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Abstract

The main goal of this work is to propose a general methodology to create
a coincident index for the economy of a given country or region based on lin-
ear combinations of dynamic common factors, and to validate it on simulated
scenarios and on a case study for Colombia. The methodology proposed can
effectively handle both stationary and nonstationary macroeconomic vari-
ables as input and provides tools to obtain point estimates and confidence
regions, and to test hypotheses for the linear-combination coefficients. This
work highlights how promising this new proposal is in terms of its contribu-
tion with respect to its antecedents in the literature, by showcasing situations
in which a linear combination of dynamic factors can enhance the accuracy
of the nowcast and address potential problems and limitations of consider-
ing only one dynamic factor as index. The application of this work to the
Colombian economy is based on the macroeconomic analysis conducted by
previous researchers. This work, however, considers and analyzes a much
larger set of candidate indices via linear combinations of factors, providing
consistent results; which strengthens and validates their previous findings.
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Resumen
El objetivo principal de este trabajo es proponer una metodología general

para crear un índice coincidente para la economía de un país o región deter-
minado, basada en combinaciones lineales de factores comunes dinámicos,
y validarla en escenarios simulados y en un estudio de caso para Colombia.
La metodología propuesta puede manejar de manera efectiva tanto variables
macroeconómicas estacionarias como no estacionarias como datos de entrada
y proporciona herramientas para obtener estimaciones puntuales y regiones
de confianza, así como para probar hipótesis sobre los coeficientes de la
combinación lineal. Este trabajo destaca lo prometedora que es esta nueva
propuesta en términos de su contribución con respecto a sus antecedentes
en la literatura, al mostrar situaciones en las que una combinación lineal de
factores dinámicos puede mejorar la precisión del pronóstico del estado de la
economía, además de abordar problemas y limitaciones potenciales al con-
siderar solo un factor dinámico como índice. La aplicación de este trabajo
a la economía colombiana se basa en el análisis macroeconómico realizado
por investigadores previos. Sin embargo, este trabajo considera y analiza un
conjunto mucho más amplio de índices candidatos a través de combinaciones
lineales de factores, proporcionando resultados consistentes, lo que fortalece
y valida sus hallazgos anteriores.

Palabras clave: Índice coincidente; Algoritmos genéticos; Macroeconomía;
Optimización no convexa; Series de tiempo multivariadas.

1. Introduction

Economic indices are of vital importance for the macroeconomic planning of
a given country. Particularly, coincident indices attempt to predict the state of
the economy in a given time point, based on the available information up to that
point. It is well known that the Gross Domestic Product (GDP) is a massive
undertaking to measure the overall performance of the economy; however, it is not
calculated at a high frequency because it is extremely time-consuming. For that
reason, simpler alternative coincident indices are necessary.

According to Stock & Watson (1992), an economic index corresponds to the
estimation, or the prediction, of the realization for a non-observable variable: the
state of the economy for a specific country or region, based on the information
taken from a set of observable macroeconomic variables denominated indicators of
the economy.

Even if each one of the indicator variables for the economy can show erratic
behaviors and different temporal trajectories from each other, there is a latent
influence of the state of the economy over all the variables, providing them common
characteristics. The essence in the construction of an economic index, generally
speaking, lies on the correct identification and careful isolation of the common
information in the set of indicator variables.

Particularly, a coincident index for the state of the economy must be able to
predict the state of the economy for a given instant of time by using the available
information up to that time instant, i.e., it must match the business cycle of the
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economy, which is defined as the representing cycle of the characteristic oscillations
of the macroeconomic activity (Burns & Mitchell, 1946). Altissimo et al. (2010)
define as the main objective for a coincident index to do a valuation about the
state of the economy that is (1) comprehensive and non-subjective, which means
that it has to condense in a proper way the information of the indicator variables
with no place for subjectivity biases; (2) timely, since it has to provide real-time
estimates using all the information at hand; and (3) free from short-run fluctua-
tions, to capture and show the actual trend for the state of the economy without
any transient perturbations.

The first attempts to create an economic index were based on heuristics. An
economic index was computed as a weighted average of the indicator variables in
such a way that the weights for each variable were assigned based on criteria and
general knowledge of the context, but with no statistical foundation (Martínez
et al., 2016). Stock & Watson (1992) were the first ones who proposed the idea of
the state of the economy as a latent stochastic process that is related in a linear way
with each of the indicator variables. They formulated their model in terms of the
first differences of both the observed and the latent variables involved, to ensure
stationarity. Further developments in the area started considering the concept
of Dynamic Common Factors (DCFs) as an alternative to capture different and
multiple common trends affecting the macroeconomic indicators. This approach
generalized the idea of only one common factor proposed by Stock & Watson
(1992). Following the methodology proposed by Martínez et al. (2016) and Chudt
& Nieto (2018), this work proposes a method to optimally combine the estimated
factors for a set of macroeconomic variables in a linear fashion, to provide a broader
spectrum of possibilities to be considered as coincident indices. Besides, general
inference procedures are developed to compare and establish the added value of the
proposed methodology with respect to previous developments in both simulated
scenarios and a case study for the Colombian economy.

The rest of this manuscript is as follows. Section 2 provides the general notation
and mathematical prerequisites to understand the methodological innovation pro-
posed. Section 3 describes the methodology to optimally estimate the coefficients
of a lineal combination of estimated factors that could play the role of a coinci-
dent index, Section 4 describes the procedures to conduct interval estimation and
hypothesis testing on those coefficients, and Section 5 presents a simulation pro-
cedure to exhaustively test the methodology proposed. Finally, Section 6 presents
the results of the simulated instances and the application to the data gathered
for Colombia (South America) while Section 7 summarizes the conclusions of this
work.

2. DCF-based Coincident Index: A Review

Let {Yt} be a multivariate stochastic process of dimension m, and let {ft} be
a multivariate latent stochastic process of dimension r, r < m, that is related to
{Yt} via the equation

Yt = Pft + et, t ∈ Z, (1)
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where
{
ft = (f1t, f2t, . . . , frt)

T
}

is denominated the vector of DCFs of the process
{Yt}, T is the transpose operator, P ∈ Rm×r is a matrix of weights of the DCFs
and {et} is a (Gaussian) noise process of dimension m, whose variance-covariance
matrix is denoted by Σe. In the economic theory, the realizations of {Yt} are the set
of macroeconomic variables or indicators of the economic activity. The realization
of the process {ft} carries all the common characteristics of the macroeconomic
indicators in a lower-dimension object. The main goal of creating an economic
index is, then, to extract as much information of the macroeconomic indicators
{Yt} in a compact way by means of {ft}; and, based on the factors, to compute
another process denominated index, {It}, that accurately resembles the behavior
of the latent stochastic process {Ct}, the so-called state of the economy or reference
cycle.

