-
tional or unintentional, lack of interviewer impartiality, and inconsistencies with
the questionnaire design, as in Berg & Lien (2009).

Noninvasive techniques are employed in wildlife research to minimize distur-
bance to animals both physically and psychologically. It can be carry out by
means of sensing technologies, noncontact monitoring, and passive observation.
One speci�c noninvasive technique is DNA sampling, which involves collecting ge-
netic material from organisms without capturing or handling them. This novel
sampling method is limited when it comes to accurately identifying individuals,
especially when compared to traditional invasive methods.

In order to estimate the population size accurately, the observed (corrupted)
data needs to be matched with the latent (true) data. This matching process
helps to determine the actual sample size, which is then used for population size
estimation. The majority of existing methods for estimating population size, while
accounting for uncertainty, treat matching and size estimation as distinct and in-
dependent steps. See for example the work of Yoshizaki et al. (2011), Wright et al.
(2009) and Lukacs & Burnham (2005a), where the issue of genotype misidenti�-
cation is incorporated into multiple mark-recapture models for estimating animal
abundance using DNA samples.

This paper aims to examine existing research on misidenti�cation issues and
explore how Bayesian models and Markov Chain Monte Carlo (MCMC) methods
can help to address these challenges. It is important to emphasize that this article
does not introduce a new method but rather discusses an existing approach. The
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aim is draw attention in the topic to highlight potential limitations and areas
for improvement in the current method. By demonstrating through a speci�c toy
example that not only illustrates how genetic material can be utilized as distinctive
identi�er for individuals, but also serves to underscore the importance of revisiting
certain aspects of the approach to ensure accurate simulation of the posterior
distribution. More precisely, the toy example to emphasizes the importance of
selecting an appropriate proposal distribution for MCMC simulations to mitigate
potential di�culties with no convergence of the chain.

This section will extensively explore the concept of noninvasive DNA sampling,
its advantages, challenges, and applications. Section 2 will explain a speci�c geno-
typing error considered in Wright et al. (2009); Section 3 will present the data
and model; Section 4 will present the hypothetical scenario with a more general
genotyping error and the MCMC algorithm for the simulations.

1.1. Noninvasive sampling and the sample size

In particular, wildlife research can adversely a�ect the organisms under inves-
tigation, even when conducted with strict protocols. An illustrative case is the
study conducted by Ditmer et al. (2015), where the presence of unmanned aerial
vehicles (commonly known as drones) in bear habitats caused stress to the bears.
The authors observed signi�cant changes in bear behaviour when drones were
present, noting elevated heart rates, even during hibernation. While drones facili-
tate access to natural environments for data collection, they can also cause distress
and disruption to the species being studied. This example e�ectively highlights
the potential stress experienced by certain species during research monitoring and
data collection.

Noninvasive techniques utilize nonintrusive methods that do not physically or
psychologically disturb the wildlife. This can involve remote sensing technologies,
noncontact monitoring, or passive observation methods. In particular, noninvasive
DNA sampling refers to the collection of genetic material from organisms without
physically capturing or handling them. It involves extracting DNA from nonintru-
sive sources such as shed hair, feathers, skin cells, saliva, feces, body �uids (such as
sweat, urine) or other biological samples left behind by the organism in its natural
environment. In population ecology, they are often used to study elusive animals.
For example, fearful wolves, shy birds, nocturnal animals or camou�aged reptiles
which are virtually undetectable by eyesight.

Mark-recapture methods are often used to estimate animal abundance, which
is a common problem in wildlife management. Otis et al. (1978) described mark-
recapture modelling for populations that are demographically closed, that is, no
individuals enter or leave the population during the study. These models assume
that marks are preserved during the experiment, meaning that they do not fall
o� or change in a way that they could be misread, and all marks are accurately
observed and registered at each trapping occasion.

