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Abstract

In sample surveys, dealing with missingness in data is one of the most
frequent problem that can be handled by replacing missing values with some
imputed values. In addition to such missingness, oftenly data provided by
respondents are under reported or over reported which results to “Measure-
ment Error”. In this paper, we have proposed three modified regression type
estimators of population mean, using Factor-Type imputation strategy in
two-phase sampling set up to deal with the problem of missing data and
measurement error. While proposing our efficient estimators, we have con-
sidered two auxiliary variables which have chained correlation with the given
study variable. The Bias and Mean Square Error of proposed estimators have
been derived up to first order of approximation. The suitable conditions for
the superiority of proposed estimators over some existing estimators have
been derived. A simulation study is carried out using three artificial data
sets to illustrate the supremacy of proposed estimators. Finally, real data
set is used to demonstrate the efficiency of proposed estimators in practice.

Key words: Auxiliary variable; Bias; Chain type estimators; Imputation;
Correlated measurement error; Mean Square Error; Percent relative effi-
ciency; Simple random sampling; Study variable; Two-phase sampling.

Resumen

En las encuestas por muestreo, lidiar con la falta de datos es uno de los
problemas mas frecuentes que se pueden manejar reemplazando los valores
faltantes con algunos valores imputados. Ademas de tal falta, a menudo
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los datos proporcionados por los encuestados no se informan o se infor-
man en exceso, lo que resulta en un error de mediciéon. En este articulo,
hemos propuesto tres estimadores de tipo de regresion modificada de la me-
dia de la poblacion, utilizando la estrategia de imputaciéon de tipo factor en
el muestreo de dos fases establecido para tratar el problema de los datos fal-
tantes y el error de medicion. Al proponer nuestros estimadores eficientes,
hemos considerado dos variables auxiliares que tienen una correlacion en-
cadenada con la variable de estudio dada. El sesgo y el error cuadratico
medio de los estimadores propuestos se han derivado hasta el primer orden
de aproximacién. Se han derivado las condiciones adecuadas para la superi-
oridad de los estimadores propuestos sobre algunos estimadores existentes.
Se realiza un estudio de simulacién utilizando tres conjuntos de datos artifi-
ciales para ilustrar la supremacia de los estimadores propuestos. Finalmente,
el conjunto de datos reales se utiliza para demostrar la eficiencia de los esti-
madores propuestos en la préctica.

Palabras clave: Error cuadratico medio; Eficiencia relativa porcentual;
Variable de estudio; Variable auxiliar; Muestreo aleatorio simple; Muestreo
bifasico; Sesgo; Estimadores de tipo cadena; Imputacién; Error de medicién
correlacionado.

1. Introduction

Besides sampling errors, in any sampling survey, non-sampling errors which
arises due to either non-coverage of units, or unwillingness of respondents etc.
poses a serious problem in the estimation of population parameters. The reason
of this problem is the incompleteness of data due to which a sample cannot be
the representative of population and so the estimators are biased. Missing data
can dangerously affect the inferences from randomized clinical trials, if the prob-
lem of missing data is not handled properly. Hansen & Hurwitz (1946) were the
first researchers to deal with the problem of incomplete samples in mail surveys.
Rubin (1976) addressed the following concepts: Missing at Random (MAR), Ob-
served at Random (OAR), Missing Completely at Random (MCAR) and Parame-
ter Distinctness (PD). Sande (1979) and Kalton et al. (1981) suggested imputation
methods that make an incomplete data set structurally complete. In the literature
of survey sampling, some popular imputation techniques are: Mean imputation,
ratio imputation, regression imputation, hot deck imputation, cold deck imputa-
tion, nearest neighbor imputation, etc. Researchers have made continuous efforts
to devise improved estimators of population mean of the study variable by devel-
oping efficient imputation techniques and explore the effects of consequences of
incomplete data. In this direction, some well known references are: Singh & Horn
(2000), Ahmed et al. (2006), Diana & Francesco Perri (2010), Singh et al. (2010),
Seaman et al. (2013), Bhaskaran & Smeeth (2014), Pandey et al. (2015), Singh
et al. (2016), Kumar et al. (2017), Doretti et al. (2018), Sohail et al. (2019), Singh
et al. (2021), Grover & Sharma (2023), Rehman et al. (2024), Yadav et al. (2024)
and many more.
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Population Mean in Case of Missing Data and Measurement Error 119

Measurement Errors (MFE) arises when the observed value of the sampling
units deviates from true values. ME can seriously alter the characteristics of the
estimators used to estimate the population parameters of interest and can lead
to incorrect conclusions unless some reasonable precautions are applied. Many
authors demonstrated the effect of ME under different sampling schemes. The
problem of ME on ratio and product estimators under simple random sampling
technique was studied by Shalabh (1997). Manisha & Singh (2001) studied the
effect of ME on regression type estimator and gave a family of estimators for pop-
ulation mean. Singh et al. (2014) studied class of difference type estimators for
estimating population mean in presence of ME. When auxiliary variable is con-
taminated with ME, then Sahoo et al. (2006) have shown that regression estimator
is more sensitive than ratio estimator. Several other authors like Singh & Karpe
(2009), Diana & Giordan (2012), Singh & Sharma (2015), Singh & Singh (2017),
Singh et al. (2018) and many more studied the impact of ME considering full
response and non response from respondents.

In any survey sampling situation, it is tradition to utilize the prior known aux-
iliary information to improve the precision of an estimator of parameter of interest
either at the stage of planning or at the stage of designing or at the estimation
stage or combination of these stages. But, if such prior auxiliary information is
unknown, then the concept of two phase sampling plan is utilized to obtain the
requisite estimates of population parameters. Sometimes, information of another
auxiliary variable which is highly correlated with the earlier auxiliary variable is
easily available at lower cost. Under such circumstances, Chand (1975), intro-
duced the concept of chain estimators. After this, Singh et al. (1994), Al-Jararha
& Ahmed (2002), Kumar & Bahl (2006), Choudhury & Singh (2012), Kumar &
Sharma (2020), Mehta & Tailor (2020) have judiciously used known functions of
auxiliary variables using such chaining technique. Shukla et al. (2009) suggested
Factor-Type (F-T) estimators of population mean when observations on study
variable are missing. Singh et al. (2015) suggested one parameter family of F-T
estimators using one auxiliary variable only. Authors like Pandey et al. (2016),
Audu & Adewara (2017), Thakur & Shukla (2022) have made contributions in
improving efficiency of estimator of population mean of research variable using
F-T imputation strategies.

Recently, Bhushan et al. (2023), Tiwari et al. (2023), Kumar et al. (2024) and
Sajjad & Ismail (2024) considered the problem of estimation of population mean in
survey sampling under the situation of missing data along with the impact of ME.
Most of the authors considered only the case of uncorrelated ME corresponding
to various available variables. But, such ME corresponding to various available
variables maybe correlated and neglection of their correction can lead to serious
false inferences. Some of the authors like Shalabh & Tsai (2017), Kumar et al.
(2023), and Vishwakarma et al. (2020) have considered the situation of correlated
ME in their study. The motive of this paper is to propose efficient and bias-
controllable F-T estimators for population mean of study variable using chaining
technique as suggested by Thakur & Shukla (2022) for two auxiliary variables
under the presumption that population mean of second auxiliary variable is known
and the population mean of first auxiliary variable is unknown. While proposing
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these efficient F-T estimators, we have considered that some observation of study
variable are missing which are imputed by our proposed strategy.

The work of this paper is organized as follows: In Section 2, the sampling
strategy, methodology and notations are given, followed by Section 3 where the
existing imputation methods are discussed considering correlated Measurement er-
rors. Their biases and mean square errors have been expressed using the notations
as mentioned in Section 2. Further, taking motivation from Thakur & Shukla
(2022), we have proposed the algorithm for imputation technique and finally pro-
posed three point estimators for population mean Y of study variable, followed
by some Theorems on Biases and Mean Square Error (MSE) of these estimators
in Section 4. An efficiency comparison is made between the proposed estimators
and the existing ones in Section 5. In Section 6, the results of earlier sections have
been derived for uncorrelated ME. The results obtained from simulation process
and real data set are discussed in Section 7, followed by a discussion and findings
in Section 8.

2. Methodology and Notations

Suppose a finite population U={U;, Us, ..., Un} consists of N identifiable units
and i*" unit U; characterized by triplet (Y, X, Z), where Y, X, Z are study, first
and second auxiliary variables respectively. We assume that variables Y and X are
highly correlated while Y and Z are remotely correlated. Moreover, the correlation
between two auxiliary variables X and Z is sufficiently significant. A first phase
sample S’ of size m is drawn using Simple Random Sampling Without Replacement
(SRSWOR) from the population. The measurements of variables (X, Z) are taken
on this first phase sample. Suppose a second phase sample S of size n is drawn
from S’ using again SRSWOR. The measurements of variables (Y, X, Z) are taken
on this second phase sample. Let R be the subset of S consisting of r responding
units and R° be the subset of S consisting of (n — r) non-responding units. Noting
that RUR® = S. So, assuming that information of variables (Y, X, Z) is available
for R but information of only variables (X, Z) is available for R® i.e. values of Y
are missing on R°. Let (y;,x;,2;) be the observed values and (Y;, X;, Z;) be the
true values of the associated variables (Y, X, Z) on the i'" unit in the population.
Suppose measurement errors are: U; = y; — Y;, V; = x; — Xy, Wi = z; — Z;:
1 =1,2,...,N. Note that, these measurement errors are assumed to be random
in nature.

The following notations are used in this paper: y;: value of the variable Y on
the 7" unit of second phase sample.

Y, X, Z: population means of the variables (Y, X, Z).

Y,, T, Z,: sample means of the respective variables based on the responding
units of second phase sample.
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Tm, Zm: sample means of the respective variables based on the first phase
sample.

Pyxs Pyzs Pxzy Puvs Pvw, Pow: population correlation coefficients between the
variables as shown in subscripts.

Byx, Byz, Bxz: Population regression coefficients of the variables as shown
in subscripts.