According to Wei, William WS (2006) and confirmed by Martínez et al. (2016),
when dealing with nonstationary vector time series, differencing allows to achieve
stationarity but might eliminate and distort some of the interrelationships that
the series naturally have. For that reason, the methodology followed in this work
considers approaches that allow the macroeconomic indicators to be realizations
of nonstationary processes and handle this characteristic in an effective way.

Following this principle, Martínez et al. (2016) propose a four-step methodol-
ogy, based on DCFs, that selects one of the estimated factors (from potentially
nonstationary and cointegrated time series) as a coincident index. Reconsider
the model expressed in Equation (1) assuming that {ft} follows a V ARMA (p, q)
model that looks like

Φ(B) ft = κ+Θ(B) at, (2)

where the operator Φ(B) is such that all the roots of the complex polynomial
|Φ(z)| lie outside or on the unit circle (| · | represents the determinant operation).
Additionally, the operator Θ(B) is such that the complex polynomial |Θ(z)| has
all its roots outside of the unit circle and distinct from the ones of |Φ(z)|. The
process {at} corresponds to a multivariate Gaussian (denoted as MVN later on)
white noise process, independent of the Gaussian white noise process {et}; and
whose variance-covariance matrix is of full rank and denoted as Σa.

Equations (1) and (2) facilitate to build the state-space representation of
the dynamic factor model, provided that the model is identifiable. Their pa-
rameters can be estimated using Gaussian Maximum Likelihood or Expectation-
Maximization algorithms, and the estimates of the factors can be obtained by
means of the fixed-point smoother, which is based on the Kalman Filter. Lütke-
pohl (2005) points out that the Gaussian Maximum Likelihood and the Kalman
Filter are reasonable approaches even when there is no normality in the white
noise processes. It is important to mention that the model presented in Equation
(1) suffers from identifiability issues that impede any procedure from retrieving
a unique estimate of P and the DCFs {ft}, ergo, some identifiability restrictions
need to be imposed. It is said that estimates of the factors are identifiable up to
an orthogonal rotation (Peña & Tsay, 2021).
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The four-step methodology proposed by Martínez et al. (2016) to design a
coincident index is as follows:

1. Adaptation and preparation of the time series. First of all, it is necessary to
deseasonalize the macroeconomic time series, and to pre-whiten the process
{êt}, if it does not exhibit white noise features after a first round of estimation.
In a parallel effort, Nieto et al. (2016) propose an alternative methodology to
deal with seasonality in DCF models.

2. Estimation of the common factors. This step of the modeling is conducted
based on the results by Peña & Poncela (2006). Based on the sample generalized
covariance matrices (SGCV)

CY (k) =
1

S2d+1

S∑
t=k+1

(
Yt−k − Ȳ

)(
Yt − Ȳ

)T
,

and the canonical correlation matrices (CCM)

M̂1 (k) =

[
S∑

t=k+1

YtY
T
t

]−1 [ S∑
t=k+1

YtY
T
t−k

][
S∑

t=k+1

Yt−kY
T
t−k

]−1 [ S∑
t=k+1

Yt−kY
T
t

]
,

where S is the sample size, d is the order of integration for the vector {Yt} and
k(= 0, 1, 2, . . .) is a particular lag; they created a test to identify the number of
common factors and a procedure to find their nature (if they are stationary or
not). The test for the number of factors is based on an asymptotic result and its
limiting distribution is independent of the lag k considered, even if its expression
does depend on it. However, when applied in finite-sample scenarios, the test is
sensitive to the lag k considered and the conclusions may vary according to the
value it takes for a given confidence level due to sample variability. For that
reason, some caution must be exercised when using this test for small sample
sizes and sensitivity to the specification of the lag k should be explored.
Bujosa et al. (2013) propose an alternative approach based on the SCGV when
the Gaussian, zero-mean and full rank variance-covariance matrix white noise
assumptions do not hold.

3. Choice of a common factor as the coincident index. Taking as a reference the
seminal work of Banerji (1999) to identify a leading index using the concept
of a leading profile, Martínez et al. (2016) define a coincident profile as a tool
to assess the adequacy of each estimated factor to be a coincident index with
respect to a proxy for the state of the economy. The coincident profile is a
synthesized presentation of several p-values that are the result of a nonpara-
metric test of h-coincidence, with h ∈ Z representing the number of periods in
advance (h ≥ 0) or delayed (h < 0) for the factor to exhibit the same behavior
(pattern) in terms of peaks, valleys, growth and decay periods of the state of
the economy. The general hypothesis system of an h−coincidence test has the
plausibility of h−coincidence, for a given value of h, in the null hypothesis;
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against an alternative rejecting that value of h. Thus, leading indices should
have high p-values for positive values of h (indicating that the null hypothesis
cannot be rejected), coincident indices should have high p-values for h = 0, and
lagged indices should have high p-values for h < 0. For a formal definition of
the h−coincidence test and its use for identifying coincident indices, see Banerji
(1999), Martínez et al. (2016), Chudt & Nieto (2018).

As it has been mentioned before, the state of the economy, {Ct}, is a latent
stochastic process; therefore, its realizations are not observable. For that rea-
son, it is necessary to identify a good proxy, {ĉt}, of the state of the economy,
to compare with when constructing the coincident profile. In most of the cases,
a high-frequency interpolated series of the GDP is a reasonable candidate for
this task. Then, the dynamic factor with the highest acceptable p-value of 0-
coincidence (above a certain significance level) is chosen as a coincident index,
implying that the null hypothesis of 0-coincidence between that factor and the
proxy cannot be rejected. At this point, it must be clear that the proxy, {ĉt},
acts as a coincident index itself; however, a massive effort is usually required to
compute it, so the main idea is to identify an equally reliable coincident index
that is easier to compute by using the estimated factors of some macroeconomic
series.

Chudt & Nieto (2018) mention that the coincident profile procedure sometimes
does not work with the original proxy and the macroeconomic variables because
the series can be excessively smooth (lacking of turning points) or excessively
noisy. Therefore, they applied the coincident profile procedure to the first
differences of the proxy and each of the factors, leveraging the general fact that
if any two continuous functions coincide in their rates of change over time (have
the same derivative, if seen as continuous functions of time), they are identical
up to an additive constant.

