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Abstract

We extend univariate normality tests for time-dependent observations to
their multivariate versions using orthogonalization or empirical standardiza-
tion of the data. This extension allows us to assess the multivariate normality
of serially correlated data. The proposed test statistics asymptotically follow
the χ2 distribution, which allows for readily applicable tests. A comprehen-
sive Monte Carlo study indicates that the proposed tests exhibit good size
control and high empirical power. Furthermore, we provide empirical illus-
trations of all the extended tests using West German macroeconomic data
(Lütkepohl, 2005).
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Resumen

Extendemos las pruebas de normalidad univariadas para observaciones
dependientes del tiempo a sus versiones multivariadas usando ortogonali-
zación o estandarización empírica de los datos. Esta extensión nos permite
evaluar la normalidad multivariada. de datos correlacionados en serie. Las
estadísticas de prueba propuestas siguen asintóticamente la distribución χ2,
que permite pruebas fácilmente aplicables. Un comprensivo Estudio de Mon-
tecarlo indica que las pruebas propuestas presentan buen tamaño control y
alto poder empírico. Además, proporcionamos ilustraciones empíricas. de
todas las pruebas ampliadas utilizando datos macroeconómicos de Alemania
Occidental (Lütkepohl, 2005).

Palabras clave: Datos macroeconómicos; Monte Carlo; Normalidad multi-
variada; Ortogonalización; χ2-distribución; Series de tiempo.
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1. Introduction

The normality assumption is a fundamental concept in statistics and is com-
monly utilized by researchers in both theoretical and applied settings. For instance,
normality is typically a prerequisite in the analysis of variance, and without this
assumption holding, the results of the analysis of variance are not trustworthy
(Khan & Rayner, 2003).

Estimation methods such as maximum likelihood, generalized least squares,
and weighted least squares of structural equation models require the normality
assumption to obtain the same �t function and estimates of unknown parameters.
In the case of non-normalities, the �t function and estimates obtained by weighted
least squares di�er from those obtained by maximum likelihood and generalized
least squares. Consequently, most �t functions do not converge to the population
as the sample size increases (Andreassen et al., 2006). The normality assumption
plays an important role in determining su�cient and necessary conditions to ob-
tain the �nite sample distributions of least square estimates. Statistical models,
including linear regression and other modeling techniques, often assume normally
distributed residuals to make accurate forecasts or predictions. Loy et al. (2016)
stated that prediction intervals may be worthless or inaccurate if residuals are not
normally distributed. Lütkepohl (2005) pointed out that normality is required for
the underlying data generation process when setting up forecast intervals. Gen-
erally, models with non-normally distributed residuals do not provide a good rep-
resentation of the data generation process. Yuan et al. (2005) and Andreassen
et al. (2006) have discussed the consequences of the normality assumption in both
simple independent and identically distributed, henceforth IID, models to more
complicated structural equation models.

Given the previous examples, it is not surprising that the literature on testing
normality has a history of more than eight decades. For book-level treatments,
see Thode (2002) on testing normality and D'Agostino & Stephens (1986) on
determining goodness-of-�t. A wide range of methods to test the normality of
IID data has been proposed and discussed in the literature. The most popular
method especially in economics for testing the normality of univariate data based
on skewness and kurtosis was proposed by Jarque & Bera (1987), henceforth JB.
Generalized versions of the JB test statistic have also been popularly applied to test
multivariate normality in IID settings (Mardia, 1970; Koizumi et al., 2009; Kim,
2016). JB popularity is due to its ease of implementation and standard asymptotic
behavior, i.e., it only involves calculating averages and the test statistic has a χ2

distribution asymptotically. From a theoretical perspective, the JB test has a nice
LM-based interpretation and is �exible and popular enough to be extended to
the outside of the IID case. For example, Lobato & Velasco (2004) and Bai &
Ng (2005) modi�ed the JB test to the univariate time series case. Horváth et al.
(2020) and Chen & Genton (2023) extended the JB test statistic to the univariate
and multivariate spatial grid cases, respectively.

Relatively less work has been done to generalize the JB test for multivariate time
series data compared to the work done for univariate time series data. A generalized
version of the JB test is provided in Lütkepohl (2005) for assessing the multivariate
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normality of the errors of a vector autoregressive (VAR) process. The generalized test
statistic is developed based on the standardized residuals of the VARmodel, and it has
been proved that the test statistic follows a χ2 distribution under a Gaussian white
noise process. Kilian & Demiroglu (2000), through a comprehensive Monte Carlo
study, pointed out that Lütkepohl (2005)'s test suffers from severe size distortions
even for large samples in the presence of autoregressive persistence. However, Kilian &
Demiroglu (2000) developed a bootstrap version of the JB test statistic for testing the
multivariate normality of a VAR process and a vector error-correction (VEC) process.
Their Monte Carlo results revealed that the bootstrap test works very well, even for
processes with roots close to unity. Recently, Elbouch et al. (2022); Olivier et al.
(2022) extended the Mardia (1970)'s multivariate kurtosis test to multivariate time
series, to assess the multivariate normality of time-dependence data, using random
projection.

In practice, Lütkepohl (2005)'s test may not be reliable due to its poor finite-
sample properties in the presence of serial correlation, and the practical implementa-
tion of the bootstrap version of the JB test may be challenging because it requires
knowledge of the model structure. Furthermore, it is well documented that the kurto-
sis test exhibits slow convergence of sample kurtosis to the normal asymptotic distri-
bution, even with a large number of observations and a white noise process (Lobato &
Velasco, 2004; Bai & Ng, 2005). However, the multivariate kurtosis test for time series
data introduced by Elbouch et al. (2022); Olivier et al. (2022) may not be accurate
for small and moderate sample sizes.

