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Resumen

En este artículo se propone un modelo de probabilidad en tiempo dis-
creto, se estudian sus propiedades matemáticas y su formulación bajo la
estructura nabla que incluye transformación discreta de Laplace, momentos,
relación de recurrencia entre momentos, índice de dispersión y distribución
asintótica de extremos. Además, se discute la aplicación del modelo con
referencia a los días parcialmente nublados. Además, la compatibilidad del
modelo se veri�ca mediante chi-cuadrado, Anderson-Darling, Cramér-von
Mises, criterio de información y estadísticas de Vuong y se encontró que el
modelo propuesto es la mejor estrategia para dicho análisis de datos.

Palabras clave: Modelo estadístico; Tasa de fallas; Relación de recurrencia
de momentos; Estimación.

1. Introduction

Modeling of the discrete stochastic processes like, the number of fog days per
month, the number of rain droplets per mm, the number of precipitation days, the
number of times cloud collisions occur to produce rain, the number partly cloudy
days produce rain, the number of space mission carried out in cloudy days, the
number of cloudy hours necessary to decrease the temperature, the number of days
when the temperature is less than 32◦, the number of partially cloudy days per
month, the number of clear days per months and the number of thunder storms per
year, etc., often occur in real life scenario see (Carter, 1972; Lloyd-Smith, 2007;
Banik & Kibria, 2009). For determining the likelihood of above phenomenon,
many discrete probability models are often used, which include Poisson, binomial,
negative binomial, zero-truncated and zero-in�ated models.

However, such models often exhibit three dispersion pattern types: under-,
over- and equi-dispersions, which usually a�ect the goodness-of-�t statistics if
these are not adjusted, which may result in un-realistic conclusion. In these dis-
persion patterns, over-dispersion is a crucial notion in the analysis of count data.
Many times, data acknowledge more unpredictability than anticipated under the
supposed distribution. Nevertheless, the likelihood for over-dispersion occurs be-
cause the generally used distributions identify certain bonds between the variance
and the mean. Also, in the modern complex era the discrete processes often display
an over-dispersion. In this regard, the negative binomial, generalized Poisson and
Poisson-Lindley models may be utilized for modeling the over- and equi-dispersion
as well as under-dispersion patterns as these handle the over-dispersion with an
extra parameter to exhibit the variance of a variable but factual unable to handle
the under-dispersion cases as e�ciently as observed in over-dispersion cases. More-
over, the under-dispersion can communicate to forms of manifestation which are
much more consistent than the arbitrariness linked as seen in the Poisson process.
It is also theoretically possible but rare in practice. However, the Poisson mod-
els usually estimate exceptional-event processes (e.g., accident incidents, failures in
engineering or processing, etc.). These processes usually depend on equi-dispersion
restrictions that render it useless as a real-life pattern of dispersion resulting in
the incapability of �tting the Poisson model, see Nory et al. (2022).
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In view of the above discussion and on the motivational aspect, we decided to
model the number of cloudy days pattern by a discretized model, which will be
quite e�ective in under-dispersion conditions. The proposed model is a discretized
version of generalized Lindley distribution, which is obtained via discrete fractional
calculus discussed by Ganji & Gharari (2018b). The model possesses the same
hazard function behavior as that of the continuous version and is quite helpful
in all dispersion patterns quite e�ectively. Secondly, the proposed strategy is
based on the nabla structure, which has so far not been search out for modeling
the environmental indicators. Thirdly, the model is a simple structure and have
the ability to exhibit a bathtub, increasing and decreasing failure rate behavior.
Fourthly, it is not only possessing a unique mode but also bimodal in nature and
genrates a family of discrete distributions like discrete chi-square, discrete Lindley,
two-parameter truncated Lindley and discrete gamma distributions. Fifthly it is
a mixture model and have ability to model over-dispersed data sets too.

The rest of the article is systematized as listed. Discretization procedures, along
with the derivation of the proposed model, are described in Section 2. In Section 3,
we shall deal with the mathematical chattels of the purported model, which include
probability generating function, moments, index of dispersion, skewness, kurtosis
and distribution of extreme order statistics. However, Section 4 is reserved for
parameter estimation. Model compatibility and application as well as evaluation
statistics along with four practical data application on partly cloudy days are
studied in Section 5. Finally, conclusion is drawn in Section 6.

2. Discretiztion Procedures and Proposed

Distribution

An essential and dynamic �eld of mathematical research is the count data
modeling via the discretization of continuous probability models. In this regard,
researchers of the current era have innovated and proposed a number of discretized
distributions, among them being Weibull, Lindley, gamma, normal, Rayleigh, in-
verse Weibull, inverse Rayleigh. For this purpose, they have adopted various
methodologies. In this regard Chakraborty (2015), Chakraborty (2015) and Ganji
& Gharari (2018a) have presented the discretizing procedures in an e�ective and
pleasant manner. These procedures are listed below.

2.1. Procedure-1

In this procedure, researchers usually sustain the probabilities of a continuous
random variable X at integer points only and de�ne the probability mass function
(PMF) of discretized random variable Y , stated by Chakraborty (2015) and de�ned
as

Pm =
f(x)∑∞

m=−∞ f(m)
, m = 0,±1,±2, . . .
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2.2. Procedure-2

In this procedure, researchers usually try to preserve the survival function (SF)
of a continuous random variable X, i.e., SX(x) and de�ne a discretized random
variable Y as Y = (X) = the greatest integer less than or equal to X with
corresponding PMF as given by Chakraborty (2015) and Roy (2004),

Pm = P(m ≤ X < m+ 1) = FX(m+ 1)−FX(m)

= SX(m)− SX(m+ 1). m = 0, 1, 2, 3, . . .