Ecologists have taken advantage of the latest advances in molecular biology
to obtain individual genotypes from noninvasive samples. The genotyped pro�les
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of the individuals may then be used as marks because, in large populations, it is
unlikely that two individuals will have the same genetic pro�le. The fact these
samples are taken unobtrusively a�ects the reliability of the assignments of the
genotypes to the individuals. The genotyped individuals may be subject to a high
degree of uncertainty because the quality of the genetic information may be ne-
gatively a�ected by environmental factors or during DNA ampli�cation. Because
the use of noninvasive DNA data may be prone to errors, the models in Otis et al.
(1978) cannot be applied as the assumption that the marks are read and recorded
correctly is inadequate.

Gathering genetic data from faeces helps identify the species present in a par-
ticular area. This is especially helpful when studying elusive or dangerous species
that are challenging to monitor directly. For example, Wright et al. (2009) devel-
oped a Bayesian model for estimating the population size of a nocturnal animal
using faeces samples. Mondol et al. (2009) demonstrated the e�ectiveness of non-
invasive genetic sampling methods, speci�cally scat collection, in estimating tiger
population size. Roques et al. (2014) utilized genetic techniques to estimate pop-
ulation size and assess the genetic diversity and structure of jaguars in the study
areas in Brazil. The results in Marucco et al. (2012) highlighted the value of long-
term monitoring using noninvasive sampling, as it provided valuable information
about the dynamics and persistence of wolf populations over time. By combining
genetic data with spatial capture-recapture techniques, Morin et al. (2016) gained
insights into coyote movements, territoriality, and population trends. Finally, the
study conducted by Bi� & Williams (2017) focused on the use of noninvasive
techniques to determine the population size of the marine otter in two regions of
Peru. All of these used faecal DNA as natural marks for studying cryptic animals
avoiding direct contact while minimizing risks to both humans and animals.

There are some di�culties inherent in the mark-recapture approach based on
DNA samples. Lukacs & Burnham (2005b) express two concerns in these studies.
First, the notion of a sampling occasion is unclear. Second, it may be virtually
impossible to set out a list of marks in the population. Naturally, there is con-
cern about these di�culties because sampling occasions and marks are dominant
notions in mark-recapture studies. Both issues will be discussed separately.

First, a sampling occasion refers to the time that samples are collected from
the population. This concept in a conventional mark-recapture study is considered
`as a short, discrete event' as stated by Lukacs & Burnham (2005b). However, in
a mark-recapture study based on noninvasive DNA samples, it is a vague notion.
Evidence of this is the fact that the animal shed DNA into the sample at an un-
known time. Barker et al. (2014) described a general model for capture-recapture
modelling of samples drawn one at a time in continuous-time. A novel aspect they
included in the model is that the sampling times may be unavailable.

Second, in a standard mark-recapture study the researcher knows the list of
marks in the population (for example, coloured paint, numbered tags, etc.). In
mark-recapture studies using noninvasive DNA, it is di�cult to know whether
a previously unrecorded mark (genotype) is an error in the genotyping or a new
individual, unless all the genotypes in the population are known, which is virtually
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impossible, because the genotypic mark is inherent to the individual. However,
it is important to clarify that the marks can be misread in standard capture-
recapture sampling, and they can also fall out (e.g. the paint might wash o�,
the tag might fall o�). Then, it can face similar uncertainty issues as those in
DNA-based studies.

Lukacs & Burnham (2005b) established that because it is impossible to know
the genetic identities of every individual in the population two problems can re-
sult. First, the misidenti�cation of individuals can occur which is better known
as genotyping error. In traditional studies of mark-recapture, if a mark does not
match with a mark from the known list, the observation is eliminated or, other-
wise, corrected by the researcher. In DNA-based mark-recapture, if an incorrect
genotype is logged, it is recorded as a new individual in the population. As a
consequence, the size of the population will most likely be overestimated. Second,
the authors point out that the marks may not be unique. In small and inbred
populations, some animals may have the same genotypic pro�le. In this case, it
is impossible to know if samples with identical genotypes are the same animal or
close relatives. Consequently, the exclusion of individuals may underestimate the
population.