In light of these issues and drawing inspiration fromKim (2016) and Villasenor Alva
& Estrada (2009), this study extends the univariate normality tests proposed by Lo-
bato & Velasco (2004) and Bai & Ng (2005) to the multivariate time series case using
orthogonalization or empirical standardization of the data. Under the null hypothesis
of normality, the proposed tests asymptotically follow the χ2 distribution. Therefore,
their practical implementation is more straightforward and easier than the bootstrap
version of the JB test, as they do not require knowledge of the model structure and its
estimation. Additionally, the proposed tests are robust against serial dependence and
address both skewness and kurtosis. However, we can conclude that the proposed
tests are more general than the bootstrap testing procedure (Kilian & Demiroglu,
2000), Lütkepohl (2005)'s test, and the multivariate kurtosis test (Elbouch et al.,
2022; Olivier et al., 2022). Extensive Monte Carlo simulations reveal that the pro-
posed test statistics have good size control and high empirical power. Moreover, the
study provides an empirical exercise for illustrative purposes using quarterly, season-
ally adjusted time series data from Lütkepohl (2005).

The organization of the rest of the study is as follows: Section 2 summarizes
the setup of univariate normality tests for time series data. Section 3 presents the
set of proposed normality tests for multivariate time series observations. Section 4
provides Monte Carlo experiments to document the �nite-sample properties of the
proposed tests. Section 5 includes an empirical exercise for illustrative purposes,
and Section 6 contains the concluding remarks. Monte Carlo results are presented
in Appendix A, while the graphical presentation of the proposed test statistics is
given in Appendix B. Finally, data on West German �xed investment, disposable
income, and consumption expenditures is provided in Appendix C.
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2. Normality Tests for Univariate Time Series

Let X be a stochastic process with continuous cumulative distribution function
(CDF)GX andX1, . . . ,XT be a random sample of size T fromX satis�es E

(
X16

t

)
<

∞. Let µ̂k = 1
T

∑T
i=1

(
Xi −X

)k
be the kth sample moment, whereX = 1

T

∑T
i=1Xi

is the sample mean.

In the same spirit as the JB test, Lobato & Velasco (2004) developed the
test statistic under time-dependence to test the null hypothesis that H0 : Xt ∼
N(µ,σ2), where N(µ,σ2) denotes the normal distribution with an unknown mean
µ and unknown variance σ2, against the alternative hypothesis that H0 does not
hold. The test statistic is de�ned as follows:

G =
Tµ̂2

3

6F̂ (3)
+

T (µ̂4 − 3µ̂2
2)

2

24F̂ (4)
, (1)

with

F̂ (k) =

T−1∑
j=1−T

γ̂(j)
k

k = 3,4

where

γ̂(j) =
1

T

T−|j|∑
t=1

(Xt −X)(Xt+|j| −X),

for j = 0,±1,±2, . . . ,±(T − 1), γ̂(j) is a consistent estimator of the population

jth order autocovariance. Furthermore, 6F̂ (3) and 24F̂ (4) are consistent estima-
tors, under normality, of the asymptotic variance of

√
Tµ̂3 and

√
T (µ̂4 − 3µ̂2

2),
respectively, and they account for the serial correlation in the observations.

Bai & Ng (2005) modi�ed the JB test statistic for time series observations
to test H0. In contrast to Lobato & Velasco (2004), they accounted for serial
correlation in data using a nonparametric long-run variance estimator. Their test
statistic is de�ned as follows:

BN =
T

ω̂3

(
µ̂3

µ̂
3/2
2

)2

+
T

ω̂4

(
µ̂4

µ̂2
2

− 3

)2

=
Tτ̂2

ω̂3
+

T (κ̂− 3)2

ω̂4
,

(2)

where ω̂3 and ω̂4 are consistent estimators of the long-run variance of
√
Tτ̂ and√

T (κ̂ − 3), respectively. These estimators are computed using an automatic lag
selection procedure introduced by Newey & West (1994). Moreover, τ̂ and κ̂ repre-
sent the sample counterparts of the skewness coe�cient τ and kurtosis coe�cient
κ, respectively. Under the null of normality, the G and BN test statistics asymp-
totically follow a χ2 distribution with 2 degrees of freedom.

In addition to H0, we can use the �rst components of G and BN to test the
null hypothesis that the skewness is zero. Namely, the skewness test statistics are
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�ned as:

GS =
Tµ̂2

3

6F̂ (3)
, (3)

BS =
Tτ̂2

ω̂3
, (4)

and they asymptotically follow a χ2 distribution with 1 degree of freedom. We
have not considered the second components of BN and G to test the null hypoth-
esis that the kurtosis is 3. This is because the kurtosis test has an extremely slow
convergence to a normal asymptotic distribution, and the sample estimate of kur-
tosis signi�cantly deviates from its true value in the presence of serial correlation,
even with a large number of observations Bai & Ng (2005).

It is worth noting that BN only requires �nite sample moments up to the
8th order, while the G test demands moments up to the 16th order, especially to
establish the consistency of F̂ (3) and F̂ (4). Additionally, the BN test statistic is
not exclusively formulated under the null of normality, unlike the G test statistic,
which is developed assuming normality. However, the BN test statistic can be
used to detect deviations from distributions other than the normal distribution,
making it suitable as a goodness-of-�t test rather than merely a normality test. A
main advantage of G over BN is that it does not require any kernel smoothing or
truncation.

3. Proposed Normality Tests for Multivariate Time

Series

Let X = (X1t,X2t, . . . ,Xmt) be a m-dimensional strictly stationary random
vector with a cumulative distribution function GX and {X1, . . . ,XT} is a set of

dependent observations of size T fromX with sample mean vectorX = 1
T

∑T
t=1Xt

and sample covariance matrix S = 1
T

∑T
t=1

(
Xt −X

) (
Xt −X

)′
. Our objective is

to test the null hypothesis that H0 : Xt ∼ Nm (µ,Σ), where Nm (µ,Σ) represents
the m-variate normal distribution with unknown mean vector µ and unknown
covariance matrix Σ, against the alternative hypothesis that H0 does not hold.

To formulate the multivariate normality tests for time-dependence observa-
tions, we de�ne scaled residuals, following the steps given in Villasenor Alva &
Estrada (2009), as follows:

Z∗
t = S−1/2

(
Xt −X

)
, t = 1, . . . , T

where S−1/2 represents the unique symmetric square root matrix of S and satis�es
S−1/2′SS−1/2 = I. Additionally, we assume that T ≥ m+1 so that S is invertible
with probability one (Chen & Genton, 2023). Under the null of multivariate
normality, the scaled residuals Z∗

t asymptotically follow a multivariate standard
normal distribution, denoted as Nm (0, I). Here, 0 is the null vector of order
m×1, while I is identity matrix of order m×m. This implies that the components
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{Z∗
1t, . . . , Z

∗
mt} of Z∗

t are approximately independent and each follows a univariate
standard normal distribution (Villasenor Alva & Estrada, 2009).