2.3. Procedure-3

This procedure sustains the hazard function (HRF) of the continuous variable
X. However, the SF of the discretized random variable Y is given by

P(Y ≥ m) = (1−HX(1))(1−HX(2)) · · · (1−HX(m− 1)), m = 1, 2, . . . , k.

By Chakraborty (2015), the PMF is given as

Pm = (1−HX(1))(1−HX(2)) · · · (1−HX(m− 1)) (1− (1−HX(k))) ,

= (1−HX(1))(1−HX(2)) · · · (1−HX(m− 1))HX(m),

Pm =


HX(0), m = 0

(1−HX(1))(1−HX(2)) · · · (1−HX(m− 1))HX(m), m = 1, 2, 3 . . . , k

0, elsewhere


However, the value of k is governed so as to characterize the HRF: 0 ≤ HX(x) < 1
and its PMF Pm, see Chakraborty (2015).

2.4. Procedure-4

This procedure was developed by Hagmark (2008) in which they discretized the
continuous stochastic variateX with CDF FX(x) and de�ned its count counterpart
Y with CDF as, see Chakraborty (2015),

FY (y) = P(Y ≤ y) =

∫ y+1

y

FX(y)dx.

2.5. Procedure-5

Bohner & Peterson (2001, 2003) and Ganji & Gharari (2018a) have discretized a
continuous variable with the help of the monomial Taylor and exponential function
by using discrete fractional calculus.
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2.6. Discretized Lindley Family of Distributions

In view of the above de�nitions, we propose a �exible family of nabla discrete
Lindley distributions by considering the procedure-5 as stated by Bohner & Peter-
son (2001, 2003), Ganji & Gharari (2018a,b), Gharari & Ganji (2021) and Gharari
et al. (2023). Zakerzadeh & Dolati (2009) de�ned the probability density function
(PDF) of the generalized Lindley (GL) distribution as

f(x; θ, α, β) =
(α+ βx)e−θx(θx)α−1θ2

Γ(α+ 1)(θ + β)
.x > 0, θ > 0, β > 0α > 0. (1)

On the basis of (1) we shall de�ne a generalized nabla discrete Lindley (GNDL)
distribution as follows.

Proposition 1. A random variable Y has a GNDL distribution with p, α and β
parameters if its PMF is given by

Px =
(1− p)α+1px−1(α+ (α+ x− 1)β)(x)α−1

(1− p+ β)Γ(α+ 1)
, (2)

for x = 1, 2, 3, . . . , 0 < p = 1− θ < 1, α > 0, β ≥ 0.

Proof . Let Y be a discrete random used to represent the number of partly cloudy
days at certain locality. Then PMF of discretized version of Equation (1) can be
obtained as

Px = P(Y = x) =
θαθ

θ + β
(

hα−1(x)

eθ(ρ(x), 0)
) +

β

θ + β
(
hα(x)θ

α+1

eθ(ρ(x), 0)
). (3)

Based on Procedure-5 mentioned above and by incorporating ρ(x) = x − 1,

eθ(ρ(x), 0) = (1− θ)−(x−1) and hα−1(x) =
xα−1

Γ(α) in Equation (3) we get

Px =
αθα+1

θ + β
(
xα−1(1− θ)x−1

Γ(α+ 1)
) +

β

θ + β
(
xα+1−1θα+1(1− θ)x−1

Γ(α+ 1)
),

where Γ(α + 1) = αΓ(α) and xα = x(x + 1)(x + 2)...(α + x − 1). Hence, we have
the expression

Px =
θα+1

(θ + β)Γ(α+ 1)
(α+ (α+ x− 1)β)(1− θ)x−1(x)α−1, x = 1, 2, 3, . . .

On incorporating 1− θ = p in the expression above, we get

Px =
(1− p)α+1px−1(α+ (α+ x− 1)β)(x)α−1

(1− p+ β)Γ(α+ 1)
,

which after simpli�cation yields Equation (2). Now on using the property of nabla
ascending factorial moment we can exhibit that

∑∞
x=1 Px = 1.
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α = 0.1278, β = 10.1254, p = 0.2550
α = 0.2278, β = 12.2254, p = 0.2860
α = 0.3278, β = 15.5254, p = 0.2965
α = 0.4278, β = 20.6254, p = 0.3070
α = 0.5278, β = 30.8254, p = 0.3275
α = 0.6278, β = 40.9254, p = 0.3380

(a)PDFGraphs for GNDL
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Figure 1: PDF plots of GNDL.

Table 1: A set of submodels of the GNDL.

Distribution Parameters' values Refrence

Discrete Gamma (∇DG
α,θ ) x ∈ N, β = 0 and θ = 1 − p see Ganji and Gharari (2018).

Discrete Lindley (∇DL
θ ) x ∈ N, β = 1, α = 1 and 1 − p = θ see Bakouch et. al., (2022)

Geometeric (∇DE
θ ) x ∈ N, α = 1, β = 0 and θ = 1 − p see Ganji and Gharari (2018)

Discrete Chi square (∇DC
α
2

, 1
2
) x ∈ N, α = α

2 , p = 1
2 , β = 0 and 1 − θ = p see Ganji and Gharari (2018)

Truncated Lindley (∇DG
p,β ) x ∈ N, α = 1 and θ = 1 − p see Kiani (2020)

The GNDL contains the submodels given in Table 1 with natural numbers
support.