Few models for estimating abundance incorporate the genotyping error. For
instance, Lukacs & Burnham (2005a) extended the likelihood model of Otis et al.
(1978) by considering the case of misidenti�cation of individuals. They incorpo-
rated into the model the probability that a genotype (observed for the �rst time)
is identi�ed correctly for estimating the size of a closed population. Yoshizaki
et al. (2011) further developed this model to improve the bias and precision of
estimators. Wright (2011) and Bran (2018) modelled the uncertainty in the as-
signment of genotypes to faecal pellets of badgers to estimate abundance of this
species. They implemented MCMC algorithms for simulating the posterior density
involving the sample size. The former considered a Gibbs sampling, and the latter
designed a reversible jump MCMC (Green, 1995). The uncertainty was due to a
failure produced during the process of DNA ampli�cation, called allelic dropout.
The next section describes this genotyping error.

2. A genotyping Error

A gene is a sequence of DNA that codes for a heritable trait. Genes occur at
speci�c positions on chromosomes, called loci. Humans and many other organisms
are diploid, meaning that they inherit one set of chromosomes from each parent.
Thus, for every gene, there are two possible DNA sequences called alleles. When
two alleles have the same DNA sequence, they are homozygous. Otherwise, they
are heterozygous. An individual's genotype constitutes allelic combinations at loci
of interest.

Polymerase chain reaction (PCR) is a technique widely used to amplify speci�c
regions of DNA. It is relevant because researchers often want to amplify small
amounts of DNA collected from the �eld. A common error during PCR is allelic
dropout which means that one allele is preferentially ampli�ed over the other, thus
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erroneously genotyping the sample. For a heterozygous genotype, allelic dropout
can produce a false homozygote, but this failure does not occur for homozygous
genotypes. For example, if an individual has a true heterozygous genotype AB
at a particular locus, but the PCR ampli�cation is only successful for allele A,
then the individual will be incorrectly genotyped as an AA homozygote. Figure 1
shows how the true genotypes may be observed and recorded when allelic dropout
is present and the respective conditional probabilities. This �gure was �rst drawn
in Bran (2018).

True genotypes

AB

ABAA BB

BBAA

1
-pp/

2 p/2
1 1

Observed genotypes

Figure 1: Dashed lines indicate allelic dropout. The true heterozygote AB is erro-
neously genotyped as AA or BB. The conditional probabilities are for the
observed genotypes given the true genotype, Pr(Observed|True).

Notice that true homozygous genotypes are free of genotyping error. For true
heterozygous, there are three possibilities. If AB is the true genotype:

� It may be wrongly observed as AA, that is, a failure to detect the allele B,
with probability p/2.

� It may be wrongly observed as BB, that is, a failure to detect the allele A,
with probability p/2.

� It may be correctly observed as AB with probability 1− p.

In large populations, allelic pro�les should be unique for the sampled individu-
als (considering that allelic pro�les consist of numerous genotyped loci). However,
given the procedures and conditions for amplifying DNA, genotyping errors can
be introduced which may arti�cially increase or decrease the variation in the pop-
ulation and confound individual genotypes. In particular, as shown above, the use
of PCR to obtain genotypes from noninvasive DNA samples complicates the iden-
ti�cation of individuals, because the latent (actual) identities must be determined
while taking into account the uncertainty of the genetic assignments.

3. Data and Model

The sample consists of S = 47 droppings of badgers collected from latrines in
Woodchester Park, Gloucestershire, England. The dataset is originally taken from
Frantz et al. (2003). The DNA extracted from each should help to determine the
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identity of the individuals present in the sample. Also, appendix in Wright (2011)
has the information about the badger microsatellite sequences used to create the
dataset, and the badger data for two PCR replicates.

A set of L = 7 microsatellite marker loci was considered. They were Mel102,
Mel105, Mel106, Mel109, Mel111, Mel113, and Mel117 (the abbreviation Mel refers
to the scienti�c name for the Eurasian badger,Meles meles). For example, 199/199
at locus Mel105 means that both the mother and the father had a common al-
lele and so the o�spring inherited the same allele from both of the parents (i.e.
homozygote at that speci�c locus). Alternatively, 138/142 at Mel102 means that
the o�spring inherited one sequence from the mother which was di�erent from the
sequence from the father (i.e. heterozygote at that speci�c locus). The numbers
in the genotypes indicate the sizes of the alleles (in base pairs). So, at Mel102, one
sequence is 138 base pairs long while the other sequence is 142 base pairs long.