It is worth noting that each coordinate of the standardized data, i.e., {Z∗
c1, . . . ,

Z∗
cT }, where c = 1, 2, . . . ,m, exhibits serial correlation. This is in contrast to

the setup given in Villasenor Alva & Estrada (2009) and Kim (2016), where each
coordinate of the standardized data is serially independent. Therefore, the JB
test, Lütkepohl (2005)'s test, and Mardia (1970)'s multivariate test are not valid
in our setup, as they have been developed for IID settings.

To account for the serial correlation, we compute and aggregate the univariate
G, GS, BN, and BS test statistics for each coordinate of the transformed data.
This approach is inspired by Kim (2016). Finally, we propose the following test
statistics to test H0:

GM =
m∑
c=1

G(c) , GSM =

m∑
c=1

GS (c) , (5)

and

BNM =

m∑
c=1

BN(c) , BSM =

m∑
c=1

BS (c) (6)

where G(c), GS (c), BN(c), and BS (c) are the respective test statistics in equa-
tions (1), (3), (2), and (4) for each coordinate {Z∗

c1, . . . , Z
∗
cT }, where c = 1, 2, . . . ,m.

Given that the scaled residuals are approximately independent under H0, and the
square roots of the �rst and second components of G and BN converge to the stan-
dard normal distribution, the test statistics GM and BNM asymptotically follow a
χ2 distribution with 2m degrees of freedom under H0. Meanwhile, GSM and BSM
asymptotically follow a χ2 distribution with m degrees of freedom under the null
hypothesis that the skewness is zero.

Mathematically, it is tedious and challenging to derive the asymptotic distribu-
tions of the proposed test statistics; however, we used Monte Carlo simulations to
justify the asymptotic distribution of each test statistic. Monte Carlo simulations
are commonly used to compute the empirical distribution of a statistic, particu-
larly when the exact distribution is unknown or mathematically di�cult to �nd.
For this purpose, we computed 10 000 values of GM, BNM, GSM, and BSM for sam-
ple sizes of 2000 and 3000. These samples were generated from models M1, M2,
and M3, where the error terms ϵ1t, ϵ2t, and ϵ3t are independently obtained from
a standard normal distribution (the details of each model are given in Section 4).
Furthermore, we generated 10 000 random numbers from a χ2 distribution with
degrees of freedom 2, 3, 4, and 6, which is our theoretical distribution. To com-
pare the empirical distribution of each test statistic with its respective theoretical
distribution, we plotted the computed values of GM, BNM, GSM, and BSM against
their respective theoretical random numbers. These graphical results are provided
in Appendix B for each sample size and models M1, M2, and M3. Figures B1 to
B24 clearly show that the empirical distributions of GM and BNM closely follow
a χ2 distribution with 2m degrees of freedom, while the empirical distributions
of GSM and BSM closely follow a χ2 distribution with m degrees of freedom. A
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similar pattern has been observed when samples are generated from models M4
and M5; however, results can be provided upon request.

4. Monte Carlo Experiments

4.1. Monte Carlo Design

We now document the �nite-sample performance of the proposed tests GM and
BNM, along with their skewness counterparts GSM and BSM, respectively. The
performance of each test is evaluated based on the empirical size and power of the
test. The empirical size of the test is the probability of rejecting a null hypothesis
that is actually true in the population, while the empirical power of the test is the
probability of rejecting a null hypothesis that is actually false in the population.
Let ϵmt, where m ∈ {1, 2, 3, 4}, be the IID error terms, we consider the following
stochastic processes:

M1 :

(
X1,t

X2,t

)
=

[
0.70 0.20

0.20 0.70

](
X1,t−1

X2,t−1

)
+

(
ϵ1t
ϵ2t

)
,

M2 :

 X1,t

X2,t

 =

 0.40 −0.10

−0.20 0.60

 X1,t−1

X2,t−1

+

 −0.40 0.60

−0.20 0.20

 X1,t−2

X2,t−2

+

 ϵ1t

ϵ2t

 ,

M3 :

 X1,t

X2,t

X3,t

 =

 0.50 0.20 0.10

0.40 0.30 0.20

0.20 0.60 −0.10

 X1,t−1

X2,t−1

X3,t−1

+

 ϵ1t
ϵ2t
ϵ3t

 ,

M4 :


X1,t = 0.40X1,t−1 + ϵ1t,

X2,t = 0.20X2,t−1 + ϵ2t,

X3,t = 0.80X3,t−1 + ϵ3t,

and M5 :


X1,t = 0.40X1,t−1 + ϵ1t,

X2,t = 0.20X2,t−1 + ϵ2t,

X3,t = 0.80X3,t−1 + ϵ3t,

X4,t = 0.50X4,t−1 + ϵ4t,

for t = 1, 2, . . . , (100+T ). M1 andM2 represent the bivariate vector autoregressive
process with lag 1 and 2 respectively, while M3 represents the trivariate vector
autoregressive process with lag 1. M4 andM5 are the combination of three and four
independent AR(1) processes respectively. The sample size T takes on three values:
100, 500, and 1000;1 the �rst 100 observations are omitted for each experiment to
eliminate the start-up e�ects.