S%, 5%, 5%, S%, S, S%,: Population variances (with divisors (N — 1)) of the
variables as shown in subscripts.

Syx, Syz, Sxz: population covariances (with divisors (N — 1)) between the
variables as shown in subscripts.

Cy, Cx, C,, Cy, Cy, Cy: population Coefficients of variations of the variables
as shown in subscripts

KYX Pyx oy CX’ Kyz= pYZ CZ KXZ pXZC Also define, A\; = ; %a Ay =
% — N A=A = A= — %, = - Again for the purpose of various required
expectations used in the derlvations, we are taking the following notations s.t.
lesl <1Vi=12...5Y,=Y1+e), Zr = X(1+e2), Ty = X(1+ e3),
Zr = Z(1+ eq), zm—Z( +e5).

Under the influence of Measurement Errors, corresponding to variables (Y, X, Z)

and using SRSWOR, we have the following expectations:

e;)=0 for i=1,2,...,5.

E(e?) = M2 (1 + SV2V> = \C2,
zZ

where C2,, = C2 (1 + %U) 2, =C2 (1 ) 02, = (2 (1+ gl) Since
Y z

the given variables (Y, X, Z) are correlated to each other, therefore the variables

corresponding to the ME of these variables i.e. (U, V, W) may also be correlated.

Thus, under the situation of correlated ME we have the following expectations.

Sy S

E(61€2) =X\ (pYXCyCX + pu;/)z;v) =AMCyxu
Sy S

E(ele?)) = A2 (pYXCyCX + pU;/;,V> = XCyxu
vw Sy Sw

E(€1€4) =\ (PYZC C,+ pYZ) =MCyzu
Sy Sw

E(61€5) = A2 (pyzc C, + pUW) = XCyzum
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C,C
E<e2€3) = )\20)2<1\/[7 E(6264) =X\ (pXZCXCZ + p\/VIiX;\/V) =MCxzum
Cc,C
E(ezes) = E(eses) = E(eses) = Ao (pszsz + pVWng) = MCxzu
E(e465) = E(e%) where Cyxy = pYXCYCX + %7 Cyzu = pYZCYCZ +
BB, Cxan = pxsCxCy + BRGEC8. Further taking, Kyxar = Q2
Kyzu = Ccyif, Kxzyv = 705‘;]\;”.

To consider the general set up, we have yet considered the situation of corre-
lated ME. In the later section i.e. Section 6, we will also consider the situation of
uncorrelated ME as the special cases of these generalized situation of correlated
ME.

3. Review of Relevant Existing Estimators in the
Literature Under the Impact of ME

In the present section, a review of some existing imputation strategies for Y
have been given which have direct relevance with missingness in data related to
study variable. For comparison purposes, we have adapted these existing estima-
tors and then derived their biases and MSE in presence of correlated ME up to
first order of approximation.

3.1. Simple Mean Method of Imputation

The imputation scheme under mean method of imputation is

)Y 1€R
YTV, iekRe

The corresponding point estimator for Y is:
?NIN = ?r

The Bias and Variance of Y,,y, in presence of correlated ME, are respectively

given as: -
B(YMN) =0

Var(Y yy) = A1?2C§M

3.2. Ratio Method of Imputation

Now, on reformulating idea of Singh & Horn (2000), under the two phase
sampling set up and in the presence of only first auxiliary variable X, assuming
that the value of X is unknown, the imputation scheme is:
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123
Yi 1€R
Yi=

ZA).Z‘Z' 1 € R
where b = Zien¥

~~. The corresponding point estimator for Y is:
i€ER T

g

Yr=Y,="

T —

T

Up to first order of approximation, the Bias and MSE of this estimator, in presence
of correlated ME, are respectively:

B(?R) = ?/\3(0)2(M - C"YXM)
MSE(Y ) =Y [MC2,, + A3(C2,, — 2Cyxa)]

3.3. Compromised Method of Imputation

Under the two phase sampling set up and presence of only first auxiliary vari-
able X, assuming that the value of X is unknown, now on following Singh & Horn
(2000), the imputation scheme is:

Yi 1€ R
Yi= {nir (n (oz?r +(1- a)?rf’"> 7T> 1 € R¢
where « is a suitable constant. The corresponding point estimator of Y is:
Yor=a¥, +(1— )V, 22

Ly

Up to first order of approximation, the Bias and MSE of this estimator, in presence
of correlated ME, are respectively:
B(?C[) = (1 — 04)?)\3(

2
MSEdem):YJ(MC%4—A(l“M>

3
2
OX M

0)2(M - CYXM)

3.4. Factor-Type Imputation

Under the two phase sampling set up and presence of only first auxiliary vari-
able X, assuming that the value of X is unknown, now on following Shukla et al.
(2009) Factor-type imputation techniques are:

)Y i1€R
YT e fndy (k) — 1] i€ R
and

)Y i1€R
Y97 X fndy(k) — 1] i€ R
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where d; (k) = m% and do(k) = %. Here, we have A =

(k—1)k—2); B=(k—1)(k—4); C = (k—2)(k—3)(k—4) and k is any real
constant such that 0 < k& < oo.

The corresponding point estimators for Y are:
v - [(A+O)z + fBT,
Dk) =57 (A + fB)T, + CZp
(A+ C)Tm + [BT,
(A+ fB)Tm + CTy

Up to first order of approximation, the respective Biases and MSE of these
estimators, in the presence of correlated ME are:

_ 1 1
B(YD1(k)) 7/1Y < - ) (77[120;2(1»4 - CYXM)

?DQ(]C) = ?7‘ |:

B(Y pyry) = (¥ + 11121/14)/\203(1\4 Yo A1C2 ,, — (Yads + ¥2)1)Cy x s
A+C A+fB
where ¢1 = A+§B+C’ ¢2 = A+fB+C’ Py = A+f+B+C’ Py = A+}r£+ca Y1+ 1#3

o + 1y =1, 9 =P — 1y, and

— - 1 1 o
MSE(YDl(k)) = Y2 <)\10‘2/M — ( — ) CYXM>

2
n m/) C%,,

N 32 2 O&X}\l
MSE(YDz(k)) =Y /\10YM /\3 C2

For the derivation of the above results, refer to Appendix A.1.

3.5. Factor Type Chained Imputation

Under the two phase sampling set up and in the presence of both first and sec-
ond auxiliary variables X and Z, assuming that X is unknown but Z is known, now
on following, Thakur & Shukla (2022) Factor-type chained imputation techniques
are:

i 1€R
YT Zelnta(k) — 1] i€ R

YT Zefta(k) — 1] i€ Re
)Y i€R
YT Tty (k) — 1] i€ R

T | (A+C)Z+fBZm _ F | (A+C)Z+fBZ, .
where 610) = B [T, 60) = 2 [GiERE | and 609 =

Ty
Ty | (A+C)Z+fBZ,
z (A+fB)Z+Cz,

} . The corresponding point estimators for Y are:

N

- Zm {(A—FC’)Z—FfBzm]

Y Y., —
BT (At fBYZ + Com
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v _ v Tm (A+C)zZpm + Bz,
k) = w1 (A+ fB)Zn + C2r
- — T [(A+C)Z + Bz,
Y:r.;(zc):er[( t0Z+7 Z}
T [(A+ fB)Z +Cz,

Up to first order of approximation, the respective Biases and MSE of these esti-
mators, in presence of correlated ME, are:

B(Yr,w) =Y [A3C%,, (1 = Kyxar) — 92203, (2 — Ky zur))
B(Y 1) =YX [C2,, (1= Kyxum) —C2,, (V2 — Kyzn + Kxzu)]

B(Y1,0) =Y [MC%,, (1 = Kyxum) +9Ch,, (—Mtb2 + MKy zm — AsKxzum)]

and

2
MSE(?Tl(k)) = ?2 |:>\10§2/1\/1 + ABC)Q(M —2X3Cyxm — /\QCVYQZM:|
CZM
— —2 CXZ]M - CYZZM 2
MSE(YTz(k)) =Y |:/\1ch + )\SC)Q(M - 2/\3CYXM - /\3( 2 ) :|
— —2 A3Cxzn — MCyzn)?
MSE(Y ) =Y {AlCaM MO, — 20Oy — We N ve) ]

For the justification of the above expressions, we give the derivation of the biases
and MSEs of the above estimators in Appendix A.2.

4. Proposed Imputation Techniques and
Corresponding Proposed Estimators Along

with Their Biases and M SFEs

We consider the same situation of Thakur & Shukla (2022) i.e., under the
two phase sampling set up and in the presence of both first and second auxiliary
variables X and Z, assuming that X is unknown but Z is known. So, motivated
with the recent work of Thakur & Shukla (2022), we have extended their idea and
proposed the following three imputation set ups:

s = Yi 1€R
T i (k) =Y, i€ Re
Yoo = Yi 1€R
2T L lngo(k) —rY,] i€ Re
s = Yi 1€R
FT ) L ngs(k) —rY,] i€ Re
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where

o Tm [(A+C)Z + fBZp
=72 |G T o)
— Tm [(A4+C)Zp + fBZ,
EN {(A+ fB)Zm —|—C’z,«}
= ITm [(A+C)Z + Bz, T
¢3(k)_yrfr [(A—f—fB)Z—i—CzJ +as (1 = )

a;;1 = 1,2,3 are suitable chosen constants respectively.