The proposed PMF can adopt various shapes ranging from reverse J, and
symmetric curve. Usually, for α < 1 and p → 0 and for all β it generates a
reverse J shape and for α > 1 and p → 1 it changes into positively skewed one.
However, for large α, i.e., α → ∞, it exhibits a symmetrical curve behavior, but
the peakedness from decreases leptokurtic, mesokurtic to platykurtic as both α
and p goes on increasing, see Figure 1.

Further, GNDL is a weighted version of ∇DG
α,θ with weight

θ
β+θ and ∇DG

α+1,θ with

weight β
β+θ , respectively. Moreover, it has the probability recurrence relation

xPx+1 = ((β + 1)α+ (x− 1)β) = p(x+ α− 1)Px(βx+ (β + 1)α)).

The failure (hazard) rate function (HRF) describes the immediate future failure
in such a way that unit has not failed at time x, and for the GNDL it is de�ned as

H(x) =
(1− p)(α+ (α+ x− 1)β))

((x− 1)β + α(β + 1− p)2F1(1,−1 + x+ α;x; p))
. (4)

From Equation (4) it is evident that H(x) = (α+(α+x−1)β))
(xβ−β+α(1+β)) as p → 0; H(x) =

(1+x)(1−p)2

x−p+1 as β → 1, α → 1 and H(x) = 1
2F1(1,−1+x+α;x;p) as β → 0. However,

H(x) = 1−p as x → ∞, hence, the H(x) is constrained above. From Figure 2, it is
obvious that H(x) can adopt bathtub when α < 1, β > 0 and for all p, increasing
for α > 1 for all β and p, and decreasing failure rate shapes for α ≤ 1, β → 0,
respectively.
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α = 0.0015, β = 0.1254, p = 0.2480
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Figure 2: HRF plots of GNDL.

3. Mathematical Properties of the GNDL

Distribution

The Laplace transform, has been viewed as a compelling device for explaining
both ordinary and partial di�erential equations. Equivalent to the Laplace trans-
form, the discrete Laplace transform (DLT) is used in signal processing, and in
the theory of analytic functions. Moreover, Z-transform is utilized to solve linear
systems of di�erence equation, see Ameen et al. (2019) and yields the generating
function of the values of any function at non-negative integers. Such generating
functions are the only source to recognize the PMF of any discrete distribution.

De�nition 1. The Ld-transform of a sequence {x}∞k=1 is function L(s) of complex
variable de�ned by

Ld(s) = L{ak}(s) =
∞∑
k=1

ak
(1 + s)k+1

, (5)

for all values of s for which the series converges.

The coming proposition provides the DLT of the GNDL.

Proposition 2. The DLT (Ld(s)) of the GNDL is expressed as

LXd
(s) =

(1− p)α+1(1 + β − p
1+s )

(1 + s)(1− p
1+s )

α+1(1− p+ β)
. (6)

Proof . By de�nition, LXd
(s) can be expressed as

LXd
(s) = Ld{Px}(s) =

∞∑
x=1

(
1

1 + s

)x

Px, (7)

by incorporating Equation (2) in the above expression we get

LXd
(s) =

(1− p)α+1

p(1− p+ β)Γ(α+ 1)

∞∑
k=1

kα−1(α(1 + β) + (k − 1)β)(
p

1 + s
)k,
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hence

LXd
(s) =

(1− p)α+1

p(1− p+ β)Γ(α+ 1)
{(α−β+αβ)

∞∑
k=1

kα−1(
p

1 + s
)k+β

∞∑
k=1

kkα−1(
p

1 + s
)k}.

(8)

The DLT of Ld{pkkα−1}(s) is
∞∑
k=1

kα−1(
p

1 + s
)k =

pΓ(α)

(1 + s)(1 + s− p)α
(9)

and Ld{kpkkα−1}(s) is

∞∑
k=1

kkα−1(
p

1 + s
)k =

p(1 + p(−1+α)
1+s )Γ(α)

(1− p
1+s )

α+1
. (10)

Incorporating Equation (9) and (10) into Equation (8) we get

LXd(s) =
(1− p)α+1(p− (1 + s)(1 + β))

(1 + s)2(1− p/(1 + s))α+1(1− p+ β)
,

which after simpli�cation yields (6).

Corollary 1. On putting 1
1+s = et in Equation (6), the moment generating func-

tion (MGF) of the GNDL is

MX(t) =
exp(t)(1− p)α+1(1 + β − p exp(t))

(1− p exp(t))α+1(1− p+ β)
. (11)

Corollary 2. The MGF of X is the convolution of three independent random
variables, namely XDegenrate(1), XNB(p, α+1) and XBernoulti(

p
1+β−p), i.e., X =

X1 +X2 +X3

MY (t) = MX1(t)MX2(t)MX3(t). (12)

where MX1
(t) = et, MX2

(t) = (1−p)α+1

(1−pet)α+1 and MX3
(t) = 1−pet+β

1−p+β .

Corollary 3. The probability generating function (PGF) of GNDL can be obtained
by substituting 1

1+s = t in Equation (6) as

GX(t) =
t(1− p)α+1(1 + β − pt)

(1− pt)α+1(1− p+ β)
. (13)

This completes the proof.

On di�erentiating Equation (12) ith respect to (w.r.t) t, then we get the raw

moment by the expression µ′
r = drMY (t)

dtr |t=0. In this regard, we have computed its
mean, variance, index of dispersion (ID), skewness and kurtosis, which are given
below.