4. Identification of the basis for the index. Once one of the factors has been
identified as a coincident index, it is necessary to establish the temporal basis
for which the selected factor behaves as a coincident index and analyze its
implications in the given context.

Martínez et al. (2016) also pose for future work the possibility of constructing
a coincident index as a linear combination of the DCFs and assessing its statistical
adequacy to predict the state of the economy, which is the main goal of this work.

3. Methodology

Previous efforts in this area have focused their attention on selecting only one
among the estimated factors as the coincident index based on their coincident
profiles. Nevertheless, this approach is somehow restrictive because it does not
exploit the possible synergies that might exist between the factors that could lead
to a better index in terms of similarity with the proxy for the state of the economy.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 71–98



Nowcasting the State of the Economy for Colombia 77

The coincident profile proposed by Martínez et al. (2016), and then refined
by Chudt & Nieto (2018), is the presentation of the p-value for several tests of
h-coincidence between the separate components of

{
f̂t

}
(the estimated factors)

and {ĉt} (the proxy of the state of the economy), with h ∈ {−3,−2,−1, 0, 1, 2, 3}.
In other words, Martínez et al. (2016) and Chudt & Nieto (2018) considered only
trivial combinations of the factors. For each one of the estimated factors, the level
of h-coincidence is determined by choosing the value of h for which the p-value for
h-coincidence is the maximum among the coincident profile, over a pre-specified
significance level. For coincident indices, the attention focuses on the case when
h = 0.

Since the search space of candidate factors to be a coincident index is finite
and very reduced under this approach, it is not always possible to find a factor
that is 0-coincident. This limitation led the researchers to choose sometimes as
coincident index a factor with a coincidence level other than 0-coincidence (but
fairly close) if 0-coincidence is not achieved.

Contrastingly, this work intends to explore all the possible linear combina-
tions of estimated factors to identify a particular combination that maximizes
0-coincidence (considering other elements that will be introduced later).

In essence, the idea is to create an economic index of the form

It(α⃗) := α⃗T ft =

r∑
j=1

αjfjt, t ∈ Z,

being αj ∈ R, j = 1, 2, . . . , r. Its data-based counterpart, computed with the
estimated factors,

{
f̂t

}
; will be denoted as {it}.

Given that the 0-coincidence is based on a statistical test that assesses the
coincidence between the turning points of two series (Banerji, 1999), it is invariant
under transformations of scale, thus any nonnegatively-scaled version of the can-
didate index will produce the same 0-coincidence. In other words, for any k ∈ R+

(with R+ the set of real positive numbers),
{
α⃗T ft

}
and

{
kα⃗T ft

}
have the same

level of 0-coincidence with a given proxy.
For that reason, to ensure identifiability, the coefficients for the factors have

to be normalized. In this work, the normalization is made on the basis of the L2

norm, i.e.,

∥α⃗∥2
2
=

r∑
j=1

α2
j = 1. (3)

The feasible region is defined in terms of an equality and not as ∥α⃗∥2
2
≤ 1

because, even if the latter is convex, it does not solve the identifiability problem
since for any α⃗0 belonging to the feasible region, kα⃗0 would belong to it as well,
for every k ∈ (0, 1).

Besides, the L2 norm was preferred over the L1 norm, for instance, because L1

usually is employed for variable (or factor, in this case) selection in regularization
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models, which is undesirable if the idea is to look at nontrivial linear combinations
of the factors.

A first attempt to address the problem of finding a coincident index by means
of linear combinations of the DCFs would be to solve the following maximization
problem

max
α⃗∈Rr

p ({∆ĉt} , {∆it (α⃗)}) ,

s.t. it (α⃗) =

r∑
j=1

αj f̂jt,

∥α⃗∥22 = 1,

(4)

being {ĉt} a realization of the proxy for the state of the economy, {it} a candi-
date linear combination of the estimated factors, ∆ the finite difference operator
and p (·, ·) the function that calculates the p-value for the 0-coincidence between
two given series. The acronym “s.t.” stands for “subject to:” and precedes the
constraints in the optimization problem. The difference operator is introduced
following Chudt & Nieto (2018), as a way to effectively measure 0-coincidence by
avoiding the excess of noise or smoothness that the proxy and the factors might
exhibit. Nevertheless, the candidate index is still a function of both stationary
and nonstationary factors, estimated to pontentially benefit from the cointegra-
tion relationships that the original macroeconomic variables might have.

Weierstrass’ theorem guarantees that if the feasible region of an optimization
problem is a compact set (which indeed is in this case) and the objective function is
continuous, an optimal value exists within the feasible region (Bazaraa et al., 2013).
However, as it is described in Subsection 3.2, the function p (·, ·) has multiple
optima and that does not allow to obtain a unique solution. It is also important
to highlight that there is no closed-form expression to evaluate p (·, ·) given any
two arguments. This function has to be evaluated by means of a permutation
test (Chudt & Nieto, 2018), leaving out of consideration any derivative-based
optimization algorithm.

The following subsections present some inconveniences that impeded to tackle
the optimization problem in Equation (4) directly and the remedial mechanisms
proposed.

3.1. Use of Spherical Coordinates

The next step in the process of estimation for the linear-combination coeffi-
cients is to identify an algorithm to solve the optimization problem formulated
in Equation (4). In addition to the inconveniences of multiple optima and the
absence of derivatives, the L2-norm constraint imposed to the coefficients for the
factors in Equation (3) defines a non-convex space in Rr, which makes it almost
intractable for the iterative optimization algorithms usually implemented.

To overcome this challenge, the problem was solved using a spherical co-
ordinate representation because it makes the feasible set convex. Recall that
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for a point (α1, α2, . . . , αr) ∈ Rr, represented in the Cartesian coordinates sys-
tem, there is an equivalent representation in the spherical coordinates system:
(ρ, θ, ϕ1, ϕ2, . . . , ϕr−2)

T where ρ ∈ R+ ∪ {0}, θ ∈ [0, 2π] and ϕj ∈ [0, π] , j ∈
{1, 2, . . . , r − 2}. The equations that describe the relationship between these two
representations, according to Blumenson (1960), are

αr = ρ cos (ϕr−2) ,

αr−1 = ρ sin (ϕr−2) cos (ϕr−3) ,

αr−2 = ρ sin (ϕr−2) sin (ϕr−3) cos (ϕr−4) ,
...
α2 = ρ sin (ϕr−2) sin (ϕr−3) sin (ϕr−4) sin (ϕr−5) . . . sin (ϕ1) sin (θ) ,

α1 = ρ sin (ϕr−2) sin (ϕr−3) sin (ϕr−4) sin (ϕr−5) . . . sin (ϕ1) cos (θ) .