Thus, the genotypes are represented as a pair of positive integers, that is, the
genotype of an individual at that locus is a pair (x, y) where x, y ∈ Z+. There
is no notion of order in this de�nition, that is, (x, y) and (y, x) refer to the same
genotype. If the numbers are equal, then the genotype is homozygous. Otherwise,
it is heterozygous.

The raw numbers in a pair of microsatellite alleles is not important, but the dif-
ference between the two numbers indicates how many mutations there are between
the two alleles. So, at Mel102, allele 138 has four fewer base pairs than allele 142.
In medical sciences, this di�erence may be important for researchers looking at the
association between a microsatellite sequence and a particular disease. However,
in population genetics, the raw numbers and the di�erences between them are not
directly relevant. They are used to determine whether individuals are homozygous
or heterozygous at speci�c loci.

Frantz et al. (2003) used replication to overcome genotyping error. They repli-
cated until either two alleles were detected or until they were con�dent of observing
a homozygote. Replicate genotyping indicates the presence of allelic dropout when
one replicate sample displays a heterozygote, and the other replicate sample dis-
plays a homozygote at the same locus. Under the presence of allelic dropout, there
is no guarantee that the observed genotypes in the sample will allow the correct
identi�cation of the individuals.

The data comprises of a S × L×R ragged array, where an element gjlr is the
observed genotype in the jth sample, at locus l and the rth replicate PCR ampli�-
cation with j = 1, 2, . . . , S, l = 1, 2, . . . , L, and r = 1, 2, . . . , R. For simplicity, the
consensus genotype is considered which is an array of L pairs of alleles, since for
every locus there are two alleles. Thus, the data is denoted by gobs which comprises
a S × L array, where gobsjl is the observed genotype in the jth sample, at locus l.

The latent information of the genotypes and the presence of individuals in the
sample is stored in a n × L matrix G and a n × 1 vector y, where n is the real
(unknown) sample size, which are de�ned as, Gij denotes the true genotype of the
ith individual in the sample at the jth locus, for i = 1, . . . , n and j = 1, . . . , L;
and yi = k indicates that the ith observed genotype in the sample belongs to the
kth genotype in G.

Revista Colombiana de Estadística - Applied Statistics 47 (2024) 135�150



142 Paula Bran & Leon Escobar

The arrays G and y together constitute the latent information about which
individual was caught in each sample. They allow to de�ne an array denoted by
gtrue which has the same dimensionality as gobs but it contains the true genotypes
of the respective individual sampled. The number of unique genotypes in gtrue

determines real value of n.

The unnormalized posterior density of G and y, based on the model proposed
by Wright et al. (2009), is given by

π(G, y|gobs) ∝ f(gobs|G, y, p)︸ ︷︷ ︸
likelihood function

· f(G|N, γ) · f(y|N)︸ ︷︷ ︸
prior distribution

(1)

where γ denotes the allele frequencies, p the dropout probability p and N is the
population size, which has been considered as a �xed value for simplicity in this
paper. Steorts et al. (2016) and Wright et al. (2009) consider other parameters, as
N , into their models. This density describes a Bayesian model for estimating the
unknown parameters G and y, given the observed genotypes gobs. The likelihood
function accounts for the corruption process contained in the data (allelic dropout)
and was explained before. It is formally de�ned as,

If g = AA then

Pr(gobs|G, y, p) =

{
1 for gobs = AA,

0 for gobs = AB.

If g = AB then

Pr(gobs|G, y, p) =

{
p/2 for gobs = AA or BB,

1− p for gobs = AB.

4. Application

This section aims to apply the algorithm implemented by Steorts et al. (2016),
called (SMERED, Split and MErge REcord linkage and Deduplication) to the
badgers data considered by Wright et al. (2009). Because the data considered
in the latter have a genotyping error introduced by allelic dropout, which is one
particular, one di�erent and more general corruption process will be considered,
that is, any corrupted genotype may be associated or linked to any other without
restrictions.