µ′
1 = 1 + p(

1 + α

1− p
− 1

1− p+ β
),
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µ′
2 =

(1− p+ β)(1 + p+ 3pα+ (pα)2)− (1− p)p(3 + p(2α− 1))

(1− p)2(1− p+ β)
.

Now the variance of Y is de�ned as Var(Y ) = µ′
2 − µ′2

1 and for the GNDL it is
expressed as

Var(Y ) =
pα

(1− p)2
+

pβ(1− p2 + β)

(1− p+ β)2(1− p)2
.

After de�ning the mean and variance, we de�ne another characteristic that helps
us to identify the dispersion known as dispersion index, abbreviated as ID and
de�ned as Variance

Mean . It may assume three di�erent values i) over-dispersion, i.e.
(ID > 1), ii) under-dispersion (ID < 1) and iii) equi-dispersion (ID = 1). ID
behavior of the GNDL can be described as; for p ≤ 0.5 ∀β and α the distribution
is under-dispersion and p > 0.5 or p → 1 ∀β and α the distribution portrays,
an over-dispersion characteristic, 0 < p < 0.2 and ∀, β and α → ∞ the GNDL
exhibits an equi-dispersion behavior while as p → 1 and the distribution becomes
over-dispersed.

ID =
p(α(β − p+ 1)2 + β(β − p2 + 1))

(−p+ 1)(β − p+ 1)(1 + β + p(−2 + p+ α(β − p+ 1)))
,

Figure 3: ID plots of GNDL.

Similarly, the skewness (
µ2
3

µ3
2
) and the kurtosis (µ4

µ2
2
) help to determine shape and

peakedness of the curve. In this regard, the GNDL behaved as positively skewed
and leptokurtic in nature.

Proposition 3. Let rth and (r+1)th are r and r+1 order moments of the GNDL
about the origin, then a recursive relation between them can be established as

µ′
r+1 = p

dµ′
r

dp
+

((1− p)p− (1 + pα) + (1− p+ β))µ′
r

(1− p)(1− p+ β)
,

where 0 < p < 1, β ≥ 0 and α > 0.

Revista Colombiana de Estadística - Theoretical Statistics 48 (2025) 1�21



10 Hussain et. al

Proof . The rth moment about origin can be stated as

µ′
r =

(1− p)α+1

(1− p+ β)Γ(α+ 1)

∞∑
x=1

xrpx−1(x)α−1(α+ (α+ x− 1)β), (14)

the derivative of Equation (14) w.r.t p yields

dµ′
r

dp
=

−(α+ 1)(−p+ 1)α

(1− p+ β)Γ(α+ 1)

∞∑
x=1

xrpx−1(x)α−1(α+ (α+ x− 1)β)

+
(−p+ 1)α+1

(1− p+ β)Γ(α+ 1)

∞∑
x=1

(x− 1)xrpx−2(x)α−1(α+ (α+ x− 1)β)

+
(1− p)α+1

(1− p+ β)2Γ(α+ 1)

∞∑
x=1

xrpx−1(x)α−1(α+ (α+ x− 1)β),

which after simpli�cation yields

dµ′
r

dp
=

µ′
r+1

p
− ((1− p)p− (1 + pα) + (1− p+ β))µ′

r

p(1− p)(1− p+ β)
,

r = 0, 1, 2, 3, . . . , µ′
0 = 1, 0 < p < 1,α > 0 and β ≥ 0.

Likewise, the rth moment about mean can be stated as

µr =
(1− p)α+1

(1− p+ β)Γ(α+ 1)

∞∑
x=1

(x− µ′
1)

rpx−1(x)α−1(α+ (α+ x− 1)β),

where µ′
1 = 1+ p( 1+α

1−p − 1
1−p+β ). On di�erentiating the above equation w.r.t p we

get the next corollary.

Corollary 4.

µr+1 + pµ′
1µr = p

dµr

dp
+ p

(
1

p
+

1 + α

1− p
− 1

β + 1− p

)
µr

−
(

rp

(β + 1− p)2
+

r

β + 1− p
− r(α+ 1)

(1− p)2

)
pµr−1.

r = 1, 2, 3, . . . , µ′
0 = 1, µ1 = 0, 0 < p < 1,α > 0 and β ≥ 0.

3.1. Asymptotic Distribution of Extreme Values

Suppose Y1, Y2, . . . , Yn is a random sample of size n, drawn identically and
independently from the GNDL with CDF F(x) = 1 − SF(x). Let Y1:n < Y2:n <
. . . < Yn:n are order statistics of size n. Suppose Mn = yn:n and Nn = y1:n that
are the greatest and smallest re�ection, correspondingly, the aim is discussing the

Revista Colombiana de Estadística - Theoretical Statistics 48 (2025) 1�21



a Flexible Discrete Probability Model for Partly Cloudy Days 11

asymptotic distributions of these extremes. Now on utilizing the Theorem (1.6.2)
see Leadbetter et al., (1987), the distribution of maxima, after using L'Hôpital's
rule, is

lim
s→∞

1− F(s+ xg(s))

1− F(s)
= lim

s→∞

P(Y = x+ s)

P(Y = s)
,

lim
s→∞

(x+ s)α−1(α+ (α+ x+ s− 1)β)px+s−1

sα−1(α+ (α+ s− 1)β)ps−1
= px,

and its standardized form is Gumbel type distribution, i.e. px. So, according to
Theorem (1.6.3) of Leadbetter et al. (1987), the norming constants qn > 0, sn >
0, un > 0 and vn > 0, we obtain

P {qn(Mn − sn) ≤ x} → e−px

,

For the minima of distribution, we apply the Theorem (1.6.2), i.e.

lim
s→0

1− F(xF − sx)

1− F(xF − s)
= lim

s→0

xP(Y = sx)

P(Y = s)
= x,

where limxF→∞ F(xF ) = 1, hence

P {un(Nn − vn) ≤ x} → e−x,

as n → ∞. Thus, the sample maxima and sample minimum domain of attractions
are the domain of attraction of Gumbel and Fréchet distributions, respectively.