+
=
7/ N
fu—
|

S
&
N—

P2(k) =

_|_
=}
[\
VRS
[
|
S &
N——

The corresponding proposed imputed point estimators of Y are:

T [(A+C)Z+ fBZ, Tr
Vot = s {(A+fB)Z+ sz] (1 B > .
Vst = Vo o T, [(A + fB)Z, + Czr] ( > 2
- o Tm [(A+O)Z + fBZ,
Yosty = Yo T, [(A +fB)Z + Czj ( m> )

Theorem 1. The Biases of proposed estimators §g, ) (i = 1,2,3), derived up to
o(n=1Y) are respectively:

B(?dh(k)) Y[)\SCX]W - >\3CYXM - 1/)7/}2>\20§M + w>\2CYZM] (4)
B(?¢2(k)) Y>‘3 [CXJM —Cyxa — 77[”/)2CZM + wCYZZM - wCXZM] (5)
B(Y gy (1)) = Y[A3C30 = A3Cvscar = MaC2y, + MWCysne — A390Cxzni] - (6)

where 1y = A+}cg+cy wZ:A+f%+C and 1 =11 — o

Proof. For the derivation of above results, refer to Appendix A.3. O

Theorem 2. The MSE of proposed estimators 3,1y (i = 1,2,3), derived up to
o(n=1Y) are respectively:

— —2
MSE(Y¢1(7€)) =Y (/\1052fM =+ Aszch + >‘3C)2(M + 29 XCy 70 — 2>\36’YXM)Jr
a%)\gC,%M + 20&1?(0)2”\4 — CYXM)
(7)

MSE(?¢2(/€)) = ?Q(A C}%M + )\31/)202 + )\3C2 + 2¢A3CYZJVI - 2>\3CYXM (8)

7211[})\3CXZ1W) + aQ/\SCXM + 2a2Y/\3(CXM —Cyxm — ¢CXZJVI)

MSE(?%(.’C)) ()\ICYIVI + >\11/)202 + )\SC)2(M + 21/])\ICYZM - 2>\3CYXM

(9)
72#’)\3 XZM) + ag)\SCXM + 2&3Y/\3(CXM — Cyxm— ¢CXZA4)

Proof. For the derivation of above results, refer to Appendix A 4. O
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Theorem 3. The minimum MSE of proposed estimators yg, ) (i = 1,2,3), de-
rived up to o(n~=1) are respectively:

MSBnin(T ) =" PlCEM A %%M —A3 C;?QXM (10)
M S Emin(Y gy1)) = |
e e
MSEwin(Y py)) =

Proof. For the derivation of above results, refer to Appendix A.5. O

Remark 1. For a; = 0, Yy, (k) = Y1, (i = 1,2,3) ie. our proposed estimators
become the same estimators as suggested by Thakur & Shukla (2022).
Remark 2. About choices of k.

For the three proposed estimators of Y, the optimality conditions of 1) are
Yopt = C; (1 =1,2,3) (see Appendix A.5).

Reddy (1978) has proved that the values of population parameters, like C,., Cx,
Cy, Pvx, Pxz, Pyz are stable over moderate period of time and can be obtained in
advance from past data. Also, value of f can be known a priori. Above equations
are polynomials (with real coefficients) in k of degree three and thus can be solved
for values of k. Since, these equations are cubic in nature so it will have at least
one real root. The choice of k£ should be done in such a way that bias of the
corresponding proposed estimator become minimum.

Remark 3. About almost unbiased proposed estimators.

The Bias of ?m(k)(i = 1,2,3) can be made zero, up to first order of approxi-
mation, using expressions (4), (5), (6) after putting optimum values of v in these
expressions (for details see Thakur & Shukla, 2022). By doing so, we get three
equations of degree 3 in k. These will provide multiple choices of k& on which bias
of corresponding proposed estimators is zero. The best choice of £ among these
values is that which will provide minimum MSE of the corresponding estimator.
Here, B(Y(Mk)) =0 (i = 1,2, 3) will be approximately zero since biases have been
obtained up to first order of approximation only. So, in this way the proposed
estimators become almost unbiased in such situation.

5. Theoretical Comparison of Proposed estimators

In this section, MSE of the proposed estimators have been compared mathemat-
ically with all the existing estimators which have been considered in Section 3.
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5.1. For Proposed Estimator Y 4, (x)

_ We considered the differences of MSE of the existing and proposed estimator
Y 4, (k) for the purpose of comparison as given below:

o o . 02 02
VCLT(YMN) - MSEmin(Y¢1(k)) = Y2 |:)\3 C},/QXM + )\2 52ZM] > 07 always.
XM ZM
S S 2 (C?(]VI — CYXM)2 Cszsz
MSE(YR) - MSEmin(Y¢1(k)) =Y l:)\g 2 + A2 2 :| > 0, always.
XM ZM
54 84 32 C(&2/21\/1
MSE(YC[) — MSEmin(Y¢1(k)) =Y |\ 2 > 0, always.
ZM
- - 2 [/l 1\ C% Ct
MSE(Y p, (k) = MSEmin(Y g, (1) =Y {(; - E) C’,’;‘M + A2 Cj;M] > 0, always.
XM ZM

2

— — — C
MSE(YDz(k)) - MSEmin(Y¢1(}c)) = Y2 |:)\2 522M:| > 0, always.
ZM

2 2
MSE(?TN@)) - MSEmin(7¢l(k)) = 72 [)\3 (Ciam — Cvxm)

> 0, always.
C)Q(ZW :|

MSE(Y 1,(k)) = MSEwmin(Y g, (1)) =

2 <02 - CYXM)2 C? (CXZM - CYZI\/I>2
Y )\ XM )\ YZM )\ > 0
Yoo, e, e, |
if
(0)2(M - CYXM)2 Cl2/Z]\/I (CXZ]\/I - CYZJVI)2
A3 + Ao - A > 0.
C2. cz, 0,
MSE(YTS(k)) — MSEmin(Y¢l(k)) =
?2 As (0;2(M _QCYXM)2 TS 012/221\4 _ ()\3CXZ]\4 _;\ICYZJW)2 >0,
CXM CZ]\/I /\1021\/1
if
)\3 (0)2(M 720YX1W)2 + )\2 C)%QZM - ()\3CXZ1\/I 72AlcYZM)2 > 0.
CX M CZ M A1 Cz M
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5.2. For Proposed Estimator Y 4, )

_ We considered the differences of MSE of the existing and proposed estimator
Y ,(x) for the purpose of comparison as given below:

Var(?MN) - MSEmin(?¢2(k)) =
02
Ciu

(CXZMCYXM - CYZJ\/IO)Q(IM)2
(C)%MCEM - CJQ(ZM)C}Q(M

v [)\3 + A3 } > 0, always.
MSE(Y g) = MSEuwmin(Y gy(0)) =

?2)\3 (C)%M - CYXM) + (CXZMCYXJ\/I - CYZNIC)2(A4)2
C)Q(M (CJQ(MCEM - C)Z(ZM)C)%M

} > 0, always.

MSE(?CI) — MSEmin(?¢2(k)) =

YQ /\3 (CXZMCYXM - CYZMC;Q(ju
(C)Q(Mch - C)2(ZM)C)2(M

)2
} > 0, always.

MSE(Y p,(x)) = MSEwin(Y ¢,x)) =

52 1 1 C;%XM (CXZMOYXJ\/I - CYZMC)2<M)2
V22— o) S 4
r n CXM (CJQ(MCEM - C)Z(ZM)C)%M

} > 0, always.

MSE(Y p,k)) = MSEwin(Y ¢,k)) =

YQ /\3 (CXZMCYXM - CYZMC;Q(ju
(C)Q(Mch - C)2(ZM)C)2(M

)2
} > 0, always.

MSE(Y 1, (1) = MSEunin(Y g, (1)) =

—2 [ (C2,, — Cyxu)? (Cxz0Cyxni — Cy 2 CE )2 Cy
N P N (e & N (o e
if
2 9 . 2 \2 2
)‘3(CXMCQCYXM) + A3(C£222A4%”2XN1 CZYZM)g);M> _ )\2%221»1 > 0.
Vs

MSE(?Tz(k))—MSEmin(?qsz(k:)): (CQ o2 (2 )Cz 2 X

[(C)Z(Mch - C)%ZM)CXM - (szpyxci - pYZC?(M)OYcZ]Q > O’ always‘
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MSE(Y 1y(k)) = MSEmin(Y g, ,,)) =

-2 (CiM — CYXM)2 (CxzmCyxm — CYZMC§(M)2 (AM3Cxzm — )\ICYZJM)Q

Y| C)2<M s (Cg(MCEM - 0)2(21»1)0}2{1% - AlC%NI -0
if
)\3 (0;2(M - CYXJW)Z +/\3 (OXZMCYXM - CYZJVIC)2gj\4)2 _ (>\3OXZM - >\10YZ1M)2 > 0.
C)%JW (C)%MC%M - C)%ZM)C)Z(]W )‘10§M

5.3. For Proposed Estimator Y 4, )

_ We considered the differences of MSE of the existing and proposed estimator
Y 4, (x) for the purpose of comparison as given below:

VaT(?MN) — MSEmin(?¢3(k)) =

32 02 ()\3CYXMCXZIW - )\lCYZIVIC2 )2
Y7 A5 + M| > 0, always.
|: C)2(M ()‘1C)2(MC§M - >‘3C)2(ZM)C)2(M

MSE(Y ) — MSEuin(Y g5 () =

2 (C)Q(M - CYXM)2 ()\SCYXMCXZM - )‘ICYZMC)%M)2
Y2, +
0}2(1\/1 (/\10)2(MC§M - >‘3C)2(ZM)C)2(M

} > 0, always.