1Unlike the Monte Carlo comparisons of the �nite sample performance of IID-based normality
tests, the Monte Carlo designs in the time series case feature at least 100 observations, see, for
example, Bai & Ng (2005); Lobato & Velasco (2004); Psaradakis & Vávra (2018).
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To estimate the size of the test, the error terms ϵ1t, ϵ2t, ϵ3t, and ϵ4t are inde-
pendently generated from a standard normal distribution, while to estimate the
raw power of the test, we generate ϵ1t, ϵ2t, ϵ3t, and ϵ4t independently from the fol-
lowing distributions: (a) Uniform distribution, labeled by U(0, 1), (b) Beta(2,2),
(c) Student t-distribution with 1 degree of freedom, labeled by t1, (d) Student
t-distribution with 5 degrees of freedom, labeled by t5, (e) Student t-distribution
with 10 degrees of freedom, labeled by t10, (f) Laplace(0,1), (g) Logistic(0,1), (h)
Chi-square distribution with 1 degree of freedom, labeled by χ2

1, (i) Chi-square
distribution with 5 degrees of freedom, labeled by χ2

5, (j) Standard log-normal
distribution, labeled by LN(0,1), (k) Pareto (6,1), and (l) generalized lambda dis-
tribution (GLD) with following quantile function:

F−1
ϵ (u) = θ1 +

uθ3 − (1− u)θ4

θ2
,

where u ∼ U(0, 1). The values of the unknown parameters θ1, θ2, θ3, and θ4,
to generate the alternative asymmetric distributions, are obtained from Bai & Ng
(2005) and given in Table 1. These distributions cover interval-based distributions,
non-normal symmetric distributions, and asymmetric distributions. We �xed the
signi�cance level at α = 0.05, and the number of replications to 10000 in the
Monte Carlo experiments. To estimate the long-run covariance matrix of BNM

and BNM, we set the user inputs as follows. We use the Bartlett kernel introduced
by Newey & West (1987), with the truncation lag selected using the automatic
procedure of Newey & West (1994). Similar to Bai & Ng (2005), we have not
applied prewhitening. Monte Carlo outputs are given in Appendix A.

Table 1: Generalized lambda distributions

Distributions θ1 θ2 θ3 θ4 τ κ

A1 0 -1 -0.10 -0.18 2 21.2

A2 0 -1 -0.001 -0.130 3.16 23.8

A3 0 -1 -0.0001 -0.1700 3.8 40.7

Note: A1-A3 are asymmetric distributions. τ and κ represent the
skewness coe�cient and kurtosis coe�cient, respectively.

4.2. Simulation Results

To demonstrate the incompatibility of classical multivariate normality tests
with time series data, we compute the empirical sizes of well-known IID multivari-
ate tests proposed by Mardia (1970) (coded as MS and MK), Koizumi et al. (2009)
(coded as KJMM), and Kim (2016) (coded as JBM and RJBM). The results are
presented in Table A1, revealing signi�cant upward size distortions. This implies
that these tests substantially deviate from their asymptotic distributions and may
lead to misleading outcomes in the presence of serial correlation.

Table A2 presents the empirical sizes of the proposed test statistics. The results
reveal that the empirical sizes of GM and GSM are very close to the nominal
size. The BNM and BSM tests show upward size distortions, however, these size
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distortions are relatively smaller than the size distortions of JBM, RJBM, MS, MK,
and KJBM.

Table A3 presents the empirical powers of the GSM, GM, BSM, and BNM

tests when the error terms ϵ1t, ϵ2t, ϵ3t, and ϵ4t are generated from interval-based
distributions, speci�cally U(0, 1) and Beta(2,2). It is observed that the BNM test
outperforms its competitors.

Table A4 provides the empirical powers of GSM, GM, BSM, and BNM when ϵ1t,
ϵ2t, ϵ3t, and ϵ4t are obtained from non-normal symmetric distributions, particularly
t1, t5, t10, Laplace(0,1), and Logistic(0,1). Results indicate that the GM test is
the most powerful test, closely followed by the GSM test. The BSM test performs
worse than all other tests.

The empirical powers of GSM, GM, BSM, and BNM against asymmetric distri-
butions, χ2

1, Pareto(6,1), LN(0,1), A1, A2, and A3, are presented in Table A5. It
is observed that GSM and GM performed well compared to BSM and BNM. In the
case of a small sample, the BSM test has slightly higher power than BNM, while
for a large sample, both tests have more or less equal power.

5. Empirical Illustration

For illustrative purposes, we consider quarterly seasonally adjusted data on
West German �xed investment, disposable income, and consumption expenditures
in billions of Deutsche Marks (DM) from 1960Q1 to 1982Q4. These variables are
obtained from datasets2 provided by Applied Time Series Econometrics (Lütke-
pohl, 2005) and presented in Table C1 (see Appendix C), where X, Y, and Z
represent �xed investment, disposable income, and consumption expenditure, re-
spectively. We utilize the GS and BS test statistics to examine symmetry in X,
Y , and Z, while GSM and BSM are applied to test their joint symmetry. To assess
individual normality of X, Y , and Z, we employ G and BN tests. Meanwhile, the
GM and BNM statistics are used to evaluate the joint normality of the data.

We take the �rst di�erence of the logarithm of each variable before computing
the test statistics. The results of applying these test statistics along with sample
skewness and kurtosis are provided in Tables 2 and 3. The �rst two columns of
Table 2 contain the values of the univariate sample skewness τ̂ and kurtosis κ̂,
respectively, while the last four columns provide the values of the univariate test
statistics GS, BS, G, and BN, respectively. In Table 3, the �rst two columns present
the values of the multivariate sample skewness b1,2 and kurtosis b2,3, respectively,
while the last four columns report the values of the multivariate test statisticsGSM,
BSM, GM, and BNM, respectively. We reject individual symmetry, joint symmetry,
individual normality, and joint normality when the calculated test statistics exceed
their critical values at a signi�cance level of 0.05.

2http://www.jmulti.de/data_atse.html
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Table 2: Application of univariate normality tests to West German macroeconomic
data.

Time Series τ̂ κ̂ GS BS G BN

X 0.357 6.207 2.749 0.404 45.009 2.829

Y -0.532 5.007 2.741 0.893 8.867 2.183

Z -0.351 3.110 0.004 0.002 1.002 0.768

The 5% critical values are as follows: 3.8415 for GS and BS, 5.992 for
G and BN.

Table 3: Application of multivariate normality tests to West German macroeconomic
data.

Time Series b1,3 b2,3 GSM BSM GM BNM

All 3 series 1.290 20.070 5.494 1.301 54.877 5.781

The 5% critical values are as follows: 7.815 for GSM and BSM, and
12.592 for GM and BNM.

The results indicate that the GS and BS tests fail to reject symmetry in X, Y, and
Z. Similar to GS and BS, the GSM and BSM tests fail to provide evidence against joint
symmetry in the data. The G test rejects normality in X and Y, while it fails to find
evidence against normality in Z. In contrast, the BN test fails to reject normality for
all X, Y, and Z. In terms of multivariate normality, the GM test rejects joint normality
in the data. Unlike GM, the BNM test fails to reject joint normality in the data.