3.2. Order Statistics with Asymptotic Distributions

Let Yi = Yi:n be the ith order statistics, then the PMF of Yi is de�ned as

Pr(Y(i) = x) = Pr(Y(i) ≤ x+ 1)− Pr(Y(i) ≤ x), (15)

and
Pr(Y(i) ≤ x) = Pr(at least i's of Y's are ≤ x),

Pr(Y(i) ≤ x) =

n∑
j=i

(Pr(Y(1) ≤ x))j(1− Pr(Y(1) ≤ x))n−j ,

since Y1, Y2, . . . , Yn are i.i.d and

n∑
j=i

(Pr(Y(1) ≤ x))j(1− Pr(Y(1) ≤ x))n−j =

∫ F(x)

0

1

β(i, n− i+ 1)
ui(1− u)n−idu

= IF(x)(i, n− i+ 1),

where IF(x)(i, n − i + 1) is the incomplete beta function and F(x) is the CDF of

GNDL. Thus the PMF of the ith order statistics is

Pr(Y(i) = x) =

∫ F(x+1)

0

1

β(i, n− i+ 1)
ui(1− u)n−idu−

∫ F(x)

0

1

β(i, n− i+ 1)
ui(1− u)n−idu,
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Pr(Y(i) = x) = IF(x+1),F(x)(i, n− i+ 1),

where F(x) is expressed as

F(x) = 1− (1− p)α+1pxΓ(α+ x)

(1− p+ β)Γ(α+ 1)
{(α+ (α+ x− 1)β)2F1(1, α+ x, 1 + x, p)

+ β2F1(2, x+ α+ 1, 1 + x, p)}.

It is also recorded that

Pr(Y(i) = x) =
n!

i!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
((F(x+ 1))i+j − (F(x))i+j),

as
n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
(F(x))i+j =

(F(x))i

i 2
F1(−n+ i, i; i+ 1;F(x)),

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
(F(x+ 1))i+j =

(F(x+ 1))i

i 2
F1(−n+ i, i; i+ 1;F(x+ 1)).

Therefore the PMF of ith order statistics is

Pr(Y(i) = x) =
1

i

(
n

i

)
{(F(x+ 1))i2F1(−n+ i, i; i+ 1;F(x+ 1))

− (F(x))i2F1(−n+ i, i; i+ 1;F(x))}.

4. Parameter Estimation with Inference

If x1, x2, . . . , xn are n random values of a sample drawn identically indepen-
dently from the GNDL and the form of a joint probability function is expressed
in the log-likelihood function as

ℓ(Θ) = L(p;α, β) = n(α+ 1) ln(1− p) +

n∑
i=1

xi ln(p)

+
n∑

i=1

ln(α+ (α+ xi − 1)β) +

n∑
i=1

ln((xi)α−1)

− n ln(1− p+ β)− n ln(Γ(α+ 1)).

(16)

The partial derivative of Equation (16) w.r.t p, β and α and equating them to zero
yields MLEs of p, β and α, respectively, as

−n(1 + α)

1− p
+

n

1− p+ β
+

n∑
i=1

xi − 1

p
= 0 (17)

− n

1− p+ β
+

n∑
i=1

α+ xi − 1

α+ β(α+ xi − 1)
= 0, (18)
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and

−n ln(1−p)−nΨ(0, α+1)+

n∑
i=1

Ψ(0, α+xi−1)+

n∑
i=1

β + 1

α+ β(α+ xi − 1)
= 0, (19)

where Ψn(z) is the polygamma function and de�ned as Ψn(z) = dnΨ(z)
dzn . Since

the closed form solutions of the above equations are not possible, then the MLEs
are computed via computational package Mathematica [12.0]. The MLEs of p, β
and α can be obtained by solving the non-linear normal equations appearing in
Equations (17), (18), and (19). Also, the second order derivative of the earlier
equations helps to determine the information matrix, which is essential to �nd
the variance-covariance matrix and con�dence interval of the estimators. In this
regard, the information matrix has the form

I((p, α, β)|p=p̂,α=α̂,β=β̂) =



E(−∂2ℓ(Θ)
∂p2 ) E(−∂2ℓ(Θ)

∂p∂β ) E(−∂2ℓ(Θ)
∂p∂α )

E(−∂2ℓ(Θ)
∂β2 ) E(−∂2ℓ(Θ)

∂p∂β ) E(−∂2ℓ(Θ)
∂β∂α )

E(−∂2ℓ(Θ)
∂α2 ) E(−∂2ℓ(Θ)

∂α∂β ) E(−∂2ℓ(Θ)
∂α2 )


.

However, in view of the regularity conditions, the GNDL (p, α, β) model ful-
�lls the regularity conditions as declared by Rohatgi & Saleh (2015, pp. 419).