4.1. New Genotyping Error

Under allelic dropout, a true homozygote AA is only linked to either AA or
AB, where B ̸= A. However, under the new corruption process described here, it
can be linked to any combination of two alleles. The cases are AA, AX, XX, and
XY where X,Y ̸= A. For loci with two alleles, the heterozygote XY would not be a
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case for AA. If p denotes the probability of corruption of an allele, m the number
of alleles at the locus and the corruption is independent among alleles, then the
probabilities of these possible cases are as follows.

For the �rst case, because the two alleles are not corrupted,

Pr(gobs = AA|g = AA) = (1− p)2.

For the second case,

Pr(gobs = AX|g = AA) =
2p(1− p)

m− 1

because there is corruption in only one allele, X is one of m− 1 alleles distinct to
A, and AX = XA. For the third case,

Pr(gobs = XX|g = AA) =

(
p

m− 1

)2

because both alleles are corrupted and X is one of m− 1 alleles distinct to A. For
the last case,

Pr(gobs = XY|g = AA) = 2

(
p

m− 1

)2

because both alleles are corrupted, X and Y are one of m− 1 alleles distinct to A,
and XY = YX.

For the case in which the true genotype is heterozygous, say AB, the possible
outcomes for the observed genotypes are AB, AA, BB, AX, BX, XX, and XY,
where {X,Y} ∩ {A,B} = ∅. Their probabilities can be found following a similar
process. The probabilities of the new corruption process are summarised below,
where p is the probability of corruption of an allele, and m the number of alleles
at the locus.

For g = AA,

Pr(gobs|G, y, p) =



(1− p)2 if gobs = AA,(
p

m− 1

)2

if gobs = XX with A ̸= X,

2

(
p

m− 1

)2

if gobs = XY with A ̸= X and A ̸= Y,

2p(1− p)

m− 1
otherwise.

(2)
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For g = AB,

Pr(gobs|G, y, p) =



(1− p)2 +

(
p

m− 1

)2

if gobs = AB,(
p

m− 1

)2

if gobs = XX with X ̸= A and X ̸= B,

p(1− p)

m− 1
if gobs = AA or gobs = BB,

2

(
p

m− 1

)2

if gobs = XY with {X,Y} ∩ {A,B} = ∅,

p(1− p)

m− 1
+

(
p

m− 1

)2

otherwise.

(3)

The probabilities in equations 2 and 3 must add up to 1. The sums can be
found in Appendix A at the end of this paper.

4.2. The Algorithm

SMERED, proposed by Steorts et al. (2016), is a hybrid MCMC algorithm. It
utilizes the split-merge operations, as in Jain & Neal (2004), to jointly update G
and y inside a Metropolis step. The algorithm starts by randomly choosing a pair of
records. If they are associated with the same individual, then a split is proposed.
Otherwise, they are merged. The algorithm is available in the supplementary
material of Steorts et al. (2016). However, it is shown here as it was implemented
using R software.

Algorithm 1 SMERED (Split and MErge REcord linkage and De-duplication)

1: Data: gobs, N, p and γ
2: Initializers: G and y
3: Draw a pair of observations, say i and j for some i ̸= j in {1, . . . , S} at random.
4: if yi = yj then
5: Propose splitting that individual, shifting y to y∗

6: else

7: Propose merging the individuals who i and j refer to, shifting y to y∗

8: end if

9: Update G using the observations, shifting G to G∗

10: Calculate r = min(1, π(G∗, y∗|gobs, N, p, γ)/π(G, y|gobs, N, p, γ))
11: Set ynew = y∗ with probability min(1, r). Otherwise, set ynew = y
12: Update G∗ by using its full conditional density given ynew, shifting G∗ to Gnew

13: return Gnew, ynew
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4.3. Implementation of the Algorithm

The following is a toy example to illustrate the performance of the algorithm
proposed by Steorts et al. (2016). The purpose of the small dataset is to take
advantage of the small size of the state space, which allows the inclusion of the
analytical joint distribution of interest. In this way, comparisons between the
simulated and the exact distributions are achievable.

Consider a sample with S = 2 observed genotypes at a single locus with m = 2
alleles, as follows.

gobs =

(
1, 1

1, 2

)
.

According to the new corruption process, if an observed genotype is corrupted,
then it could be any one of these true genotypes: {(1, 1), (1, 2), (2, 2)}. The state
space, denoted by S, has 32 = 9 elements, that is, gtrue might be any of the
following.