(5)

The constraint in Equation (3) is equivalent to the surface of a hypersphere in
Rr, therefore, its representation in spherical coordinates is simply

ρ = 1;

0 ≤ ϕl ≤ π, l ∈ {1, 2, . . . , r − 2} ;
0 ≤ θ ≤ 2π.

(6)

The feasible region in Equation (6) corresponds to a polyhedron, which is
a convex region. It is also important to notice that since ρ = 1, the feasible
region in spherical coordinates can be seen as a subset of Rr−1 whose variables
are (θ, ϕ1, ϕ2, . . . , ϕr−2). Once the optimal solution for this problem is computed,
the estimates of the original coefficients, α⃗, can be calculated by replacing the
optimal values in spherical coordinates into the set of equations in Equation (5)
with ρ = 1.

3.2. Inconveniences with 0-coincidence (Multiple Optima)

As mentioned before, the function p (·, ·) may have multiple optima (it might
reach the value of 1 for different arguments). Figure 1 shows a plot of this function
for a simulated situation with two factors. Given the L2−norm restriction imposed
on the coefficients (α1, α2), all the feasible solutions in a two-dimensional setting
lie on the unit circumference represented by α2

1 + α2
2 = 1, so each solution can

be represented in spherical coordinates (a.k.a., polar coordinates in R2), by using
only one variable: θ.

The problem of multiple optima had not been faced by previous research efforts
in the area (Martínez et al., 2016; Chudt & Nieto, 2018), since their approach was
to pick among a finite set of alternatives (the set of estimated factors) a coincident
index, instead of exploring over a set with uncountably many feasible points in
Rr.

To overcome this barrier, another element had to be incorporated into the
objective function for the optimization problem. Based on the fact that Peña &
Poncela (2006) and Martínez et al. (2016) handle with non-stationary time series
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in their methodology, a good candidate to be part of the objective function is the
cross-correlation at lag 0 between {∆ĉt} and {∆it}: cor (∆ĉt,∆it), assuming that
the bivariate process

{
(∆Ĉt,∆It)

}
is stationary.
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0

0.
2

0.
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Figure 1: 0-coincidence p-value function for a two-dimension (2D) factor simulated
/ scenario.

The cross-correlation function allows to consider that, besides sharing the turn-
ing points with the proxy of the economy, the first difference of the index (anal-
ogous to the first derivative in a continuous approach) must share similar con-
temporary behavior with the first difference of the proxy for the economy. Chudt
& Nieto (2018) use the cross-correlation at lag 0 as a criterion for selection of
macroeconomic variables as indicators.

Because of the way the cross-correlation function is estimated, this only makes
sense if both the {∆ĉt} and the {∆it} series come from stationary processes, i.e.,
if the original series {ĉt} and {it} are at most I (1). In case the original series
are integrated in a higher order, the cross-correlation function would have to be
computed after applying as many difference operators as necessary to make the
series stationary.

Additionally, this new element of the objective function lies between -1 and
1, which is relatively similar to the range in which the p-value for 0-coincidence
varies (from 0 to 1), so there is no risk that one of the components of the objective
reaches abnormally high values in magnitude to overshadow the other component.
The two components, p (·, ·) and cor (·, ·), are included in the objective as the terms
of a simple sum and the optimal solution will, then, exhibit appealing attributes
with respect to both objectives.

The optimization problem in Equation (4) can be reformulated as

max
(θ,ϕ1,ϕ2,...,ϕr−2)

z = [p (∆ĉt,∆it) + cor (∆ĉt,∆it)] ,

s.t. it =

r∑
j=1

αj (θ, ϕ1, ϕ2, . . . , ϕr−2) · f̂jt,

0 ≤ ϕl ≤ π, l ∈ {1, 2, . . . , r − 2} ;
0 ≤ θ ≤ 2π.

(7)
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This is a constrained optimization problem with an apparent non-convex objec-
tive function (as evidenced in multiple simulations) and a convex feasible region.

3.3. Use of a Genetic Algorithm to Reach the Optimal Value

The intractability of an analytical expression for the objective function reduces
significantly the algorithms that can be implemented to find its optimal value
because the vast majority of the methods are based on the possibility of computing
at least first-order derivatives or sub-gradients of the objective function to define a
good search direction, starting at an initial feasible point. The type of algorithms
that exploit only the values for the objective function are denominated derivative-
free algorithms (Rios & Sahinidis, 2013).

Both the Nelder-Mead and a genetic algorithm were tested with simulated
results, yet, the genetic algorithm outperformed the Nelder-Mead algorithm in
attaining a better feasible point. For that reason, the results presented in Section
6 were obtained using a genetic algorithm, by means of the package GA in R (Scrucca
et al., 2013).

The parameters considered were: 10 generations, 100 individuals in each gener-
ation, 0.8 as the probability for crossover, and 0.1 as the probability for mutation.

4. Statistical Inference Based on the Linear-
Combination Coefficient Estimators

The estimators of the unknown coefficients αj ∈ R, j = 1, 2, . . . , r; are such
that

α̂j := αj

(
θ̂, ϕ̂1, ϕ̂2, . . . , ϕ̂r−2

)
, (8)

where(
θ̂, ϕ̂1, ϕ̂2, . . . , ϕ̂r−2

)
= argmax

(θ,ϕ1,ϕ2,...,ϕr−2)

z =
[
p
(
∆Ĉt,∆It

)
+ cor

(
∆Ĉt,∆It

)]
,

(9)
subject to the constraints presented in Equation (7).

Be aware of the changes from lower-case letters to upper-case letters to em-
phasize that the estimators are random variables because they depend on the
underlying stochastic processes that generate the series included in the analysis.
When particular realizations of these stochastic processes are considered, the argu-
ments of the optimization problem are realizations of the random variables defined
in Equation (9).

This procedure to obtain estimators via a non-conventional optimization tech-
nique is quite rare and it is very little what can be found in the literature about
similar approaches.