Thus, the con�dence interval belt MLE vector of Θ̂ = (p̂, α̂, β̂) is consistent and
asymptotically normal family, i.e.,

√
n[Θ̂T − ΘT ] ∼ TV N [0, I−1], where I−1 is

the inverse of the expected Fisher information matrix that generates a covariance
matrix, which is based on the expectation of second order loglikelihood derivatives.

5. Application and Model's Compatibility

Here, we shall concentrate the consideration on model assortment and endorse-
ment in modeling development. But, the model assortment is a stimulating chore,
and the chief of an appropriate model, and it is made on the basis of whatever
perception is simple with the use of well-deemed reasoning. An inadequate �tting,
either logical or graphical, may result due to i) the model is erroneously stated, ii)
the model description is right, but regrettably brings a massive bias. In general,
endorsement requires extra data, other evidence and additional checking as well
as vigilant measurement of the results.

5.1. Measures of Goodness-of-Fit

In order to test the hypothesis that H0 : Fn(x) = Fo(x), where Fo(x) is the
CDF from a speci�ed distribution. In this regard, researchers usually adopt these
measures both for discrete and continuous set up like.
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� χ2(Chi Square)-test, for a sample of n− values due to Karl Pearson de�ned
as

χ2 =

k∑
i=1

(fo(i)− fe(i))
2

fe(i)
,

where fo(i) and fe(i) are the observed and expected frequencies, respectively
and k denotes the number of possible classes.

� Kolmogorov Smirnov (KS) test de�ned as

KS = max
1≤i≤k

{ i
k
− zi, zi −

i− 1

k
},

where zi is CDF of the distribution.

� Anderson�Darling (AD∗
0)-test usually attaches more mass to the tails, which

is de�ned as

A∗
0 =

(
2.25

k2
+

0.75

k
+ 1

){
−k − 1

k

k∑
i=1

(2i− 1) ln(zi(1− zk−i+1))

}
.

� Cramér�von Mises (CVM∗
0 )-test derived version of KS test de�ned as

W ∗
0 =

K∑
i=1

(
zi −

2i− 1

2k

)2

+
1

12k
.

� Akaike information criterion (AIC) de�ned as AIC = 2m− 2ℓ(Θ̂), where m
denote the number of parameters.

� Corrected Akaike information criterion (AICc) expressed as AICc = AIC +
2m(m+1)
n−m−1 .

� Bayesian information criterion (BIC), which is de�ned as BIC = m ln(n)−
2ℓ(Θ̂).

� Hannan-Quinn information criterion (HQIC) expressed asHQIC = −2ℓ(Θ̂)+
2m ln(ln(m)).

� Consistent Akaike information criterion (CAIC) given as CAIC = −2ℓ(Θ̂)+
m(ln(n) + 1).

� Vuong test proposed by Vuong, (see Vuong, 1989) is also used for model
selection purposes.

For comprehensive details about these measures readers are referred to Hussain
et al. (2019), Murthy et al. (2004) and Vuong (1989), respectively.
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5.2. Working Methodology and Competing Models

In order to model partly cloudy days of various regions in USA and assist the
space scientists around the globe, we �rst search out the relevant data sets, which
can be accessed from http://www.ncdc.noaa.gov/data-access/quick. Next,
for selecting the application areas, we have to search out the possible competitors
of the proposed model. Since the proposed model is based on the nabla structure
with a domain belonging to N, so we have decided to choose those competitors
that not only work very well in over-, under- and equi-dispersed data sets very
well but also should be de�ned on positive integers. These benchmark indicators
have paved the path to reach the truth in an elegant manner. So the selection of
competitor models includes the zero truncated generalized Poisson (ZTGP), see
Consul & Famoye (1989), zero truncated negative binomial (ZTNB), see Sampford
(1955) and zero truncated Poisson Lindley (ZTPL) distributions, see Aderoju et al.
(2017).

5.3. Descriptive Summary of Data Sets

Four data sets are used for analysis purposes, which deal with the partly cloudy
days of 40,34, 40, and 38 stations. Data exhibits the average number of days per
category of cloudiness that denotes 4/10 to 7/10 mean sky cover. From Table 2 it
is obvious that the data sets I, II, and IV are negatively skewed, while the III data
set is positively skewed. Moreover, non stationarity is observed in cloudy data
sets behaviour, which is probably due to di�erent region of USA. Such statistics
are computed online by using the Wald-Wolfowitz test available at https://rd
rr.io/cran/trend/man/ww.test.html. Furthermore, Figure 4 indicates non
existence of outliers in the selected data sets.

5.4. Clouds and Their Impacts

Since, the key incentive for writing this article is to model the environmental
e�ects, for this purpose, we have decided to model the environmental cloudy days,
data sets. Clouds are potent causes of universal climate shift. These are the vital
element shaping local weather and the Earth's climate structure. By monitoring
clouds, we can get evidence about moisture, temperature, and wind situations at
di�erent altitudes in the atmosphere. This evidence supports forecasting mete-
orological conditions. For this purpose NASA and other space agencies have a
number of satellites orbiting the Earth and collecting data about clouds and the
Earth's energy.