MSE(Y 1) = MSEumin(Y gy1) =

2 ()\SCYXJ\ICXZM - /\10)/21\402 )2:|
Y [ XM > 0, always.
()\10)2(1\4031\/1 - )‘30)2(ZA1)C;2(M
MSE(Y p,(x)) — MSEwmin(Y g5(r)) =
2 1 1) 02 (/\3OYXMCXZM - >\10YZIMC2 )2:|
Y [[-—— ) 22X 4 XM | > 0 always.
|:<T n C}%NI (AIC)Q(ZWCEM - )\30)2(Z1W)C)2(]\/I
MSE(Y p,x)) — MSEwmin(Y p5(r)) =
2 ()\3CYXMCXZIM - )\ICYZI\/IC2 )2:|
Y XM > (, always.
|: ()‘1C)2(MC§M - >‘3C)2(ZM)C)2(M

MSE(Y 1,(k)) = MSEwmin(Y py()) =

C;Q(M - CYXM)2 + ()\3CYX1WCXZM - )\10YZMC)2<M>2 _ )\2 C}%ZM] >0
0)2(1\/1 ()\10)2(JMC§M - )‘3C>2(ZM)O)2(M C%M ’

v’ Ag(
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if

As (C;2<1v1 - CYXM)2 ()\SCYXMCXZM - )\10YZMC;2<M)2 C}Q’ZM

— X > 0.
C}%M (AlC)Q(Mch - /\30)2(ZA4)C)2(M C%M

MSE(Y 1y(x)) = MSEmin(Y 5(k)) =

?2 A3 (C%M - CYXM)2 + (ACyxmCxzm — )\10YZMC)2(M)2 — )3 (Cxzm — CYZM)2
C?{M (Ang(MC%M - )‘3C§(Z]\/I)C)2(J\l C%J\/!

|-

i\ (C% 0 —Cyxm)? + (ASCYXMC'){ZM*AlcYZMciM)Q . M3Cxzm—MCyzm)? >0
3 C?(JW (AlcchCéM_’\l"Cg(ZM)cng Alc%M ’

Y3 y
(/\10)2(1»1031\/1 - )‘30)2(ZM)O)2(MC§M)‘1
[(AlC)Z(MCgM - )\30)2(ZJVI)CXM - (pXZpYXC)Zc - pYZC)%M)CYCZ]2 > 0, always.

MSE(Y (k) — MSEwin(Y py)) =

5.4. Comparison Among Proposed Estimators

In the previous subsections 5.1-5.3, we have compared the MSEs of existing
estimators with the proposed estimator but in this section, we want to compare
the three proposed estimators among themselves by taking the difference of their
MSE as given below:

(i) The estimator Y4, (x) is better than Y g, if:

MSEmln(?¢2(k)) - MSEmln(?¢1(k)) > 0

i cy (CxzmCyxm—CyzmCxy)?
rovided that g —2ZM — ) xm)” S ).
p 2 C%M 3 (Cg(MC%JVI_Cg(ZJM)C?(AI

(ii) The estimator Yy, (x) is better than Y 4, 4 if:

MSEmin(?zﬁg(k)) - MSEmin(?¢l(k)) >0

i cy (AsCyxmCxzm—ACyzmCixa)®
rovided that Aoy —%ZM — xa)” S (.
P 2 Com MCX M C%m—A3C% z0)C% s

(iii) The estimator Y4, () is better than Yy, if:
MSEmin(?(pQ(k)) — MSEmin(?%(k)) >0
provided that

(CXZMCYXM - CYZMC)%M)Q - (>\3CYXMCXZM - AlcYZIVIC)z(M)z
(02 C? C? ()‘10}2(1\4C§M - /\3C>2(ZM)CJ2<M

_ 2
XM~ ZM XZM)CXM

A3 > 0.
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6. A Special Case: Results of Previous Sections for
Uncorrelated Measurement Error

As already mentioned in the last of Section 2, that we have considered the situa-
tion of correlated ME for all the three variables (Y, X, Z), that means the variables
(U, V,W) are correlated. Under this general situation, we have taken up each and
every fact of the proposed estimators till Section 5. Now in this section, we will
consider the special case when ME are not correlated i.e. the variables (U, V, W)
are uncorrelated. Here, in this section we are going to reproduce all the results of
previous section of our study as special cases. Keeping in view the fact of uncorre-
lated variables (U, V, W), we should have p,v = 0, ppw = 0, pyw = 0. So, follow-
ing are expectation values which shall be used for the derivation of proofs in case
of uncorrelated ME. E(ejes) = A1pyxCyCx, E(eres) = AapyxCyCx, E(ereq) =
ApyzCyCy, E(6165) = A2py2CyCy, E(e2e3) = )\QC;QUW E(6264> = A pxz0xCy,
E(€2€5) = )\QPXZOX027 E(€3€4) = AQpXZCXCZa E(€3€5) = /\QPXZCXCZ~

6.1. Biases and MSE of Existing Estimators
In this sub-section, the Biases and MSEs respectively of the existing estima-

tors discussed in Section 3 have been summarized below, taking in account the
uncorrelated ME case.

(a) Ratio method of Imputation
B(Yr) =Y X(C%,, — prxCyCx)
MSE(YR) =Y (MC2,, + A3C2,, — 2X3pyxCy Cx)
(b) Compromised method of Imputation
B(Yor) = (1 - )Y A3(C%,, — pyxCy Cx)

Py xCiC% )

MSE(Yc) =Y <A103M SPYLes
CVXM

(c) Factor-type Imputation
> (wQO)z(M - pYXOYcX)

) (711)203(M - pYXCYCX)

= — 1 1\ 02 0202
MSE(Y p,4y) =Y <>\10§M - ( _ ) pYXCYC'X>

2
n o m cz,,

- 2 7xC3C3
MSE(YDZ(IC)) - Y (AlC}%M - AngQ)
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CyC
Here, P = —pyx 27—
XM

(d) Factor-type chained Imputation

pYXCYCX . 2 . pYZCYCZ
) o (-

B(?T1(k)) =Y |:)\3C)2(AI (1 -
B(Y 1) =
54 yxCyCx pYZOYCZ pXZCXCZ
Y 2 1-— Prxtvbix ) 2 —
e |t (1 B ) vt (- 2 v 2 )

zZM

B(?T3(k)) =
_ vaCny pyszCZ pXZCXCZ
Y [ASC’%M (1 N %> +9C,, <—)\1¢2 + A1 2 A3 2.
2 2012
MSE(Y 1,(x)) = v Plo‘fM + X302, — 2A3py xCy Cx — )\Q”YZCCQYYCZ}
ZM

MSE(?T2(k)) =

_ 2
?2 |:/\10§2/M + /\30;2(M - 2)\3pr0ny - )\3 (pXZCXCZ pYZCYCZ) :|

2
Cz M

MSE(?TJ(k)) =

- 2
?2 |:/\lcs2/M + /\SC)Q(M - 2/\3)0YXOYCX - (/\3pXZOXCZ AleZOYCZ) :l

AlC%M
Following are the theorems based on Biases and MSE of the proposed es-

timators 7@.(@ (i = 1,2,3) using the above expectation values when ME are
uncorrelated.

Theorem 4. The Biases of proposed estimators yg, ) (i = 1,2,3), derived up to
o(n=1Y) are respectively:

B(?m(k)) = ?[)\B(C)%M - PynyCx) - >\2(1/”/’ZC§M - wPYzCYCZ)} (13)

B(?@(k)) = ?)\3[0}2”4 — pyxCyCx — w¢2C§M +Upy 20y Cp —hpx,CxCy] (14)
B(Y gy() =

?[}\30}2{1” - /\3,0YXCYCX - )\11/11/J2C§M + >\17/JPYZCY02 - A-?),I;ZJPXZCXCZ] (15)

Proof. For the derivation of above results, refer to Appendix A.6. O

Revista Colombiana de Estadistica - Applied Statistics 48 (2025) 117-155



134 Lovleen Kumar Grover & Anchal Sharma

Theorem 5. The MSE of proposed estimators 3,1y (i = 1,2,3), derived up to
o(n=1Y) are respectively:

— —2
MSE(Y 4,1)) =Y (MCZ,, + X0?Ch,, + X3C%,, + 2¢A2py,C, C,y
— 2\3py xCy Cx) + a3 X3C2 ,, + 20, Y (C2, — pyxCyCx) (16)

MSE(?tbz(k)) = ?2(/\10;%1\4 + A3¢2O§NI + >\3CE(M + 29 A3py 2 CyCy
- 2/\3PYXCYCX - 21/)A3pXZCXCZ)
+ a2A3C2,, +202Y N3(C2,, — pyxCyCx — Ypx,CxCy)  (17)

MSEY 530) = Y (MC2,, + MU?C2,, + AsC2 o, + 20M1py ,C C,y
- 2)\3pYXCYCX - 2¢)\3pxzcxcz)
+a2X302,, +2a3Y A3(C2,, — pyxCyCx — Ppx,CxC,) (18)

Proof. For the derivation of above results, refer to Appendix A.6. O

Theorem 6. The minimum MSE of proposed estimators g, (x) (i = 1,2,3), de-
rived up to o(n=!) are respectively:

o . 2 0202 2 0202
MSEmin(Y¢l(k)) _ Y2 )\1ch _ )\2pyz 2y z /\SpYX 2Y X:| (19)
CZM CX]\J
MSEwmin(Y py(0)) =
?2 |:A102 _ )\3 p%xc}%c)% _ /\3 (pYXpXZC?( — pYZO)2(1vI)2OSQ/C§:| (20)
e 0}2\{1\4 (C)%MC%M - p%{zc)%cg)c)%M
MSEmin(?¢3(k:)) =
?2 |:)\102 — s p%xcx%c)% - ()\3pYXpXZC)2{ - AleZC)Q(M)QC}Q'Cg} (21)
i 0)2(1\4 (/\10}2(1»10%1% - >‘3pg(zc)2fcg)c)2(M
Proof. For the derivation of above results, refer to Appendix A.6. O

Remark 4. In case of no measurement error, minimum MSE of the proposed esti-
mators become: .,
MSEwin(Y g, (1) =Y CH[M = Aspy x — Aapi ]
. —2 _ 2
MSEuwin(Y gu) = Y CH(M = Aapdy) — Ay rxpxzoxzl]

1-p%

M8 Bin(V gyia9) = V2C3 (1 = Agpd ) — Ny Qox0z-puoval’)

A1—A3p%

Remark 5. Tt should be noted that when the measurement errors are not corre-
lated, i.e. pyv = puvw = pvw = 0, the MSEs mentioned in Section 4 reduces to
corresponding MSEs mentioned in Section 6.

Revista Colombiana de Estadistica - Applied Statistics 48 (2025) 117-155



Population Mean in Case of Missing Data and Measurement Error 135

6.2. Comparison of Proposed Estimators with Existing
Estimators

In this sub-section, MSE of the proposed estimators have been compared ana-
lytically with all the existing estimators discussed above, considering uncorrelated
ME.