It is known that these point estimates come from an optimal procedure that
attempts to maximize the level of 0−coincidence between a potential index and
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a proxy for the state of the economy, which makes this estimation procedure
very appealing for practitioners dealing with situations in which the DCFs and
the coincident index framework applies. Nonetheless, it is important to consider
mechanisms to construct confidence regions or test hypotheses regarding the co-
efficients of the linear combinations, since this is a way to confirm if the linear
combination approach offers a useful generalization of previous approaches. For
instance, assume that some estimates for the linear-combination coefficients, α⃗,
have been obtained following the methodology presented in this document, and it
is of interest for the researcher to identify if the data support the hypothesis that
only one of the DCFs is the most suitable coincident index that can be defined.
This scenario can be translated into the following hypothesis system for some j,
j = 1, 2, . . . , r 

H0 : (α1, . . . , αj , . . . , αr)
T
= (0, . . . , 1, . . . , 0)

T

v.s.
H1 : (α1, . . . , αj , . . . , αr)

T ̸= (0, . . . , 1, . . . , 0)
T
.

(10)

The null hypothesis in system (10) supports the idea that only the estimated j-
th factor, for a particular j, is a coincident index for the state of the economy, being
consistent with previous developments. On the other hand, if the null hypothesis is
rejected for all j, j ∈ {1, 2, . . . , r}; there is evidence to conclude that the coincident
index cannot be composed of only one factor, meaning that a nontrivial linear
combination can perform substantially better.

A simulation-based methodology is a sensible alternative to tackle the inferen-
tial problem posed by the hypothesis system in Equation (10) due to the inherent
complexity of any theoretical approach. The methodology presented here can be
easily extended to more general hypothesis systems.

Following the general representation of the DCF model, and assuming that for a
given vector of macroeconomic time series of length S, {yt}St=1, the DCFs,

{
f̂t

}S

t=1
,

the matrices Σ̂a, Σ̂e and P̂ have been estimated; and also that the corresponding
evolution structure for the dynamic factors, i.e., their VARMA structure, has
been identified; it is possible to simulate new instances from that framework and
generate different realizations of the linear-combination coefficients, by following
the steps in Algorithm 1.

Step 1 in Algorithm 1 generates a simulated realization, {ỹt}S (n)
t=1 , of the

macroeconomic time series following the procedure in Algorithm 2. It is important
to notice that each of the simulated vector time series {ỹt}S (n)

t=1 , n ∈ {1, 2, . . . , N}
for some simulation sample size N , is generated using the same parameters that
were estimated from the real data at hand as input (see Algorithm 2). In case
the normality assumption for the multivariate white noise processes (denoted as
MVN : Multivariate Normal) does not hold, the step 1 in Algorithm 2 can be re-
placed for a nonparametric re-sampling routine based on the residuals obtained
during the parameter estimation procedure.
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Algorithm 1: Re-sampling routine for inference

Result: Sequence of coefficients
{
ˆ⃗α
}N

n=1
and objective values

{
ẑ∗
}N

n=1

for N simulated instances
Input: VARMA parameters (p, q, Φ̂ (·), Θ̂ (·)) and initial conditions for{

f̂t

}
; {ĉt}St=1, Σ̂a, Σ̂e, P̂ , S(sample size of original data), N (simulation

sample size);
n := 1;
while n ≤ N do

1. Generate a simulated instance of the macroeconomic variables
{ỹt}S (n)

t=1 based on Algorithm 2;
2. Estimate the number, nature, dynamics and values of the DCFs{

f̂⋆
t

}S (n)

t=1
; based on {ỹt}S (n)

t=1 (Peña & Poncela, 2006);

3. Estimate the linear-combination coefficients
{
ˆ⃗α
}(n)

by solving (7)

using {ĉt}St=1 as proxy;
4. Compute and store the value of the objective function
ẑ∗

(n)
:= (p̂+ ˆcor)

(n);
5. n←− n+ 1;

end

Once a new multivariate time series, {ỹt}S (n)
t=1 , has been simulated; it is nec-

essary to repeat the procedure of estimation of the DCFs and then, identify the
optimal combination of factors. The term (p̂+ ˆcor)

(n) denotes the estimate of the
objective function in each draw of the N simulations.

It would seem intuitive to use the entire sequence of realizations for the vector

of coefficients,
{
ˆ⃗α
(n)

}N

n=1

, to draw inferences about the population coefficients.

Nevertheless, this approach would show, with no doubt, misleading conclusions in
terms of inference about the parameters. The reason behind this lies in the way
the simulation is conducted and the properties of the DCF model.

There is an analogy between DCF models and the principal component analysis
in multivariate statistics. If v is an orthonormal eigenvector of the matrix Σ
corresponding to the eigenvalue λ, the vector −v will also be an orthonormal
eigenvector of the matrix with the same eigenvalue. In the context of DCF models,
the factors are analogous to the principal components of a multivariate random
vector. In their estimation procedure, sometimes, it might result an estimation
similar to fjt and in other cases similar to −fjt for some j, because both represent
the same component’s variability. Additionally, in the case of the classical principal
component analysis, the sorted eigenvalues can help to identify the natural order
of the principal components. In the case of the DCF models, there is not a unified
criterion to sort the factors and pretty often, the factor that came first in a previous
simulation instance can appear in a different position in the following instance.
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Algorithm 2: Iterative simulation of macroeconomic variables
Result: New realization {ỹt}St=1 of same size as original data
Input: VARMA parameters (p, q, Φ̂ (·), Θ̂ (·)) and initial conditions for{

f̂t

}
; Σ̂a, Σ̂e, P̂ , S(sample size of original data);

s := 1;
while s ≤ S do

1. Simulate the vector of errors: ẽs ←− MVN
(
0, Σ̂e

)
and

ãs ←− MVN
(
0, Σ̂a

)
;

2. Compute the factors: f̃s such that Φ̂ (B) f̃s = Θ̂ (B) ãs;
3. Compute the realization of the macroeconomic variables:
ỹs ←− P̂ f̃s + ẽs;

4. s←− s+ 1;
end

For these reasons, inference about the linear-combination coefficients cannot

be drawn simply by considering the sequence
{
ˆ⃗α
(n)

}N

n=1

as the realization of an

i.i.d. sample of the multivariate estimator of the coefficients. This motivates a
different use of the simulation routine.