5.4.1. Partly Cloudy Days

The following data sets behavior, demonstrate the mean number of partly
cloudy days. Partly cloudy involves 4/10 to 7/10 average sky cover by clouds
whereas cloudy involves 8/10 to 10/10 average sky cover by clouds. From July
1996 sky coverage is described to eighths (oktas). Clear implies 0-2 oktas, partly
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cloudy suggests 3-6 oktas and cloudy implies 7-8 oktas. The cloudiness data are
una�ected from year to year. Revises to the cloudiness data concluded with the
conversion to Automated Surface Observing Stations (ASOS) at National Weather
Service (NWS) sites. In the 1990s cloud dimensions carried by trained witnesses
commenced to be phased out in approval of computerized radars that assessed
clouds lower than 12,000 feet. In this regard, the �rst, second, third and fourth
data sets observe the number of partially cloudy days of February 2015:6, 6, 7, 6,
4, 4, 6, 4, 4, 7, 5, 6, 4, 4, 3, 5, 5, 3, 4, 4, 6, 4, 3, 3, 3, 6, 7, 7, 7, 7, 6, 6, 8, 8, 5,
6, 8, 7, 6, 7; March 2015: 8, 8, 8, 8, 5, 5, 7, 5, 5, 8, 6, 7, 6, 6, 3, 6, 7, 6, 6, 5, 7,
4, 6, 4, 4, 8, 8, 7, 9, 7, 7, 7, 9, 9; April 2015: 8, 7, 9, 8, 6, 6, 7, 6, 10, 9, 4, 8,
10, 6, 4, 7, 6, 7, 7, 6, 6, 5, 5, 6, 5, 9, 7, 7, 9, 6, 7, 7, 9, 9, 7, 8, 8, 10, 9, 10 and
November 2015: 7, 7, 7, 6, 5, 3, 3, 5, 6, 6, 6, 5, 5, 5, 2, 5, 7, 4, 4, 4, 6, 3, 5, 4, 3, 7,
6, 6, 6, 6, 6, 6, 8, 8, 5, 7, 7, 8, respectively. Wald-Wolfowitz test for randomness
is also used to check the independence assumption, which indicates that data set
I, II and IV do not follow the independece at 5% level of signi�cance with Z-score
ZI = 3.6362, ZI = 2.2922 and ZIV = 2.8261, respectively, while the third data set
III follows the assumption at 5% level of signi�cance with Z-score ZIII = 1.65.
Moreover, the empirical summary of these data sets is given below

Table 2: Descriptive Summary of the Data Sets.

Data Set Sample Size Mean Median S.D ID SK KU

I 40 5.43 6.0 1.5340 0.4338 -0.0941 1.8639

II 34 6.50 7.0 1.5618 0.3752 -0.2906 2.3406

III 40 7.25 7.0 1.6447 0.3731 0.0131 2.2211

IV 38 5.50 6.0 1.5201 0.4202 -0.3743 2.4971

Figure 4: Box and Whisker plots of Data Sets.

5.4.2. Analysis of Data Sets

Goodness-of-�t statistics of the �rst data, as portrayed in Table 3 indicate
that GNDL is a good strategy for the analysis of data set-I. In this table we
observed that although the proposed model yields a competing statistics for all the
parameteric and non-parameteric tests, yet χ2 goodness-of-�t test advocates the
GNDL by generating the highest p-value as compared to the competing models. In
addition, Table 4 also indicates that GNDL is a good choice by showing minimum
values of all information criteria. Moreover, the Vuong statistics yield values of
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137.5935, 137.5926 and 137.6067 (for comprehensive details readers are refered
to Hussain et al., 2019) when comparing GNDL with ZTGP, ZTNB and ZTPL
distributions, respectively. Thus indicating that GNDL is the right choice for this
data set.

Table 3: MLEs and measures of �t for Data-I

Distribution p̂ α̂ β̂ χ2 p-value KS A∗
0 W∗

0

GNDL(p;α; β) 0.00007 60733.716 10.6369 0.5959(2) 0.7423 0.1508 0.0321 0.2491

ZTGP(p; β) 2.90×10−9 - 5.4005 0.7498(2) 0.6873 0.1885 0.0321 0.2719

ZTNB(p; β) 0.00003 - 196700.19 0.7498(2) 0.6874 0.1885 0.0321 0.2711

ZTPL(p; β) 1.93×106 - 355406.547 0.7498(2) 0.6874 0.1884 0.0321 0.2721

Table 4: Criteria based on log-likelihood for Data-I.

Distribution −l AIC AICC BIC HQIC

GNDL 76.9293 159.859 160.525 164.925 161.69
ZTGP 78.9685 161.937 162.261 165.315 163.158
ZTNB 78.9688 161.938 162.262 165.315 163.159
ZTPL 78.9685 161.937 162.261 165.315 163.158

Figure 5: Histogram of data set-I and -II and estimated PMF.

Similalry, in modeling the second data set, we have observed that the GNDL
yields the lowest values of all the goodness-of-�t test statistics and the correspond-
ing highest p-value, which are portrayed in Table 5. In addition, the information
criteria as portrayed in Table 6 are also minimum, except for the BIC, which arises
due to over �tting issue of the GNDL, i.e., all goodness-of-�t statistics yield smart
values. Moreover, the Vuong statistics, when compare the GNDL with ZTGP,
ZTNB and ZTPL gives values: 70.1713, 69.8878 and 70.1658, respectively, which
clearly indicate the superiority of the GNDL for such a data set. Furthermore, the
histograms in Figure 5 of the �rst and second data sets also advocate the GNDL
for its suitability of �t.

Table 5: MLEs and measures of �t for Data-II.