6. Conclusions

This study generalized univariate time series normality tests G, GSM, BSM, and
BN to the multivariate time series case using orthogonalization or empirical stan-
dardization of the data. Under the null hypothesis of multivariate normality, the
generalized test statistics asymptotically follow the χ2 distribution, providing readily
applicable multivariate normality testing procedures to assess the normality of vec-
tor autoregressive processes. Extensive Monte Carlo experiments revealed that in
terms of test size, the GSM and GM test statistics have more accurate sizes than
BSM and BNM. In terms of test power, BNM outperformed its competitors against
interval-based distributions, while GM and GSM are the most powerful tests against
non-normal symmetric and asymmetric distributions, except in a few cases where
BNM performed better than GSM. We believe that in multivariate time series set-
tings, these experiments would be useful for practitioners in their empirical work of
detecting non-normalities.[

Received: December 2023 � Accepted: May 2024
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Appendix A

Table A1: Empirical size of JBM, RJBM, MS, MK, KJBM under time series settings,
α = 0.05

Model T JBM RJBM MS MK KJBM

M1

100 0.085 0.113 0.188 0.094 0.170

500 0.209 0.208 0.371 0.155 0.385

1000 0.268 0.256 0.416 0.191 0.453

M2

100 0.069 0.096 0.080 0.064 0.067

500 0.107 0.110 0.106 0.111 0.119

1000 0.122 0.118 0.119 0.118 0.138

M3

100 0.057 0.080 0.070 0.069 0.065

500 0.072 0.072 0.132 0.083 0.130

1000 0.072 0.067 0.142 0.094 0.145

M4

100 0.087 0.122 0.093 0.063 0.081

500 0.169 0.169 0.179 0.077 0.173

1000 0.205 0.192 0.197 0.083 0.194

M5

100 0.086 0.123 0.106 0.096 0.100

500 0.177 0.179 0.232 0.080 0.230

1000 0.205 0.191 0.246 0.080 0.247
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Table A2: Empirical size of the multivariate normality test (time series case), α = 0.05

Model T GSM GM BSM BNM

M1

100 0.030 0.027 0.084 0.084

500 0.041 0.039 0.066 0.090

1000 0.051 0.049 0.070 0.096

M2

100 0.043 0.037 0.076 0.094

500 0.048 0.048 0.061 0.096

1000 0.054 0.054 0.061 0.086

M3

100 0.045 0.048 0.065 0.102

500 0.050 0.054 0.058 0.094

1000 0.049 0.051 0.053 0.089

M4

100 0.040 0.038 0.083 0.108

500 0.047 0.049 0.059 0.095

1000 0.055 0.052 0.061 0.091

M5

100 0.037 0.040 0.082 0.115

500 0.049 0.053 0.064 0.103

1000 0.052 0.057 0.059 0.098

Table A3: Empirical power of the multivariate normality test (time series case) against
interval based distributions, α = 0.05

Model T

U(0,1) Beta(2,2)

GSM GM BSM BNM GSM GM BSM BNM

M1

100 0.007 0.004 0.070 0.153 0.015 0.009 0.077 0.119

500 0.016 0.011 0.063 0.486 0.020 0.011 0.065 0.298

1000 0.016 0.091 0.058 0.695 0.022 0.036 0.060 0.444

M2

100 0.011 0.003 0.070 0.253 0.016 0.008 0.066 0.174

500 0.010 0.126 0.060 0.768 0.016 0.035 0.064 0.492

1000 0.009 0.612 0.061 0.949 0.017 0.209 0.061 0.711

M3

100 0.002 0.002 0.063 0.731 0.006 0.003 0.066 0.424

500 0.003 0.976 0.056 1.000 0.007 0.471 0.058 0.963

1000 0.002 1.000 0.059 1.000 0.007 0.968 0.055 0.999

M4

100 0.002 0.047 0.070 0.998 0.004 0.006 0.077 0.816

500 0.002 1.000 0.061 1.000 0.004 0.999 0.058 1.000

1000 0.002 1.000 0.057 1.000 0.005 1.000 0.057 1.000

M5

100 0.001 0.041 0.072 1.000 0.002 0.006 0.075 0.865

500 0.001 1.000 0.059 1.000 0.001 1.000 0.058 1.000

1000 0.001 1.000 0.057 1.000 0.002 1.000 0.060 1.000

Revista Colombiana de Estadística - Theoretical Statistics 47 (2024) 165�192



178 Shahzad Munir

T
a
b
l
e
A
4
:
E
m
p
irica

l
p
ow

er
o
f
th
e
m
u
ltiva

ria
te

n
o
rm

a
lity

test
(tim

e
series

ca
se)