S =

{(
1, 1

1, 1

)
,

(
1, 1

1, 2

)
,

(
1, 1

2, 2

)
, . . . ,

(
2, 2

1, 2

)
,

(
2, 2

2, 2

)}
.

De�ning N = 3, γ = (0.5, 0.25, 0.25)′ and p = 0.25, the SMERED algorithm is
implemented to draw samples from the posterior distribution in equation (1). The
density function f(gobs|G, y, p) has been de�ned above, f(G|N, γ) is determined
by γ, and f(y|N) is de�ned as

f(y|N) =
N !

(N − n)!

(
1

N

)S

The aim with this small example is to compare the exact posterior distribution
to that simulated by SMERED. The following procedure shows how to �nd the

exact probability for each element in S. For example, if gtrue =

(
2, 2

1, 2

)
, the

respective values of G and y are

G =

(
1, 2

2, 2

)
, y = (2, 1).

So, each of the terms involved in the posterior density in (1) are calculated as
follows.

f(gobs|G, y, p) =

(
p

m− 1

)2
(
(1− p)2 +

(
p

m− 1

)2
)

= 0.0390625

f(y|N) =
N !

(N − n)!

(
1

N

)S

=
3!

(3− 2)!

(
1

3

)2

=
2

3

f(G|N, γ) = γ1,2 · γ2,2 = 0.25 · 0.25 = 0.0625
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As follows, the posterior probability of g given gobs, γ,N , and p is proportional
to the product of these three terms, which is equal to 0.0016276042. Repeating
this process for all nine states in S, and �nding the normalizing constant, the exact
probabilities are given by,

(0.33123, 0.2761, 0.1656, 0.0552, 0.0920, 0.0276, 0.0184, 0.0153, 0.0184).

Figure 2 shows the results for 100 000 iterations of SMERED. The plot for the
simulated distribution is represented by the dotted red line, while the solid black
line represents the exact distribution. It seems that the Markov chain generated
by the algorithm does not converge to the correct stationary distribution.
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Figure 2: Exact invariant distribution vs. simulated under the new corruption process

This small example, with a manageable and available state space, shows that
the Markov chain generated by the hybrid MCMC algorithm and the exact in-
variant distribution do not match. It casts serious doubt on the existence of the
invariant distribution. The �rst reason might be the choice of the proposal density
as symmetric, when following SMERED procedure. This is not necessarily sym-
metric as the sampling occurs from gobs (step 9). Later, G is resampled (step 12),
as explained in Steorts et al. (2016). Because reversibility might not be satis�ed,
the existence of a unique stationary distribution cannot be ensured.

Robert & Casella (2004) state that the existence of the invariant distribution
of a Markov chain generated by a Metropolis algorithm follows by construction.
The reason is that the Metropolis ratio is de�ned such that the transition kernel
satis�es the reversibility condition, as clearly explained by Chib & Greenberg
(1995). For the particular case of the SMERED algorithm, it seems that the
proposal distribution for sampling a pair (G, y) was assumed to be symmetric,
since the relevant ratio does not appear in the expression shown in step 10 of
the algorithm 1. Besides, Gelman et al. (2004) state that asymmetric proposal
distributions can be bene�cial in order to speed up the evolution of the chain.

Also, the failure to converge might be closely connected to the dimension of
G, as a consequence of the split-merge operations applied. They are based on
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the procedure considered by Jain & Neal (2004) in the context of Dirichlet process
mixture models. The idea is to enhance a Metropolis-Hastings algorithm regarding
its e�ciency for moving through the space state, and this is done by splitting or
merging the mixture components. The approach in Jain & Neal (2004) takes full
advantage of the conjugacy in the model to analytically integrate over the mixing
proportions and component-speci�c parameters, leaving only the latent indicator
variables. These indicators are then updated through splitting and merging steps.