Distribution p̂ α̂ β̂ χ2 p-value KS A∗
0 W∗

0

GNDL(p;α; β) 0.00004 127932.544 10.3022 3.2110(3) 0.3602 0.1322 0.0195 0.1783

ZTGP(p; β) 1.5124×10−9 - 6.4901 4.0873(2) 0.2522 0.1639 0.0257 0.2260

ZTNB(p; β) 0.00008 - 82591.7697 3.8532(3) 0.2778 0.1638 0.0256 0.2259

ZTPL(p; β) 1.9372×106 - 298497.9241 3.8496(2) 0.1459 0.1639 0.0257 0.2260
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Table 6: Criteria based on log-likelihood for Data-II.

Distribution −l AIC AICC BIC HQIC

GNDL 67.8076 141.615 142.415 146.194 143.177

ZTGP 69.4374 142.875 143.262 145.928 143.916

ZTNB 69.4383 142.877 143.264 145.929 143.918

ZTPL 69.4375 142.875 143.262 145.928 143.916

The other two data sets also deal with the number of partly cloudy days of
di�erent cities of USA. In modeling the third data set, we observed from Table 2
that it is positively skewed one and from Table 7 one can infer that the GNDL
yields minimum values of all the goodness-of-�t test statistics and the highest p-
value. However, from Table 8 we have observed that the information criteria are
minimum, except BIC, which is a little bit higher due over parameterization. In
addition, on comparing the Vuong statistics 176.7445, 176.7844 and 176.7618 of
the GNDL with ZTGP, ZTNB and ZTPL distributions, respectively, we found
that GNDL is the most suitable choice for modeling the third data set.

Table 7: MLEs and measures of �t for Data-III.

Distribution p̂ α̂ β̂ χ2 p-value KS A∗
0 W ∗

0

GNDL(p;α;β) 0.00006 105767 10.7972 6.1898(4) 0.1854 0.1538 0.0210 0.1951

ZTGP(p;β) 1.49×10−9 - 7.2448 7.4732(4) 0.1129 0.1861 0.0304 0.2618

ZTNB(p;β) 0.00004 - 182458.34 7.4729(4) 0.1129 0.1861 0.0304 0.2619

ZTPL(p;β) 1.97×106 - 271433.76 7.4730(4) 0.1129 0.1861 0.0304 0.2619

Table 8: Criteria based on log-likelihood for Data-III.

Distribution −l AIC AICc BIC HQIC

GNDL 81.9183 169.837 170.503 174.903 171.668

ZTGP 83.7181 171.436 171.76 174.814 172.657

ZTNB 83.7185 171.437 171.761 174.815 172.658

ZTPL 83.718 171.436 171.76 174.814 172.657

Figure 6: Histogram of data set-III and -IV and estimated PMF.

While modeling the fourth data set, we have observed that the χ2 and KS
goodness-of-�t statistics of the GNDL least while Cramér-von Misses and Anderson
Darling are not only minimum for ZTGP, ZTNB and ZTPL but also equally well in
behavior. These goodness-of-�t statistics are portrayed in Table 9. Thus indicating
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the GNDL is the best strategy for modeling the fourth data set too. Moreover,
the histogram of data set-III and-IV as portrayed in Figure 6, also advocates the
GNDL for its best �tting behavior.

Table 9: MLEs and measures of �t for Data-IV.

Distribution p̂ α̂ β̂ χ2 p-value KS A∗
0 W ∗

0

GNDL(p;α;β) 0.00003 174051.85 0.0 4.0496(3) 0.2562 0.1232 0.0210 0.1841

ZTGP(p;β) 0.10×10−9 - 5.4769 5.2572(3) 0.1539 0.1271 0.0211 0.1705

ZTNB(p;β) 0.000023 - 235858.92 5.2574(3) 0.1539 0.1271 0.0211 0.1705

ZTPL(p;β) 1.92×106 - 350593.81 5.2572(3) 0.1539 0.1271 0.0211 0.1705

Moreover, Vuong statistics of GNDL-ZTGP, GNDL-ZTNB and GNDL-ZTPL
distributions are 27.0677, 27.0665, and 27.0675, indicating that the GNDL is a
reasonably good choice for such data analysis. Furthermore, Table 10 indicates
that the proposed model is the least loss of information model with minimum
values of model selection benchmarks.

Table 10: Criteria based on log-likelihood for Data-IV.

Distribution −l AIC AICC BIC HQIC

GNDL 73.4597 152.919 153.625 157.832 154.667

ZTGP 75.2843 154.569 154.911 157.844 155.734

ZTNB 75.2845 154.569 154.912 157.844 155.734

ZTPL 75.2843 154.569 154.911 157.844 155.734

6. Conclusion

A discretized version of the generalized Lindley distribution by using discrete
fractional calculus under the name GNDL, is suggested and its several chattels are
observed. These properties includes discrete Laplace transformation, moment and
probability generating functions, rth moments recurrence relations and recurrence
relation between probabilities. The GNDL is log-concave, IFR, unimodal and
DMRL, log-convex, DFR and IMRL and BTS in behavior. It is also observed that
the GNDL is not only pliable but also mathematically amenable for over-, under-
and equi-dispersed count data sets. Moreover, the purported model is strongly
recommended for modeling the discrete environmental indicators de�ned over the
domain N, which can help the scientists in planning the space mission in a realistic
sense.

This strategy thus will be quite helpful for NASA and other space agencies
for technically handling the hazards in launching space missions and predicting
the cloudy days in a well mannered way. Moreover, the GNDL is also capable
to work e�ciently in over- and equi-dispersion cases for modeling the number of
earth quake of certain magnitudes, which hopefully be addressed in future com-
munication. [
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