6.2.1. For Proposed Estimator Y 4, x)

_ We considered the differences of MSE of the existing and proposed estimator

Y4, (x) for the purpose of comparison as given below:

Py C3C3
Cin

Py 5CLC3

+ A2
Ciu

VCLT(?]MN) — MSEmin(?qﬁl(k)) = ?2 |:>\3 :| >0, always.

MSE(Y 1)~ MSEpin(V g, ) = ¥ [Ny CRumpyx@rOal y 5, 082882 ] 5 g,
always.

J— p— p2 C2 02
MSE(Y 1) = MSEmin (Vg ) = Y {AQM] > 0, always.

2
C’Z M

MSE(Y p,(k)) = MSEwin(Y ¢, (k) =
72 [(1 1) Py C3C3 +)\203203C§
n

- 2 2
r CYX M CZ M

} > 0, always.

— — _9 02, C2.C2
MSE(Y p, ) = MSBuin(Vg,00) =V [N ZZ55% | > 0, always.
ZM

MSE<?T1(IC)> - MSEmin(?¢1(k)) = YQ |:)‘3 (Cg(M_m;XCYCX)Z} >0, always.

CX M

MSE(Y 1,(0) — MSEmin(Y 5, (8)) =
C2 - YXCYCX 2 2 C2C2 XZCXCZ - YZCYCZ 2
(C3m 52 ) +A2py202y Z 7A3(p 02/) ) ] >0,

XM zZM zZM

v’ {Ag

. C%ni— CyCx)? 2,03 C3% CxCz— CyCyz)?
if )\3( XM g&;x yCx) + >\2pyé2y Z )\, (pxzCx ZC’2PYZ yCz) > 0.
XM ZM ZM

MSE(?Tg(k)) - MSEmln(7¢1(k)) =

72 {Aa (C%y —pyxCyCx)? W p32C3C%  (A3pxzCxCz — )quZCYCZ)Q} >0
C?( M C%NI )‘10%1\4
if
A3 (C>2(M - pYXCyC'X)2 SISV P%szECg _ (A3pxzCxCy — AleZCYCZ)2 >0
C)2< M C%Iw AlC%}VI
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6.2.2. For Proposed Estimator Y 4, )

_ We considered the differences of MSE of the existing and proposed estimator
Y ¢, (k) for the purpose of comparison as given below:

VCLT(?MN) — MSEmin(?qﬁZ(k)) =
?2 |:)\3 pyxgzc2 + )3 (pY);pxzf pYZCS(Mg C}zfcg
Ciu (C%: 02, — p%,02C2)C%,,

} > 0, always.

MSE?) M8 Buin (¥ 1)) =
2 2 2 12
s pyXCYCX) (pyXpXZC pYZOXM) C C
[ cz,, T ce,ce, —p,cacce, | T A
MSE(Y 1) — MSEuin (V1)) =
2 (PYXPXZC PYZC?(M) 0202
{M (C2,C2,, — 2, C2C2)0e,, | = O avays
MSE(Y p,(x)) = MSEmin(Y gyx)) =
2 1 1 p%’XC}%C)Q( (PYXPXZC pYZC)Q(M) 0202
Y K‘n) cz, Moz, —m,cacace, |0 A
MSE(Y py) = MSEwmin(Y g, (1)) =
2 C 02 0202
T e e o] > O avers

MSE(Y 1y (1)) — MSEwin(Y ¢y (k) =

2 2 (Cim — p;xC’ny) W (PY};PXZQC% - PQYZCE(MQ)QC;%C% W P%zggcﬂ >0,
CX]W (CXMCZM_pXZCXCZ)CXI\/I C’ZM
if
(CE(IVI ,nyCny)2 (PYXPXZC pvzcsz)chCz p2”020§
A3 2 +A3 2 2 2 2\ (2 —Az 2 >0
CXJW (CXJWCZM( —pXZC C )CXJ\/T C(ZIW

YA

3

(C)Q(MCEJVI - piZCQ CQ)C)Q(MCEM

X [(CfcMch - PizCEcOg)CXM - (PXZPYXC PYZOXM)C Cy ] > 0, always.

MSE(Y 1,(k)) = MSEwmin (Y gy (1)) =
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(C%m — PrxCyCx)?
C

- - -2
MSE(Y 1y(r)) — MSEmin(Ygp09) =Y~ | A 2
XM

(Pyxpxzci - PYZC?(M)QC%C%

A
e (CxmC%m — P%x2C%C2)Cx M
_ (A8pxzCxCz — MpyzCyCz)? S0
AlC%M ’
if
A (C)2(M - PYXCYCX)2
3
Ciu
A (pyxpsz)% - pyzC;Q(M)QC%Cg ()\3pXZCXCZ - )\1pyszCz)2 >0
3 _
(C)szch - pg{zc)zccg)c)z(M AlC%JVI

6.2.3. For Proposed Estimator ?¢)3(k)

_ We considered the differences of MSE of the existing and proposed estimator
Y 4,(x) for the purpose of comparison as given below:

VCLT(?MN) — MSEmin(?qﬁg(k)) =

?2 |:)\ p%,XC?,C)Q( ()‘3pYXpXZC)2< - AleZCJQ{M)ZC)%Cg
C}%JW (AlCJZ(MCEM - >‘3pg(zc)2(cg)c)2(M

} > 0, always.

MSE(?R) — MSEmin(?lﬁs(k)) =

?2 {/\3 (CRar = Pvx Oy Cx)* + (A3pyxpxzC% — AMipy2C2,,)°CEC2
C)2<M ()\10)2“”0%1” — )\3p§(ZC)2(C§)C)2(M

] > 0, always.

MSE(?C]) - MSEIIlin(?¢3(k7)) =

?2 ()\BPYXPXZC;% - AlPYZC)QcM)QCxQ/CE
(AlCJQ(MOEM - >‘3pg(zc)2(cg)c}2(M

} > 0, always.

MSE(?Dl(k)) - MSEmin(?¢3(k)) =

?2 1 1 03x030§ T (>\3PYXPXZC>2c - )‘IPYZO?(M)QC?/C;
C}%M ()\10)2(MC§M - ASp%{zC)%C%)C)%M

r n

} > 0, always.

MCxMCE M —23P%2C%CZ)Cx M

MSE(Y b)) — MSEuwin(Voy) = ¥~ | G3gesgiinaC GCi] > o,

always.

MSE(?Tl(k)) - MSEIIlin(?¢3(k)) =

72 [2s (Cim —PyxCyCx)®  (AspyxpxzC% —Mpyz0im)?C3CE As 3 2C3C3
C)2<M ()‘10)2<MC%M - >‘3p§(ZC§(C%)C)2(1\/I C%]\/f

|-
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if
A3 (Cxum — pyxCOyCx)? (Nspyxpxz0% — MipyzC%0)°CYO% W p32C3C3 >0
C)Q(M (Alcg(MC%Al - )‘3p%(ZC§(C%)Cg(M C%M
MSE(Y 1,(1)) = MSEmin (Y pg (1)) =
72 [ (C%m — prxCyCx)* n (AspyxpxzCk — MipyzCi M) C3CY
Cim MC%mC%m — X35 2C%C%)C% i
(PXZCXCZ — pyzCyCz)?
T J>o
if
As (C;%M - pYXCYCX)2 n
Ciu
(ASPYXPXZC )\leZC)%M)zcz 02 ()\SPXZCXCZ - )\leZCYCZ)2 >0
(Alc}Q(AIOZM - /\3/)XZC)2(O§)C)2(M /\1ch

—2

_ Y A3

MSE(Y T, — MSFEin y) =

( Td(k)) (¢3(k)) ()‘ C}%J\/ICZIW /\3p§(20202)0)2(1\4021w)‘1
[( C)%JWCZM - )‘przCQ 02)0 - (pxszXC pYZCXM)C C ]

always.

6.2.4. Comparison Among Proposed Estimators

In this sub-section, we want to compare the three proposed estimators among
themselves by taking the difference of their MSEs as given below:

(i) The estimator Y4, (x) is better than Yy, if:
MSEmin(?ng(k)) — MSEmin(?q&l(k)) >0
provided that

p?/zcx%cg Y (pYXszO PyzCXM) 0202

Mo T TN (R0, 2,200,

>0

(ii) The estimator Yy, () is better than Yy, ) if:
MSEmin(?¢3(k)) — MSEmin(?¢1(k)) >0

. 2 o202 A 02 c cz oz
provided that )\20Yé2y 7 _ (QupyxpxzCx—MipyzCx)°C3C% >0
ZM

MCx M Ch M —23P% 2C%C2)C%

iii) The estimator Y4, is better than Y, s if:
#3(k) ¢2(k)
MSEmln(?¢2(k)) - MSEmln(?¢3(k)) > O
provided that
(PYXPXZC pyzC}%]M)2C2 02 ()‘SPYXPXZC - AlPYZC)QfM)zCQ C2
(02 CZIVI px202 02)0}2\{]\4 ()‘10 CZM )\3[) C? 02)02

XM

A3

>0
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7. Efficiency Comparison of Proposed Estimators

To have a precise idea about the performance of the various considered esti-
mators, the conventional unbiased estimator Y j;x has been considered as base
estimator for the comparison purposes. The Percent Relative Efficiency (PRE) of
the estimators Y; with respect to Y p;n is defined as:

— Y
PRE(Y)) = Var(Yan) 09

MSE(Y)
Khere ?i = ?MN; ?Ra ?Cla ?Dl(k:)a ?Dz(k)a ?Tl(k)a ?Tz(k)a ?T;;(k): ?(Jﬁl(k):
Yoo k)s Y ga(h)-

7.1. Simulation Study

We have used R software for generating artificial values of a six-variate normal
distributions using MVRNORM package i.e. (Y, X,Z,U,V,W) is assumed to fol-

low a multivariate normal distribution with the population mean vector [Y, X, Z,
0, 0, 0] and population covariance matrix:

S)Q/ PyxSYSx  pyzSySz 0 0 0
Py xSy Sx 5)2( Pxz59x 57 0 0 0
Pyz9v Sz  pxzSxSz Sg 0 0 0
0 0 0 S[2] PuvSUSY  puwSuSw
0 0 0 puvSuSyv Sy Pvw Sv Sw
0 0 0 PuwSUSW  pywSvSw S?A/

To study the trend of PREs of various estimators w.r.t. variances (52,52, 52)
and correlation coefficients (pyv, pow, Pvw) corresponding to variables of ME, we
have taken different values of these variances and correlation coefficients. By doing
this, we actually studied the impact of MEs on the PREs of different estimators.
Keeping in view the above, we have taken two different cases in the following three
artificial populations generated in R. Also, it is assumed that Y and X are highly
correlated and Y and Z are moderately correlated. This has been done so that a
better analysis of performance of estimators could be done.