Regardless of the ordering or the inverted sign of some factors, the objective
function ẑ∗

(n)
= (p̂+ ˆcor)

(n) gathers all the potential ability of that realization of
the multivariate econometric time series to create an index that is 0-coincident with
the proxy for the state of the economy. In that sense, the sequence

{
ẑ∗

(n)
}N

n=1
can be considered as a realization of a random sample that can be used to draw
inferences about the population parameter z∗ (which is a function of the underlying
stochastic processes).

Bickel & Doksum (2015) express that, given a confidence region CI1−δ(ξ) for
a generic parameter ξ with a given level of confidence 1− δ, δ ∈ (0, 1); a confidence
region with the same level of confidence for a function of the parameter q (ξ), can
be defined as

CI1−δ(q(ξ)) := {q (x)|x ∈ CI1−δ(ξ)} .

There are no restrictions for the type of function q (·) that can be considered.
An analogous result was applied to the problem to be able to find a confidence

region for the linear-combination coefficients based on a confidence interval for the
objective function. A unilateral confidence interval for the objective function was
considered for two reasons. Firstly, the objective function is bounded (it has an
upper bound of 2). Secondly, there is no reason to exclude values in the right tail
(close to the upper bound) of the sample if the main purpose of the optimization
is to maximize the objective function.
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Considering that a 100 · (1− δ)%-confidence interval for the objective function
z∗ has the general form [L, 2], L ≥ 0, δ ∈ (0, 1); and considering that there exists a
function g (·) such that g (α⃗) = z∗, a confidence region of level 1− δ for the vector
of coefficients α⃗ corresponds to the set{

α⃗ ∈ Rr : g (α⃗) ∈ [L, 2] and ∥α⃗∥22 = 1
}
,

because the following equivalences hold in the common probability space (Ω,ℑ,P)
that allows all the random applications involved to be proper random variables

1− δ = P {ω ∈ Ω : [L (ω) , 2] ∋ z∗}
= P {ω ∈ Ω : [L (ω) , 2] ∋ g (α⃗)}
= P

{
ω ∈ Ω : g−1 ([L (ω) , 2]) ∋ α⃗

}
,

where g−1 ([L (ω) , 2]) is the set of pre-images in Rr that under g (·) fall within
[L, 2].

In the application of this result, it has to be noted that g (α⃗) = p (∆ĉt,∆it(α⃗))+
cor (∆ĉt,∆it(α⃗)), but there is no analytical expression for the function g−1 (·);
so, once a confidence interval for the objective value of the problem has been
computed, a numerical approximation of the set of pre-images has to be performed.
On the other hand, when used for hypothesis testing for a candidate null hypothesis
of the form H0 : α⃗ = α⃗0, it suffices to verify whether or not g(α⃗0) ∈ [L, 2] to decide
if that null hypothesis can be rejected or not at a level of significance of 100δ̇%.

5. Artificially-Generated Scenarios for Validation

To check the usefulness of the methodology proposed in this work, some ran-
domly generated scenarios are presented to highlight its advantages in effectively
tackling the challenges that the nature of the problem poses. The procedure to
generate the scenarios is briefly described in the following Subsection.

5.1. Generation of a Base Scenario

The generation framework of a base condition was motivated by Stock et al.’s
approach (Stock & Watson, 1992), in the sense that the state of the economy
is the main common feature among the macroeconomic variables. The state of
the economy, {Ct}, was assumed to follow a general ARIMA model, i.e., {Ct} ∼
ARIMA (p, d, q) .

According to Stock et al.’s model, {Ct} is the input to generate the vector
of macroeconomic variables (there is no mediation of multiple DCFs). However,
for the sake of the analysis and to be able to fully implement the methodology
previously described, it was assumed that the state of the economy generates a
vector of r common factors via the expression

ft = PfCt + ut,
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where ut ∼MVN (0, Ir×r), being Ir×r the identity matrix of rank r. On the other
hand, the vector of m macroeconomic variables was generated via the expression

Yt = Pft + et,

with et ∼MVN (0,Σe) and Σe = diag
{
i2
/
h (m) : 1 ≤ i ≤ m

}
.

The structure presented for Σe attempts to introduce some heterogeneity with
a scaling factor, h(m), to avoid excessively large variances. In the simulations
presented h(m) = m− 1.

As it was stated before, the intermediate step of calculating the factors was
included to be able to compare the generated factors with the estimations obtained
with the Kalman Filter.

Another important observation is that, in order to be able to construct the
scenarios, a pre-specified dimension, r, for the vector of factors is used as given.
However, this does not necessarily imply that the variables exhibit as many com-
mon trends as that dimension size because the matrices P and Pf are determined
in a random fashion, implying that the number of effective DCFs present in each
scenario can vary from 1 to r.

Once a full set of realizations for the state of the economy, the vector of DCFs
and the vector of macroeconomic variables has been obtained, the methodology
presented in Sections 3 and 4 can be applied. In that regard, it was assumed that
only the realizations of the vector of macroeconomic variables and the state of the
economy were available. The factors generated were only considered to compare
to the estimated factors obtained from the macroeconomic variables.

5.2. Estimation of the DCFs and Inference

Firstly, it would be necessary to estimate the number, nature and values of the
DCFs based on the macroeconomic variables available (Peña & Poncela, 2006). For
the estimation of the factors, the MARSS package in R was used (Holmes et al., 2012).
Since the objective of this work is not to deal with the issues in the identification
of the number of factors, it was assumed that the number of factors was equal to
r (the parameter used in the generation, Subsection 5.1).

The identification and estimation of the dynamics according to which the fac-
tors evolve in time, i.e., their VARIMA structure; is another aspect that might
be determined based on the data. However, for the same reason as before, the
factors were assumed to always follow a multivariate random walk dynamics,
ft = ft−1 + at, where at ∼ MVN (0,Σa) and Σa is a diagonal matrix. This
assumption is common in the state-space models because, although simple, it al-
lows to fairly capture general evolution dynamics (Hamilton, 1994),(Pivetta &
Reis, 2007).

Once the factors for the model have been estimated, it is possible to estimate
coefficients of the best coincident index in terms of its 0-coincidence and its cross-
correlation at lag 0 with the realization of the proxy for the state of the economy.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 71–98



Nowcasting the State of the Economy for Colombia 87

For illustrative purposes, the proxy available was considered to be the real-
ization of the state of the economy itself, although this is not possible in real
applications for obvious reasons.

Finally, by following the procedures presented in Algorithm 1, it was possible
to conduct inference about the linear-combination coefficients, i.e., to create a
confidence region with a certain level of confidence and to assess specific systems
of hypothesis.