a
g
a
in
st

sy
m
m
etric

d
istrib

u
tio

n
s,

α
=

0
.0
5

M
o
d
e
l

M
1

M
2

M
3

M
4

M
5

T
1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

t
1

G
S
M

0
.9
5
8

0
.9
9
7

0
.9
9
9

0
.9
7
5

0
.9
9
8

0
.9
9
9

0
.9
9
8

1
.0
0
0

1
.0
0
0

0
.9
9
9

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

G
M

0
.9
9
7

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

B
S
M

0
.0
6
6

0
.0
1
0

0
.0
0
5

0
.0
6
4

0
.0
0
9

0
.0
0
5

0
.0
2
9

0
.0
0
5

0
.0
0
5

0
.0
5
6

0
.0
0
5

0
.0
0
2

0
.0
5
9

0
.0
0
4

0
.0
0
3

B
N

M
0
.1
9
3

0
.0
8
9

0
.0
5
9

0
.1
9
2

0
.0
6
8

0
.0
5
4

0
.1
9
4

0
.0
7
2

0
.0
6
2

0
.2
1
1

0
.0
6
1

0
.0
4
3

0
.2
8
2

0
.0
8
5

0
.0
6
3

t
5

G
S
M

0
.1
7
2

0
.3
0
5

0
.3
6
0

0
.2
5
7

0
.4
2
1

0
.4
9
7

0
.4
5
0

0
.6
8
0

0
.7
5
8

0
.5
2
3

0
.7
4
3

0
.8
1
2

0
.5
9
7

0
.8
3
0

0
.8
8
8

G
M

0
.2
1
6

0
.6
1
1

0
.8
4
7

0
.3
4
1

0
.8
2
2

0
.9
7
3

0
.6
4
1

0
.9
9
5

1
.0
0
0

0
.7
4
1

1
.0
0
0

1
.0
0
0

0
.8
1
9

1
.0
0
0

1
.0
0
0

B
S
M

0
.0
9
1

0
.0
6
4

0
.0
5
6

0
.0
7
6

0
.0
5
2

0
.0
5
0

0
.0
6
7

0
.0
4
2

0
.0
4
0

0
.0
8
7

0
.0
4
9

0
.0
4
7

0
.0
9
3

0
.0
5
2

0
.0
4
7

B
N

M
0
.0
7
1

0
.1
1
3

0
.2
5
5

0
.0
7
4

0
.1
9
4

0
.4
7
7

0
.0
8
7

0
.4
9
6

0
.8
7
5

0
.1
4
8

0
.5
6
6

0
.8
3
3

0
.1
7
1

0
.7
1
9

0
.9
3
4

t
1
0

G
S
M

0
.0
6
7

0
.0
9
4

0
.1
0
3

0
.1
0
1

0
.1
3
8

0
.1
4
9

0
.1
6
4

0
.2
3
4

0
.2
6
2

0
.2
0
7

0
.3
0
9

0
.3
4
1

0
.2
4
0

0
.3
6
4

0
.3
9
4

G
M

0
.0
7
5

0
.1
6
2

0
.2
4
9

0
.1
2
3

0
.2
9
0

0
.4
5
3

0
.2
5
0

0
.6
4
0

0
.8
7
1

0
.3
2
3

0
.8
2
6

0
.9
7
5

0
.3
6
9

0
.8
8
5

0
.9
9
2

B
S
M

0
.0
9
0

0
.0
6
6

0
.0
6
2

0
.0
7
6

0
.0
5
6

0
.0
5
8

0
.0
6
8

0
.0
5
4

0
.0
5
2

0
.0
8
3

0
.0
5
6

0
.0
5
4

0
.0
9
3

0
.0
5
8

0
.0
5
5

B
N

M
0
.0
7
8

0
.0
6
1

0
.0
7
1

0
.0
7
2

0
.0
6
5

0
.1
1
3

0
.0
7
1

0
.1
1
0

0
.3
4
0

0
.0
8
7

0
.2
2
4

0
.5
6
7

0
.1
0
0

0
.2
6
3

0
.6
7
2

L
a
p
la
c
e
(0
,1
)

G
S
M

0
.1
3
7

0
.2
0
8

0
.2
2
8

0
.2
3
2

0
.3
1
5

0
.3
3
8

0
.4
2
0

0
.5
4
3

0
.5
6
8

0
.5
0
1

0
.6
4
7

0
.6
7
8

0
.5
8
7

0
.7
3
2

0
.7
5
2

G
M

0
.1
7
9

0
.5
7
3

0
.8
3
1

0
.3
2
8

0
.8
4
8

0
.9
8
4

0
.6
9
1

0
.9
9
9

1
.0
0
0

0
.8
5
2

1
.0
0
0

1
.0
0
0

0
.8
9
9

1
.0
0
0

1
.0
0
0

B
S
M

0
.1
0
5

0
.0
7
3

0
.0
6
6

0
.0
8
6

0
.0
5
8

0
.0
5
5

0
.0
7
4

0
.0
5
0

0
.0
4
5

0
.0
9
9

0
.0
5
9

0
.0
5
7

0
.1
0
7

0
.0
6
0

0
.0
5
4

B
N

M
0
.0
8
2

0
.1
8
1

0
.4
5
5

0
.0
8
9

0
.3
6
5

0
.7
9
1

0
.1
4
8

0
.8
8
9

0
.9
9
8

0
.3
1
8

0
.9
1
9

0
.9
9
3

0
.3
7
9

0
.9
7
9

1
.0
0
0

L
o
g
istic

(0
,1
)

G
S
M

0
.0
6
7

0
.1
0
4

0
.1
0
9

0
.1
2
0

0
.1
5
0

0
.1
5
6

0
.1
9
3

0
.2
6
2

0
.2
7
9

0
.2
3
9

0
.3
4
5

0
.3
6
9

0
.2
8
0

0
.3
9
9

0
.4
2
0

G
M

0
.0
7
6

0
.1
9
4

0
.3
0
1

0
.1
4
3

0
.3
6
9

0
.5
6
7

0
.3
0
9

0
.7
8
2

0
.9
5
9

0
.3
9
6

0
.9
3
2

0
.9
9
8

0
.4
5
4

0
.9
6
8

1
.0
0
0

B
S
M

0
.0
9
1

0
.0
6
8

0
.0
6
5

0
.0
7
8

0
.0
5
6

0
.0
5
7

0
.0
6
9

0
.0
5
2

0
.0
5
1

0
.0
8
6

0
.0
5
8

0
.0
5
5

0
.0
8
9

0
.0
5
7

0
.0
5
5

B
N

M
0
.0
7
4

0
.0
6
8

0
.0
9
6

0
.0
7
3

0
.0
8
7

0
.1
8
1

0
.0
7
0

0
.2
2
3

0
.6
1
5

0
.1
0
1

0
.4
1
9

0
.8
4
6

0
.1
1
2

0
.5
0
9

0
.9
2
5

Revista Colombiana de Estadística - Theoretical Statistics 47 (2024) 165�192



Multivariate Normality Test for Serially Correlated Data 179

T
a
b
l
e
A
5
:
E
m
p
ir
ic
a
l
p
ow

er
o
f
th
e
m
u
lt
iv
a
ri
a
te

n
o
rm

a
li
ty

te
st

(t
im

e
se
ri
es

ca
se
)
a
g
a
in
st

a
sy
m
m
et
ri
c
d
is
tr
ib
u
ti
o
n
s,

α
=

0
.0
5

M
o
d
e
l

M
1

M
2

M
3

M
4

M
5

T
1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

1
0
0

5
0
0

1
0
0
0

χ
2 1

G
S
M

0
.9
0
8

1
.0
0
0

1
.0
0
0

0
.9
8
7

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

G
M

0
.8
3
9

1
.0
0
0

1
.0
0
0

0
.9
7
1

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

B
S
M

0
.7
3
8

0
.9
9
9

1
.0
0
0

0
.8
1
3

0
.9
9
6

1
.0
0
0

0
.9
8
7

1
.0
0
0

1
.0
0
0

0
.9
8
2

1
.0
0
0

1
.0
0
0

0
.9
9
8

1
.0
0
0

1
.0
0
0

B
N

M
0
.6
0
6

0
.9
9
8

1
.0
0
0

0
.7
8
0

0
.9
9
7

1
.0
0
0

0
.9
8
0

1
.0
0
0

1
.0
0
0

0
.9
7
3

1
.0
0
0

1
.0
0
0

0
.9
9
7

1
.0
0
0

1
.0
0
0

L
N
(0
,1
)