In the context here, the latent indicator variables mentioned above correspond
to the values in y; and the parameters for each component correspond to G. In-
deed, y is updated using split-merge operations, but G is jointly updated, instead
of marginalised. The problem is that there are no such conjugacy properties in the
model for integrating away G. Instead, the process for updating G and y causes
the dimension of G to increase (when splitting) or decrease (when merging) by one
unit at each iteration of the algorithm. Thus, if the change in the dimensionality
of G is taken into account, then G and y could potentially be jointly and correctly
updated. Bran (2018) designed an algorithm that takes into account this dimen-
sionality change based on a reversible jump MCMC proposed by Green (1995) by
using split-merge operations.

5. Conclusion

To sum up, this paper highlighted the potential of noninvasive DNA sampling.
These methods contribute to the conservation and management of wildlife while
minimizing disturbances and maintaining the well-being of the studied species. By
integrating these practices into research activities, scientists and conservationists
have a better understanding of their population dynamics, genetic health, and
habitat requirements without directly disturbing the animals. However, noninva-
sive DNA sampling faces some its own challenges. For example, the success rate
of obtaining DNA samples might be lower compared to direct sampling methods,
and sample quality can vary. In particular, genotyping error, as allelic dropout,
results in uncertainty regarding the number of observed individuals (sample size).

Additionally, the implementation of a Metropolis algorithm to update the la-
tent information of the true genotypes and their presence in the observations,
generated a Markov chain that was unable to simulate the exact distribution. In-
deed, the decision to utilize a toy example was driven by the fact that the entire
sample space is readily available. Given its smaller scale, working with a larger
sample size would not be meaningful in showcasing the limitations or failures of
the approach.

Undoubtedly, the nonreversibility of the chain emerges as a critical issue that
demands meticulous consideration and revision. This concern likely arises from
the assumption of a symmetric proposal distribution, which, if inaccurate, can sig-
ni�cantly impact the Metropolis ratio. Addressing this issue becomes paramount
for the robustness of the SMERED algorithm.
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A potential avenue for improvement involves contemplating the dimension
change of the parameter space, particularly in the context of the variable G. Delv-
ing deeper into the dynamics of dimensionality changes may prove instrumental
in enhancing the e�cacy of split-merge operations within the algorithm. This
consideration opens up possibilities for re�ning the performance of the algorithm
and addressing challenges related to nonreversibility. As such, a comprehensive
exploration of the implications of dimension changes could shed valuable insights
on strategies to overcome the identi�ed issues.[
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Appendix A. Verifying Probabilities Sum

To ensure that the probabilities in equations 2 and 3 have been correctly spec-
i�ed, the sum to 1.0 for each will be examined. The idea is to count how many
cases hold the condition of gobs. Tables A1 and A2 show the sums for both true
homozygote and true heterozygote cases, respectively. The third column of each
table sums 1.0.

Table A1: Counting cases for gobs when g = AA, and X ̸= A

gobs Counting Counting·Pr(gobs|G, y, p)

AA 1 (1− p)2

XX m− 1 p2/(m− 1)

XY (m− 1)(m− 2)/2 (m− 2)p2/(m− 1)

AX m− 1 2p(1− p)

Table A2: Counting cases for gobs when g = AB, and X,Y /∈ {A,B}

gobs Counting Counting·Pr(gobs|G, y, p)

AB 1 (1− p)2 +

(
p

m− 1

)2

XX m− 2 (m− 2)

(
p

m− 1

)2

AA or BB 2
2p(1− p)

m− 1

XY
(m− 3)(m− 2)

2
(m− 3)(m− 2)

(
p

m− 1

)2

AX or BX 2(m− 2) 2(m− 2)

[
p(1− p)

m− 1
+

(
p

m− 1

)2
]

Summing the third column in Table A1,

∑
gobs

Pr(gobs|g = AA, p) = 1− 2p+ p2 +
p2

m− 1
+

m− 2

m− 1
p2 + 2p− 2p2

= 1 +

(
1

m− 1
+

m− 2

m− 1
− 1

)
p2

= 1.

Similarly, summing the third column in Table A2,

∑
gobs

Pr(gobs|g = AB, p) = (1− p)2 + (m− 1)2
(

p

m− 1

)2

+ 2(m− 1)
p(1− p)

m− 1

= 1− 2p+ p2 + p2 + 2p− 2p2

= 1.
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