The descriptions of three artificial populations are as follows:

Population 1: N =100, m = 80, n =50, r = 30, Y = 1.9819, X = 7.7102, Z =
10.0109, Cy = 4.145, Cy = 2.223, C, = 1.338, pyx = 0.991, px, = 0.979,
Pyz = 0.944.
Case(i). (S%,S%,S%,) = (15,20,25) and (pyv, pvw, pow) = (0.8,0.7,0.6).
Case(ii). (S, S%,5%,) = (20,30,35) and (puv, pvw, pow) = (0.96,0.85,0.78).

4.7963, X = 12.1738,

Population 2: N = 200, m = 150, n = 120, r = 50, Y =
= 1.2471, pyx = 0.9983,

7 = 22473, Oy = 1.3195, Cyx = 1.3098, C,
pxs = 0.7365, py, = 0.6967.
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Case(i). (SE,S%,5%,) = (22,28,34) and (puv, pvw, pow) = (0.91,0.88,0.62).

Case(ii). (S%,S5%,5%,) = (30,36,42) and (pyv, pvw, pow) = (0.85,0.78,0.65).
Population 3: N = 500, m = 450, n = 300, r = 250, ¥ = 10.8614, X = 16.9128,

7 = 386142, C, = 3.1562, Cy = 1.9824, O, = 2.6143, pyx = 0.75,

Pxz = 0.68, py, = 0.54.

Case(i). (SE,S%,S%,) = (12,15,18) and (puv, pyvws pow) = (0.80,0.75,0.60)

Case(ii). (S%,5%,5%,) = (17,24,32) and (pyv, pyw, pow) = (0.71,0.68,0.54).

The following steps have been carried out in this simulation study:

(i) Using SRSWOR, a first phase random sample S’ of size m is drawn from a
population of size N.

(ii) Then, we draw a random sample S of size n from S’ which is the second
phase sample.

(iii) We have deleted (n—r) sample units from sample S corresponding to variable
Y.

(iv) Then, the deleted units are replaced with the corresponding imputed values
as proposed in this study.

(v) We repeated the above steps 10,000 times so that we have got 10,000 values
of Yie Y;i=1,2,3,...,10,000.

(vi) The MSE, PRE and PCME (Percentage Contribution of the Measurement
Error) are obtained by using the following formulae:

=~

) = 51000 _ )2

MSE(Y:) = 15000 =1

where MSEY j; is MSE of Y with the impact of measurement error and
MSEY q is MSE of Y without the impact of measurement error.

The analysis of PREs of various considered estimators under different situations
have been given in Tables 1-7.
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TaBLE 1: MSE, PRE and PCME of the existing and proposed estimators with respect
to Y~ when there are no ME.

Population 1 Population 2 Population 3
MSE PRE PCME MSE PRE PCME MSE PRE PCME
YN 1.5746 100 0 0.6007 100 0 2.839 100
Yr 0.4845 324.9948 0 0.0685 876.9343 0 2.1169 134.1112
Yer 0.1939 812.0681 0 0.0683 879.5022 0 0.986 287.9310
?Dl(k) 0.7431 211.8961 0 0.4009 149.8379 0 1.106 256.6907
?D2(k) 0.1939 812.0681 0 0.0683 879.5022 0 0.986 287.9310
7T1<k) 0.6349 248.0076 0 0.1009 595.3419 0 0.854 332.4355
0 0
0 0
0 0
0 0
0 0

Estimators

Y1, k) 0.2378 662.1531 0.0679 884.0324 0.654 434.0978
Y1, k) 0.1289 1221.5670 0.0672 893.1014 0.5180 548.0694
7¢1(k,) 0.0435 3619.7700 0.0361 1661.2280 0.3286 863.9683
?¢2(k) 0.1707  922.437 0.0668 899.2515 0.4156 683.1087
Y 45 (k) 0.1279 1231.118 0.0664 904.6687 0.3854 736.6372

o O O O o o o o o o

TaBLE 2: MSE, PRE and PCME of the existing and proposed estimators with respect
to Yy in case of ME for Population 1 (Case (i)).

S% =15,82 =20,5%, =25

. MSE PRE PCME MSE PRE PCME
Estimators
puv =0,0vw =0,puw =0 pyv =0.8,pvw =0.7, pyw = 0.6
Y un 1.8319 100 14.3773 2.0194 100 22.0263
YR 0.7614 240.5962  36.3672 0.9128 221.2314 46.9215
?c[ 0.4384 417.8604  55.7709 0.7310 276.2517 73.4746

?Dl(k) 0.9099  201.3298 18.3316 1.128 179.0248 34.1223
?Dg(k) 0.4384  417.8604 55.7709  0.7310 276.2517 73.4746

?Tl(k) 0.9146 200.2952  30.5816 1.038 194.5472 38.4343
?Tz(k) 0.5187  353.1713  54.1546 0.7168 281.7243 66.8247
?T:g(k) 0.4183 437.939 69.1848 0.6319 319.5759 79.6012
?dn(k) 0.0763 2400917 42.9882 0.0917 2202.1816 52.5627
?@(k) 0.3219 569.0897  46.9711 0.5912 342.2016 71.1265
?¢3<k) 0.3187  574.8038  59.8682 0.5706 353.9082 77.5850
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TaBLE 3: MSE, PRE and PCME of the existing and proposed estimators with respect
to Y in case of ME for Population 1 (Case (ii)).

S% =20,52 =30,5%, =35

Estimators MSE PRE PCME MSE PRE PCME
puv =0,pvw =0,puvw =0 puv = 0.96, pyw = 0.85, pyw = 0.78

Y un 2.124 100 25.8662 2.5108 100 37.2869
?R 0.9184 231.1271 47.2452 1.4031 178.9466 65.4693
?c] 0.6312 336.5019 69.2807 1.0896 230.4331 82.20443
?Dl (k) 1.2310 172.5426 39.6344 1.6190 155.0833 54.1013
7D2(k~) 0.6312 336.5019 69.2807 1.0896 230.4331 82.2044
Y (k) 1.128 188.2978 43.7145 1.5784 159.0724 59.7757
YTz(k) 0.7615 278.9231 68.7721 1.1064 226.9342 78.5068
YTg(k) 0.6137 346.0974 61.2514 1.0413 241.1216 77.1631
7¢1(k) 0.0912 2328.9473 52.6659 0.1616 1553.7128 73.0816
Y¢2(k) 0.5018 423.2762 65.9824 0.8159 307.7337 79.0783
Yqbg(k) 0.4129 514.4102 69.0239 0.7462 336.4781 82.8598

TaBLE 4: MSE, PRE and PCME of the existing and proposed estimators with respect
to Yy in case of ME for Population 2 (Case (i)).

S% =22,82 =28,52, =34

Estimators MSE PRE PCME MSE PRE PCME
puv =0,pvw =0,puyw =0 puv =091, pyw = 0.88, puw = 0.62

Yun 0.7867 100 23.6430 1.1067 100 45.7215
Yr 0.2316  338.2201  70.4231 0.6134 163.0257 88.8327
Yer 0.2210  355.9728 69.0950  0.6012 184.0818 88.6393
7D1(k) 0.5109 153.9831  21.5306  0.9238 119.7986 56.6031
?Dz(k) 0.2210  355.9728  69.0950  0.6012 184.0818 88.6393
?T1(k) 0.2813  279.6658 64.1308  0.6345 174.4208 84.0977
7T2(k> 0.1914  411.0240 63.3658  0.5176  213.8137 86.8817
?T3(’€) 0.1615  487.1207 58.3900  0.4913  225.2595 86.3220
?¢1(k) 0.1037 758.6306 65.1880 0.3624 305.3807 90.0386
7¢2(k) 0.1546  508.8615 56.7917  0.4018  275.4355 83.3748
?¢3(k> 0.1431 549.7554  53.5988  0.3921 282.2494 83.0655
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TABLE 5: MSE, PRE and PCME of the existing and proposed estimators with respect
to Y n in case of ME for Population 2 (Case (ii)).

S% =30,592 = 36,57, =42

Estimators MSE PRE PCME MSE PRE PCME
puv =0,pvw =0,puvw =0 puv = 0.85, pyw = 0.78, puw = 0.65

Y mn 0.8192 100 26.673 1.3168 100 54.3818
Yr 0.3149 260.1460  78.2470 0.8163 161.3132 91.6084
7@[ 0.3062 267.5375  77.6943 0.7994 91.4560 546.23
YDl(k) 0.6128 133.6814  34.5789 1.0213 128.9337 60.7461
7D2(k) 0.3062 267.5375  77.6943 0.7994 164.7235 91.4560
Yo, (k) 0.3147 260.3114  67.9377 0.8004 164.5777 87.3938
YTQ(k) 0.2893 283.1662  76.5295 0.6146 214.2531 88.9521
YT3(k) 0.2642 310.0681 74.5647 0.5981 220.1638 88.7644
?¢1(k) 0.1938 422.7038 81.3725 0.4264 308.8180 91.5337
Y¢2(k> 0.2114 387.5118 68.4011 0.4996 263.5708 86.6293
Y¢3(k) 0.2006 408.3748  66.8993 0.4328 304.2513 84.6580

TaBLE 6: MSE, PRE and PCME of the existing and proposed estimators with respect
to Yy in case of ME for Population 3 (Case (i)).