G
S
M

0
.9
6
5

1
.0
0
0

1
.0
0
0

0
.9
9
6

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

G
M

0
.9
4
1

1
.0
0
0

1
.0
0
0

0
.9
9
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

B
S
M

0
.5
8
9

0
.9
0
9

0
.9
6
0

0
.6
2
3

0
.8
3
9

0
.9
0
3

0
.8
8
6

0
.9
8
3

0
.9
9
4

0
.9
0
3

0
.9
8
3

0
.9
9
5

0
.9
7
0

0
.9
9
9

1
.0
0
0

B
N

M
0
.5
1
3

0
.9
1
4

0
.9
6
0

0
.6
5
1

0
.8
8
0

0
.9
2
9

0
.8
8
6

0
.9
8
2

0
.9
9
3

0
.8
8
9

0
.9
8
2

0
.9
9
4

0
.9
6
4

0
.9
9
8

1
.0
0
0

P
a
re
to
(6
,1
)

G
S
M

0
.9
0
1

1
.0
0
0

1
.0
0
0

0
.9
8
2

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

G
M

0
.8
4
8

1
.0
0
0

1
.0
0
0

0
.9
6
6

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

B
S
M

0
.6
3
4

0
.9
6
4

0
.9
8
9

0
.7
0
0

0
.9
3
0

0
.9
6
8

0
.9
4
5

0
.9
9
6

0
.9
9
9

0
.9
4
2

0
.9
9
8

1
.0
0
0

0
.9
8
8

1
.0
0
0

1
.0
0
0

B
N

M
0
.5
1
2

0
.9
6
1

0
.9
8
7

0
.6
8
3

0
.9
4
8

0
.9
7
7

0
.9
3
3

0
.9
9
7

1
.0
0
0

0
.9
2
9

0
.9
9
7

0
.9
9
9

0
.9
8
3

1
.0
0
0

1
.0
0
0

A
1

G
S
M

0
.4
7
1

0
.9
5
7

0
.9
9
8

0
.6
5
2

0
.9
9
5

1
.0
0
0

0
.9
1
7

1
.0
0
0

1
.0
0
0

0
.9
6
0

1
.0
0
0

1
.0
0
0

0
.9
8
5

1
.0
0
0

1
.0
0
0

G
M

0
.4
7
7

0
.9
7
6

1
.0
0
0

0
.6
6
6

0
.9
9
8

1
.0
0
0

0
.9
4
3

1
.0
0
0

1
.0
0
0

0
.9
7
8

1
.0
0
0

1
.0
0
0

0
.9
9
2

1
.0
0
0

1
.0
0
0

B
S
M

0
.2
2
6

0
.7
0
7

0
.9
2
5

0
.2
8
2

0
.7
9
5

0
.9
3
4

0
.4
6
5

0
.9
7
6

0
.9
9
7

0
.5
1
7

0
.9
7
1

0
.9
9
7

0
.6
4
3

0
.9
9
4

1
.0
0
0

B
N

M
0
.1
7
4

0
.7
4
9

0
.9
5
5

0
.2
5
8

0
.8
6
7

0
.9
6
1

0
.4
7
3

0
.9
8
8

0
.9
9
8

0
.5
8
0

0
.9
8
1

0
.9
9
8

0
.7
0
9

0
.9
9
7

1
.0
0
0

A
2

G
S
M

0
.8
6
3

1
.0
0
0

1
.0
0
0

0
.9
7
4

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

G
M

0
.8
0
4

1
.0
0
0

1
.0
0
0

0
.9
4
7

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

B
S
M

0
.6
3
0

0
.9
7
9

0
.9
9
6

0
.7
1
9

0
.9
6
0

0
.9
8
6

0
.9
6
0

0
.9
9
8

1
.0
0
0

0
.9
5
3

0
.9
9
9

1
.0
0
0

0
.9
9
1

1
.0
0
0

1
.0
0
0

B
N

M
0
.5
0
0

0
.9
7
5

0
.9
9
5

0
.6
8
3

0
.9
7
0

0
.9
8
8

0
.9
3
9

0
.9
9
8

1
.0
0
0

0
.9
3
9

0
.9
9
9

1
.0
0
0

0
.9
8
8

1
.0
0
0

1
.0
0
0

A
3

G
S
M

0
.9
0
5

1
.0
0
0

1
.0
0
0

0
.9
8
4

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

G
M

0
.8
5
9

1
.0
0
0

1
.0
0
0

0
.9
6
8

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

B
S
M

0
.6
3
3

0
.9
6
2

0
.9
8
9

0
.6
9
8

0
.9
2
8

0
.9
6
5

0
.9
4
4

0
.9
9
6

0
.9
9
9

0
.9
4
0

0
.9
9
8

1
.0
0
0

0
.9
8
8

1
.0
0
0

1
.0
0
0

B
N

M
0
.5
1
3

0
.9
5
9

0
.9
8
6

0
.6
8
3

0
.9
4
5

0
.9
7
5

0
.9
2
7

0
.9
9
5

0
.9
9
9

0
.9
2
7

0
.9
9
7

0
.9
9
9

0
.9
8
4

1
.0
0
0

1
.0
0
0

Revista Colombiana de Estadística - Theoretical Statistics 47 (2024) 165�192



180 Shahzad Munir

Appendix B

Figure B1: Empirical distribution of GM vs theoretical distribution (χ2
4), Model M1 &