6. Results

This section presents the results of some artificially-generated scenarios as well
as an application to real data to show how the methodology already described
can be applied. All the analyses carried out in this work were developed using
the software R (v4.1.2, R Core Team, 2021). Two types of artificial instances were
generated: a 2D-type (two-factor instance) and a 3D-type (three-factor instance).
A sample size of 100 temporal observations was used for all the generated scenar-
ios, which is a reasonable amount compared to a situation in which variables are
measured monthly over a time window of 8 years approx. Finally, the methodology
was applied to the results previously obtained by Chudt & Nieto (2018).

6.1. Results for 2D

For this instance, it was assumed that the number of DCFs was 2, r = 2, and
the number of variables was m = 5. Additionally, the state of the economy was
assumed to follow an ARIMA (1, 1, 0) model with autoregressive parameter ϕ =
0.7. The matrices Pf and P were generated by a random mechanism considering
the identiability requirements. For this particular scenario, the matrices were

Pf =

[
0.18

0.49

]
, P =

[
0.49 −0.98 −6.03 −0.91 3.53

0 −2.15 −1.39 2.87 −5.22

]T
.

Once the state of the economy, the factors and the macroeconomic variables
were generated, the realization of the macroeconomic variables was used to esti-
mate the 2 factors using the Kalman Filter. The results for the generated and the
estimated factors are presented in Figure 2. It is important to notice that, as it
was pointed out before, sometimes the estimates of the factors can have a different
sign with respect of the original factors, highlighting the importance of including
linear combinations (in some cases with negative coefficients) to build a coincident
index.
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Figure 2: (a) Plot of the proxy generated, (b-c) Comparison of the factors generated
versus the estimated ones

Figure 3(a) shows the overall progress through the generations of the optimiza-
tion subroutine based on a genetic algorithm. Even if there is not a given criterion
of convergence for the genetic algorithm procedure (in terms of closeness to the op-
timal solution), the fact that the best solution found does not significantly change
in the last generations, and the best value, the median and the mean values along
the generations seem to approach to each other are good signs of the quality of
the solution in terms of optimality.
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Figure 3: (a) Progress monitoring of the genetic algorithm subroutine (2D). For each

generation, the best, the median and the mean value of the individuals of
that generation are presented, (b) Objective function in spherical coordinates
(optimal solution highlighted).
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The results show that the optimal value for this case is ẑ∗ = 1.405, correspond-
ing to a 0-coincidence p-value of 1 and a cross-correlation of 0.405. This optimal
value is attained at θ̂ = 4.014 in spherical coordinates, and α̂1 = −0.6387, α̂2 =
−0.769 in Cartesian coordinates. According to this result, the coincident index is
close to an average of the negatives of the two estimated factors. Figure 3b corre-
sponds to a plot of the objective function in spherical coordinates, highlighting the
value obtained from the optimization routine, while Figure 4 shows the compari-
son between the proxy and the coincident index created as a linear combination
of the estimated factors.
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Figure 4: Comparison between the realization of the state of the economy (proxy) and
the coincident index (2D).

There is a different scale for the proxy and the coincident index because the idea
behind the construction of a coincident index is to try to replicate the fluctuations
that the state of the economy experiences rather than replicating the set of values
it takes. It can be seen how the coincident index fairly captures the dynamics of
the state of the economy. Based on the resampling technique proposed, a 95%
unilateral confidence interval for the optimal value of the objective function is
[1.001, 2]. The histogram for 500 realizations of the objective function is presented
in Figure 5.
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Figure 5: Histogram of the realizations for the optimal value of the objective function.
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Once the confidence interval for the objective’s optimum has been estimated,
it is possible to create a 95% confidence region for the coefficients of the linear
combination in both Cartesian and spherical coordinates, as shown in Figure 6.
According to the results of the confidence regions, it can be concluded that no
single factor can actually be a coincident index.
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Figure 6: (a) Confidence region in Cartesian coordinates (2D). The highlighted area

over the unit circumference represents the 95% confidence region while the
straight lines represent projections onto the axes. (b) Confidence region in
spherical coordinates (2D). The vertical threshold corresponds to the lower
limit of the confidence interval while the horizontal coordinate of the high-
lighted points represents the confidence region for the spherical argument.

6.2. Results in 3D

In this scenario, it was assumed that the number of DCFs was 3, r = 3, and
the number of variables was m = 7. Additionally, the state of the economy was
assumed to follow an ARIMA(1, 1, 0) model with ϕ = 0.7. For this scenario, the
matrices Pf and P were

Pf =

 −0.92
0.24

−0.79

 ,P =

 7.7 −1.26 6.18 −1.94 7.94 −4.37 1.72

0 −6.19 2.5 −6.24 0.73 −4.41 8.29

0 0 −3.89 2.35 −4.02 −0.91 2.76

T

.

The results for the generated and the estimated factors are presented in
Figure 7. This scenario shows a characteristic worth revising: the order in which
the factors are estimated and presented by the Kalman Filter does not necessarily
correspond to the order in which they were originally generated. For instance,
factor 1 and factor 3 seem to have been misplaced during the estimation. It is
important to remind that in a real situation, it is not possible to know in which
order the factors are estimated.
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Figure 7: (a) Plot of the proxy generated, (b-d) Comparison of the factors generated

versus the estimated ones

After running the genetic algorithm subroutine, the optimal value for this case
is ẑ∗ = 1.711, corresponding to a 0-coincidence p-value of 1 and a cross-correlation
of 0.711. This optimal value is attained at θ̂ = 1.495, φ̂ = 2.781 in spherical
coordinates, and α̂1 = −0.933, α̂2 = 0.352, α̂3 = 0.075 in Cartesian coordinates.
Figure 8 shows the comparison between the realization of the state of the economy
and the coincident index created as a linear combination of the estimated factors.
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Figure 8: Comparison between the realization of the state of the economy (proxy) and
the coincident index (3D).

Based on the resampling technique proposed, a 95% unilateral confidence in-
terval for the optimal value of the objective function is [1.097, 2]. Figure 9 shows
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the confidence region in spherical coordinates. According to the results of the
confidence region, it can be concluded that factor 2 could be a coincident index
for the state of the economy since (θ, φ) =

(
π
2 ,

π
2

)
belongs to the 95% confidence

region, as well as the negative of factor 1 represented by (θ, φ) =
(
π, π

2

)
.
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Figure 9: Confidence region in spherical coordinates (3D).