S =12,5% =15,55, =18

Estimators MSE PRE PCME MSE PRE PCME
puv =0,pvw =0,puvw =0 puv = 0.80, pyw = 0.75, puw = 0.60

Yun 3.5691 100 204561  3.7918 100 25.1279
?R 3.1012 115.0877  31.7393 3.3219 114.1455 36.2744
?c[ 2.6345 135.4754  62.5735 2.8106 134.9106 64.9185
?Dl(k) 2.8192 126.5997  60.7690 3.0013 126.3259 63.1493
?Dg(k) 2.6345 135.4754  62.5735 2.8106 134.9106 64.9185
?Tl(k) 2.0148 177.1441  57.6136 2.3478 161.5043 63.6255
YTQ(IC) 1.9237 185.5330  66.0030 2.1619 175.3920 69.7488
YT3(k) 1.7103 208.6826  69.7129 1.9314 196.3239 73.1800
?¢1(k:) 0.7912 451.0995 58.4681 1.0048 377.3686 67.2969
?452(/9) 1.1463 311.3582  63.7442 1.5781 240.2762 73.6645
Y¢3(k) 0.9218 387.1881 58.1905 1.3294 285.2264 71.0094
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TaBLE 7: MSE, PRE and PCME of the existing and proposed estimators with respect
to Y in case of ME for Population 3 (Case (ii)).

SE =17,5% =24,55, =32

Estimators MSE PRE PCME MSE PRE PCME
puv =0,pvw =0,puvw =0 puv = 0.71, pyw = 0.68, puw = 0.54

?]WN 4.0236 100 29.4413 4.4197 100 35.7648
?R 3.6198 111.1553 41.5188 4.0324 109.6047 47.5027
?CI 3.1256 128.7304  68.4540 3.8236 115.5900 74.2127
?Dl(k) 3.4618 116.2285  68.0513 3.9913 110.6862 72.2897
?Dz(k) 3.1256 128.7304  68.4540 3.8236 115.5900 74.2127
Yo, (k) 2.9147 138.0450  70.7002 3.6143 122.2837 76.3716
YTQ(k) 2.6041 154.5101 74.8857 3.4916 126.5809 81.2693
YT3(k) 2.4713 162.8130  79.0393 3.1085 142.1811 83.3360
?¢1(k) 2.0615 195.1782 84.0601 2.5436 173.7576 87.0813
Y¢2(k> 2.2983 175.0685  81.9170 2.8912 152.8673 87.8121
Y¢3(k) 2.1491 187.2225  82.0669 2.6317 167.9408 85.3554

7.2. Empirical Study Using Real Data Set

For proving the validity of our results using real data set, we have taken Pop-

ulation 4. which is a built-in data set in R called “mtcars”’(Motor Trend Car Road
Tests), which is retrieved from the 1974 Motor Trend US Magazine and comprises
fuel consumption and 10 aspects of automobile design and performance for 32
automobiles (1973-74 models) (see Henderson & Velleman, 1981). We have se-
lected the study variable Y as weight of automobile, and the auxiliary variables
as Displacement (X) and Gross horsepower (Z). Suppose average of weights of
automobiles which are used for analysis of fuel consumption is required. A normal
variate U ~ N(0,1) is generated in R and then added to Y to generate measure-
ment error in Y. Then, we intentionally deleted some values of weights to make
data comprehensible with our methodology. Since, no measurement errors are
taken in variables X and Z, so this is case of uncorrelated Measurement Error.
The description of all the necessary statistics is given below.
N =32, m=17,n =12, Y = 3217, X = 230.7, Z = 146.7, S = 0.9274,
S% = 14880.77, S% = 4553.965, SF = 0.7528, S = 0, S3 = 0, Cy = 0.2993,
Cx = 0.5287, Cz = 0.4600, pyx = 0.8762, pxz = 0.8433, pyz = 0.7038, pyyv = 0,
pvw =0, puw = 0.

The number of observed values (responding units) have been varied and compa-
rison of proposed estimators with the existing ones have been shown in Table 8.
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TABLE 8: MSE of the existing and proposed estimators in case of ME for Population 4.

Estimators

r =10 r=29 r=28 r="7
MSE PRE MSE PRE MSE PRE MSE PRE

YN 0.1194 100 0.1381 100 0.1596 100 0.1899 100
Yr 0.1164 102.5773 0.1353 102.0692 0.1589 100.4405 0.1893 100.3169
Yer 0.0861 138.5794 0.09692 142.5181 0.1103 144.6963 0.1276 148.8245

?Dl(k) 0.0980 121.8367 0.1166 118.4391 0.1400 114.0000 0.1700 111.7059

?DQ(IC) 0.0861 138.5794 0.09692 142.5181 0.1103 144.6963 0.1276 148.8245

Y1 (k) 0.1037 115.1398 0.1226 112.6427 0.1463 109.0909 0.1767 105.735

Y1, k) 0.0928 128.6638 0.1054 131.0247 0.1210 131.9008 0.1412 134.4901

?Tg(k:) 0.1141 104.6450 0.1298 106.3945 0.1484 107.5472 0.1713 110.8581

Yo, (k) 0.0345 346.0870 0.0347 396.9531 0.0350 456.0000 0.0354 536.4407

Y 4o (k) 0.0861 138.6760 0.0968 142.6653 0.1102 144.8276 0.1275 148.9412

Y 4a k) 0.0840 142.1429 0.0950 145.3684 0.1087 146.8261 0.1262 150.4754

8. Discussion

From Tables 1-8, we observed the following points:

(i)

(vi)

From Table 1, in case of no measurement error, PREs of all the proposed
estimators are higher as compared to the existing estimators in all the Pop-
ulations 1-3. PCME values are zero in each case.

From Tables 2-8, considering both the situation of measurement error (i.e.
correlated ME and uncorrelated ME), all the proposed estimators perform
efficiently as compared to the existing estimators in all the populations.

From Tables 2-7, for a given estimator, when one moves from uncorrelated
ME to correlated ME, PCME values increases which shows when errors are
correlated, there is significant contribution in MSE which cannot be ignored.

From Tables 2-7, for a specific estimator, when variance values are increased,
PRE’s value decreases while PCME values increases which shows effect of
ME increases and efficiency of estimator decreases with increase in variance
values.

Among proposed estimators, 7¢1(k) is superior to both 7¢2(k) and 7¢3(k) but
?¢3(k) is more efficient than ?¢,2(k) due to the efficiency conditions discussed
in previous Sections.

It should be noted that in all the populations, 7¢1(k) is superior to all the

estimators as its PRE is maximum in both situations i.e. in the absence and
in the presence of ME.
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(vii) From Table 8, on introducing measurement error in study variable, all the
proposed estimators perform efficiently as indicated by decreased MSE val-
ues. Also, MSE of ?¢1(k) is minimum of all which confirms it’s superiority
over all other considered estimators.

(viii) From Table 8, as the number of responding units decreases (i.e. number of
missing observations increases), MSE values of various considered estimators
increases which shows that efficiency of an estimator decreases as the number
of missing units increases.

9. Conclusion

It is clear that all the proposed estimators perform efficiently as compared to
the existing imputation strategies. The results reveal that ?@(k)(i =1,2,3) have
high PRE in both the absence and presence of measurement error. In this pa-
per, the proposed factor type imputation strategies have given certain equations,
which on solving will provide multiple values of k that gives optimal MSE. Also,
the value of k may be chosen, that yields minimum bias. So, all the F-T impu-
tation strategies are bias-controllable at optimum level of MSE. Conclusively, on
the basis of results obtained from analytical comparison of proposed chaining im-
putation techniques, we recommend these estimators for the practical applications
in engineering and other relevant fields as these imputation techniques provide
multiple choices of k which helps in curbing the negative effect of non-response in
the data.
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Appendix A.

Appendix A.1.

Here, we are giving detailed derivation of the Bias and minimum MSE of exist-
ing estimator YD (k) as stated in subsection 3.4. The estimator YD (k) in terms
of e;s is expressed as below:

(A+C)(1+e3)+ fB(1+e2)

Yo,y =Y +er) (A+ fB)(1+e3) + C(1+e3)

. . . B
Using the following notations: 1, = W, Yo = W%HC’ Y3 = ﬁ,

(O *Af}rch, Y1 + b3 =Py + 4 = 1, Y p (i) can be expressed as:
Yo,y = Y (14 1) (1 + 33 +threa)(1 + thaes + aez) !

On further simplification 7,32(;@) becomes:

Y p,k) = Y (1 — tges — aey + ie3 + P3e3 + 2uhathseses + Pzes — sthaes
— Yorhzeses + Prea — Yribaeses — Yribaes + €1 — Paerez — Poeres)  (Al)

On subtracting Y from both sides of Equation (A1), we get:

Yo, — Y = Y(—thues — thaes + V€3 + 1h3e; + 2uhothaeses + dzes — Psthsel
— Yorhzeses + Prea — Yribaeses — Yribaes + €1 — Paerez — oeres)  (A2)
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Using the expectation values from section 2, the Bias of ?Dz(k) is given as:
B(Y p,k)) = (¥ 4 th200s) A2 C%,, — V2tp M1 C3 y — (hada + 1221)Cy xur-
For deriving MSE of YDz(k), squaring both sides of Equation (A2), we get:

— — —2
(Y p,y(k) — Y)? =Y (Vi€ + v3es +hied + vies + el + 2ateses — 2hgihge]
—21tpseses — 29se1e3 — 2hathzenes — 2911haes — 2thgeren
+2vp19)3e0e3 + 21h3ere3 + 291e1e2)

Using ¢1 + 13 = o + g = 1, ¢ = 1P — 3 = —(13 — 1)4), the above result
becomes:

- =2 =2
YDy = Y) =Y (€] +9%es + p%el — 2¢%eaes + 2peres — 20peqe3)

Using expectations values given in Section 2, the MSE of YDZ(;C) becomes:

MSE(Y p,)) = Y (MC2,, + 9>\ C2,, + XC2,,
= 20003, + 20\ Cyxar — 20X2Cy x 1)
which can be rewritten as:
MSE(Y pyy) = Y (MO, + 922302, + 2025Cy ) (A3)

For optimal value of ¢, we minimize M SE(?DQ(k)) by partially differentiating
w.r.t. 1 on both sides of Equation (A3), we get the optimal values of ¥ as:

Yopt = 7%. Now, replacing the optimum values of ¢ in Equation (A3), the
XM

minimum MSE of 7D2(,€) is given as:

— —o C?
MSE(YDQ(IC)) - Y ()\10}2,1\/1 - AgCgXM)
XM
Similarly, we can derive the expressions for bias and minimum MSE of the esti-
mator Y p, (x)-

Appendix A.2.