(T = 2000)

Figure B2: Empirical distribution of GM vs theoretical distribution (χ2
4), Model M1 &

(T = 3000)
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Figure B3: Empirical distribution of GSM vs theoretical distribution (χ2
2), Model M1

& (T = 2000)

Figure B4: Empirical distribution of GSM vs theoretical distribution (χ2
2), Model M1

& (T = 3000)
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Figure B5: Empirical distribution of BNM vs theoretical distribution (χ2
4), Model M1

& (T = 2000)

Figure B6: Empirical distribution of BNM vs theoretical distribution (χ2
4), Model M1

& (T = 3000)
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Figure B7: Empirical distribution of BSM vs theoretical distribution (χ2
2), Model M1

& (T = 2000)

Figure B8: Empirical distribution of BSM vs theoretical distribution (χ2
2), Model M1

& (T = 3000)
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Figure B9: Empirical distribution of GM vs theoretical distribution (χ2
4), Model M2 &

(T = 2000)

Figure B10: Empirical distribution of GM vs theoretical distribution (χ2
4), Model M2

& (T = 3000)

Revista Colombiana de Estadística - Theoretical Statistics 47 (2024) 165�192



Multivariate Normality Test for Serially Correlated Data 185

Figure B11: Empirical distribution of GSM vs theoretical distribution (χ2
2), Model M2

& (T = 2000)

Figure B12: Empirical distribution of GSM vs theoretical distribution (χ2
2), Model M2

& (T = 3000)
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Figure B13: Empirical distribution of BNM vs theoretical distribution (χ2
4), Model M2

& (T = 2000)

Figure B14: Empirical distribution of BNM vs theoretical distribution (χ2
4), Model M2

& (T = 3000)

Revista Colombiana de Estadística - Theoretical Statistics 47 (2024) 165�192



Multivariate Normality Test for Serially Correlated Data 187

Figure B15: Empirical distribution of BSM vs theoretical distribution (χ2
2), Model M2

& (T = 2000)

Figure B16: Empirical distribution of BSM vs theoretical distribution (χ2
2), Model M2

& (T = 3000)
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Figure B17: Empirical distribution of GM vs theoretical distribution (χ2
6), Model M3

& (T = 2000)

Figure B18: Empirical distribution of GM vs theoretical distribution (χ2
6), Model M3

& (T = 3000)
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Figure B19: Empirical distribution of GSM vs theoretical distribution (χ2
3), Model M3

& (T = 2000)

Figure B20: Empirical distribution of GSM vs theoretical distribution (χ2
3), Model M3

& (T = 3000)
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Figure B21: Empirical distribution of BNM vs theoretical distribution (χ2
6), Model M3

& (T = 2000)

Figure B22: Empirical distribution of BNM vs theoretical distribution (χ2
6), Model M3

& (T = 3000)
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Figure B23: Empirical distribution of BSM vs theoretical distribution (χ2
3), Model M3

& (T = 2000)

Figure B24: Empirical distribution of BSM vs theoretical distribution (χ2
3), Model M3

& (T = 3000)
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Appendix C

Table C1: West German �xed investment, disposable income, and consumption expen-
ditures in billions of Deutsche Marks (DM)

Period X Y Z Period X Y Z Period X Y Z

1960Q1 180 451 415 1967Q4 301 812 715 1975Q3 519 1756 1485

1960Q2 179 465 421 1968Q1 280 837 724 1975Q4 538 1780 1516

1960Q3 185 485 434 1968Q2 289 853 746 1976Q1 549 1807 1549

1960Q4 192 493 448 1968Q3 303 876 758 1976Q2 570 1831 1567

1961Q1 211 509 459 1968Q4 322 897 779 1976Q3 559 1873 1588

1961Q2 202 520 458 1969Q1 315 922 798 1976Q4 584 1897 1631

1961Q3 207 521 479 1969Q2 339 949 816 1977Q1 611 1910 1650

1961Q4 214 540 487 1969Q3 364 979 837 1977Q2 597 1943 1685

1962Q1 231 548 497 1969Q4 371 988 858 1977Q3 603 1976 1722

1962Q2 229 558 510 1970Q1 375 1025 881 1977Q4 619 2018 1752

1962Q3 234 574 516 1970Q2 432 1063 905 1978Q1 635 2040 1774

1962Q4 237 583 525 1970Q3 453 1104 934 1978Q2 658 2070 1807

1963Q1 206 591 529 1970Q4 460 1131 968 1978Q3 675 2121 1831

1963Q2 250 599 538 1971Q1 475 1137 983 1978Q4 700 2132 1842

1963Q3 259 610 546 1971Q2 496 1178 1013 1979Q1 692 2199 1890

1963Q4 263 627 555 1971Q3 494 1211 1034 1979Q2 759 2253 1958

1964Q1 264 642 574 1971Q4 498 1256 1064 1979Q3 782 2276 1948

1964Q2 280 653 574 1972Q1 526 1290 1101 1979Q4 816 2318 1994

1964Q3 282 660 586 1972Q2 519 1314 1102 1980Q1 844 2369 2061

1964Q4 292 694 602 1972Q3 516 1346 1145 1980Q2 830 2423 2056

1965Q1 286 709 617 1972Q4 531 1385 1173 1980Q3 853 2457 2102

1965Q2 302 734 639 1973Q1 573 1416 1216 1980Q4 852 2470 2121

1965Q3 304 751 653 1973Q2 551 1436 1229 1981Q1 833 2521 2145

1965Q4 307 763 668 1973Q3 538 1462 1242 1981Q2 860 2545 2164

1966Q1 317 766 679 1973Q4 532 1493 1267 1981Q3 870 2580 2206

1966Q2 314 779 686 1974Q1 558 1516 1295 1981Q4 830 2620 2225

1966Q3 306 808 697 1974Q2 524 1557 1317 1982Q1 801 2639 2235

1966Q4 304 785 688 1974Q3 525 1613 1355 1982Q2 824 2618 2237

1967Q1 292 794 704 1974Q4 519 1642 1371 1982Q3 831 2628 2250

1967Q2 275 799 699 1975Q1 526 1690 1402 1982Q4 830 2651 2271

1967Q3 273 799 709 1975Q2 510 1759 1452
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