Here, we are giving detailed derivation of the results of existing estimator Y 7, (k)

as stated in Subsection 3.5. The estimator YTl(k) in terms of e;s is expressed as
below:

(T+e)(I+es)(1+ex) (14 vres)(1 4 Yaes5) "
(1+e1)(1+es3)(1+ ea) ' (1 + vhes + ae3),

Yrm=Y
=Y
where a = 13 — 1s.
On further simplification Y7, () becomes:
Y = Y(1+1bes + ael — es — teses + €3 + e + ezes — ezes

+e1+veres —erex +erez) (Ad)
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On subtracting Y from both sides of Equation (A4), we get:

Yoy — Y = (hes + aez — ex — eses + €3 + e + eses — exes + €1
—+ 1/}6165 — €163 —+ 6163) (A5)

Using the expectation values from Section 2, the Bias of YTI(;C) is given as:
Y (aXaC%y; + (M2 — A1) Cyxar + (A1 — A2) %, + ¥X2Cy zar). After substitut-
ing the value of a, we get the required expression of Bias. For deriving MSE of
YTl(k), squaring both sides of Equation (A5), we get:

Yrw-Y)= ?2(1/)26§ + €3 + €3 + €] — 2¥ezes + 2ezes + 2eres
— 26263 — 26162 + 26163)
The MSE of §r, () becomes:
— 2
MSE(YTl(k)) =Y (wQ)‘QCEM + )\10)2“\4 + )‘20)2(M + )‘10)2/1\/1 - 21p>‘26VXZM
+ 21/})\2C’XZM + 2wAQCYZ1\4 - 2)\203”\4 - 2>\10YXZVI + 2/\20YXM)

The expression of MSE of YTl(k) can further be written as:
— =2
MSE(YTl(k)) =Y (¢2AQO§M - /\30)2“\4 +/\10§2,M 4+ 200X Cy 70 — 2)\30yx1v1) (AG)

For optimal values of v, we minimize M SE(?Tl(k)) by partially differentiating
w.r.t. 1 on both sides of Equation (A6). The optimal value of ¢ is obtained as:

Yopt = —C(;%ZAJ: . Now, replacing the optimum value of ¥ in Equation (A6), the

minimum MSE of Y, () is given as:

_ _9 C?
MSE(YTl(k)) =Y A1C‘2,M + >\SC}2(M - 2)\30YXM - )\Qﬁ (A7)
ZM
Similarly, using the above steps and expectation values for correlated ME for
the estimators Y'r, () and Y 7,(x), we have obtained the expressions for bias and
minimum MSE as provided in Subsection 3.5.

Appendix A.3.

_ Here, we are giving detailed proof of Theorem 1. The proposed estimator
Y 4, (k) in terms of e;s is expressed as below:

?qbl(k) =Y(1+e)(l+es)(l+ 62)_1(1 +1pres) (1 + ¢2€5)_1 +aa1(es — 5 —ex+ ezes)

=Y(1+e)(1+es)(1+ 62)71(1 + Yes + aeg) + ar(es — €2 —es+ eses)

where 1) = 1)1 — g, a = V3 — P1s.
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On further simplification, ?¢1(k) becomes:

?¢>1(7€) = Y(l +e1 +e3+ 6163)(1 + ey
+aet — ey —1peges +e3) + ay(es — €2 — ey + eges)
=Y (1 +es + aeg — eg — Yeges + eg + e3 + Yeges — eges + €1

+ejes — erex + erez) + aq ez — €3 — en + eges)

(A8)

On subtracting Y from both sides of Equation (A8), we get:

Yo,y — Y = (es + aed — ea — theses + €5 + ez + Peges — eaey
+e1 +eres —ereq +erez) + ag(es —e3 —en +eses)  (A9)
Using the expectation values from Section 2, the Bias of 7¢1(k) is given as:

Y (aX2C%y; + (M2 — A1) Oy xar + (A1 — A2) C% 5, + ¥ A2Cy zar). After substituting
the value of a, we get the required expression of Bias.

Similarly, biases of other two proposed estimators ?¢2(k) and 7¢3(k) can be
obtained.

Appendix A.4.

Here, we are giving detailed proof of Theorem 2. For deriving MSE of ?¢1(k),
squaring both sides of Equation (A9), we get:

Yo —Y)? = ?2(7/’2@% + €5+ €3 + €] — 2ezes + Apeses + 2eres

—2e9e3 — 2169 + 2e1e3) + (€3 + €2 — 2eqe3)

+2a1Y (heses — eses + e% + e1e3 — Yeqes + e% — ege3 — e1€2)

Using the expectation values as given in Section 2, the MSE of ?¢1(k) becomes:
- =2
MSE(Y¢1(1€)) =Y (¢2>\2C§M + )\10)2“\/[ + AQC)Q(M + )‘10&2/1\4 - 2w)‘QCXZM
+2w)\QCXZM + 2'Qb)\2CYZM - 2)\20;2“/1 - 2/\ICYXM + 2)\2CYXM)
+ai(MO%,, + A20%,, — 2X2C%,,) + 201 Y (A2 A1Cxzn — A2C3
+/\2C;2(M + /\QCYXM - /IZ}AQAQCXZJM + /\1)\20;2(1\/1 - /\20;2(M - AlcYXM)
The expression of MSE of Y, (1) can further be written as:

MSE(Y 4,0)) = YV (022202, + (Ao — M)C2,, + MOZ,, + 2009Cy 5
+2(X2 = A1) Cyxnr) + a2 (A1 — X2)C2, + 201 Y (A — A2)C2,,
- ()\1 - )\2)CYXM) (AlO)
or
MSE(?@(@) = ?2(/\10;2/1\4 + /\21#2O§M + )\30)2”/, +2¢22Cy 200 — 2X3Cy x 1)
+a3N3C2,, +201Y (C2,, — Cyxar) (A11)

Similarly, MSEs of proposed estimators 7¢2(k) and ?¢3(k) can be obtained.
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Appendix A.5.

Here, we are giving detailed proof of Theorem 3. We minimize MSE of ?¢1(k)
w.r.t 1 and «; in Equation (A1l), using the principle of minimization. So, we
get the optimal values of ¢ and aq as: op = _C’Cyéizﬂy = C1 (say), Qi(opt) =

C% v —Cyvxum

— =XM== Now, replacing the optimum values of ¢ and «; in Equation (A11),
XM

the minimum MSE of Yy, (1) is given as:

— —2 C? C?
MSEmin(Y o) =Y |MCE,, — Ao CX;M — 3 Cj;‘M (A12)
ZM X M

Similarly, using the above steps and expectation values for correlated ME for the
estimators Yy, x) and Y4, 1), we have obtained the optimum values of constants
and expressions for minimum MSE, which are given as follows:

(i) For proposed estimator ?¢2(k). The optimum values of ¢ and as are
obtained (by solving respective normal equations) as:

2
CXZMCYXM - CYZMCXM

wo = = 02 (S&y)
vt C}%JW C%]\/[ - C?{Z}\l
Aa(opt) = ?CYXZVI + wg;lew - C)ng

XM

The optimum MSE of Y 4, (1) is:

A% 32 2 032/XM (CXZMCYXM - CYZMC)Q(M)2
MSEmin(Y¢2(k)) =Y |:)\10YM — )\3 C)%M — )\3 (C)%MCEM — C}%ZM)C)Q(M

(ii) For proposed estimator ?¢3(k). The optimum values of ¢ and a3 are as

follows:
ASCXZM CYXM - >\1 CYZMC)Q(

Vort = TR Oy MR,y O ()
— pYXCyCX + wpxzczcx - C)2(]\/I
a3(opt) = ¥ < c2
X M

The optimum MSE of ?453(1@) is:

MSEmin(?ng(k)) =

372 C? ()\3CYXIMCXZM - AleZMOQ )2
Y |\ 02 Y YXM M
[ e, (M0, 02, - A0EL,)08,

Appendix A.6.

We have provided a brief proof of Theorems 4-6 by using the expectation values
given in Section 6, in case of uncorrelated ME. For this purpose, we have taken
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the proposed estimator 7¢1(k) only. For this proposed estimator, we are giving
the proofs of the expressions for the bias, MSE and minimum MSE. These results
are a part of the Theorems 4-6. For the other two proposed estimators i.e. 7¢2(k)
and ?%(k), we can derive the expressions of their biases, MSE and minimum MSE
on the same lines.

The bias and MSE of ?¢1(k) in terms of ¥ and aq, up to first order of approxi-
mation, after using the values of expectations (neglecting powers of e;’s which are
greater than two) are:

B(?dn(k)) = ?[)\3(0)2(M - pynyCx) - >\2(7/”/’2C§M - ¢PYZCYCZ)]

— —2
MSE(Yd?l(k)) =Y ()\1C}Q’M+)\2¢QC§M+)\3C)2(1\/1+2w>\2pYZCYCZ_2)‘3pYXCYCX)
+ OZ%)\;;C?(M + 20[1?(6?(1” — pynyCX)

For obtaining optimum MSE of 7¢1(k), we have obtained optimum value of
1 and a7 by differentiating MSE(?¢1(k)) w.r.t ¢ and o and then putting these
equal to zero, Then after solving the normal equations, we get

Dopt = pPyzCyCy
=2 res

v Cou

Q1 (opt) = _?C)Q(M DOy

Ciu
The minimum MSE of ?¢1(k), after putting optimum values of ¢ and a1 = ay(op)

in MSE(Y¢1(IC)) is:

Py xCPC%
C?{ M

o . 2 0202
MSEmin(Vy ) =V | MC2,, — A2z

— A
c2,, :
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