6.3. Aggregate Performance on Multiple Generated Instances

The procedure presented in Subsections 6.1 and 6.2 was replicated 100 times
starting from random and independent base case scenarios for both the 2D and
the 3D scenarios.

For each one of the replications, the following information was recorded: (1)
whether the hypothesis system for all possible trivial combinations was rejected
or not, i.e., if a non-trivial linear combination was the best attempt to model the
behavior of the state of the economy; (2) the gap in terms of the objective function
value for the non-trivial linear combination estimated and the highest value of the
objective among the single factors

gap := z∗ − max
l∈{1,2,...,r}

[
p
(
∆ĉt,∆f̂lt

)
+ cor

(
∆ĉt,∆f̂lt

)]
, (11)

and (3) the relative improvement of the gap (expressed as a percentage) in terms
of the highest value of the objective among the single factors

RI :=
gap

max
l∈{1,2,...,r}

[
p
(
∆ĉt,∆f̂lt

)
+ cor

(
∆ĉt,∆f̂lt

)] . (12)

These quantities were then summarized for the 100 replications (in terms of
mean values) and are presented separately for the cases in which a non-trivial
linear combination was the best alternative versus the cases in which that does
not hold true based on the hypothesis tests. The results can be seen in Table 1.
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Table 1: Aggregate performance summary for the replications

Scenario Number of
replications

%

non-trivial ¯gap R̄I %trivial ¯gap R̄I

2D 100 44% 0.345 33.85% 56% 0.182 17.14%
3D 100 61% 0.522 41.76% 39% 0.207 20.08%

For instance, for the 2D scenario, 44% of the replications showed that a non-
trivial linear combination of factors was the best coincident index to replicate the
proxy. Among this 44% of the cases, the average improvement of the objective
value (p-value for 0 coincidence plus cross-correlation at lag 0) of the non-trivial
combination with respect to the best single-factor choice is 0.345. In relative
terms, the average improvement is close to the 34%. For the remaining 56% of
the cases, the gap and the relative improvement are obviously lower because the
data support the idea that one of the single factors itself can play the role of the
coincident index. In an analogous way, for the 3D scenario, the majority of the
replications (61%) showed that non-trivial linear combinations performed better
than single factors in terms of the objective value. The margins that account
for the performance difference were higher too (average gap of 0.522 and average
relative improvement of 42% approx.).

6.4. Application to the Colombian Economy

Chudt & Nieto (2018) computed a new coincident index for the Colombian
economy based on the following six monthly macroeconomic variables: (1) In-
dustrial Production Index (IP), (2) Average Electric Energy Consumption (EEC)
in GWh/day, (3) Retailing Commerce Index Excluding Fuels and Vehicles (RC),
(4) Total Production of Sugar Cane (SCP) in tons, (5) Cement Production (CP)
in tons, and (6) Unemployment Rate (UR) as a percentage; during the period
starting in January, 2000 until June, 2017. The six indicators are presented in
Figure 10.

After deseasonalizing and pre-processing the series according to Martínez et al.
(2016), they identified two DCFs for the macroeconomic series and used the Eco-
nomic Tracking Index (ISE for its initials in Spanish: Índice de Seguimiento
Económico) as a proxy for the state of the economy. The ISE is computed by
the Official Statistics Bureau for Colombia (DANE for its acronym in Spanish) on
a monthly basis since January, 2000.

Figure 11 shows the (deseasonalized) proxy for the state of the economy and
the two estimated factors.

The optimization process to estimate the coefficients of a linear combination
of the two factors led to the following results: the objective value was z∗ = 1.201,
corresponding to a 0-coincidence p-value of 0.875 and a correlation of 0.326. This
optimal value is attained at θ̂ = 6.282 in spherical coordinates, and α̂1 = 0.999,
α̂2 = −0.002 in Cartesian coordinates. The results obtained suggest that the co-
incident index is primarily composed of factor 1. To test that, the 95%-confidence
interval for the objective’s optimum was calculated giving as result [0.85, 2]. With
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Figure 10: Macroeconomic indicators used to create the coincident index. (a) IP, (b)

EEC, (c) RC, (d) SCP, (e) CP, (f) UR.

this result, the 95%-confidence region for the coefficients of the linear combination
is presented in Figure 12. Based on this confidence region, it can be concluded
that, with a significance level of 5%, factor 1 (with coefficients (α1, α2) = (1, 0))
can play the role of the coincident index.

The results for the application in the Colombian context are consistent to what
had been previously obtained by Chudt & Nieto (2018) because both procedures
have suggested that factor 1 can play the role of the coincident index for the
Colombian economy. Nevertheless, the primary value that the new methodology
offers is the possibility to expand the set of candidates to be coincident index
and actually conclude, via a statistical test, that among all the possible linear
combinations of factors, factor 1 can be considered as the most suitable choice for
coincident index.
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Figure 11: (a) Deseasonalized proxy (ISE), (b-c) Estimated factors.
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Figure 12: Confidence region in Cartesian coordinates for the Colombian case study.

7. Conclusions

This work proposes a novel methodology to design coincident indices as linear
combinations of the dynamic common factors from a multivariate time series of
macroeconomic variables with the advantage of directly and effectively handling
potential nonstationarity in the series, unlike other approaches in the literature.
The first and one of the key steps in the methodology proposed is to estimate
the dynamic common factors from the macroeconomic time series, to capture the
common trends and patterns in a lower-dimension object, which is particularly
advantageous since the dimension of the vector of factors determines the com-
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plexity of the optimization problem that needs to be solved in order to estimate
the coefficients of the optimal linear combination of factors. Using directly the
macroeconomic variables to construct a coincident index would cause the genetic
algorithm to grow exponentially in complexity and consume an excessive amount
of computation time.

The linear-combination coefficients are estimated based on the objective of
maximizing the 0-coincidence between the candidate index and a proxy for the
state of the economy. Doing this guarantees that the coincident index obtained
provides the best match with the dynamics of the proxy in terms of its peaks and
its valleys and such information is of utmost importance for economic planning
since it characterizes periods of prosperity and recession. The coincident index is
not designed to nowcast the values of the proxy per se, which justifies the use of the
0-coincidence p-value as the optimization objective, instead of using least squares
or other loss functions to estimate the linear-combination coefficients. However,
the inclusion of the contemporary cross-correlation of the candidate index and the
proxy as part of the objective allows considering, to some extent, the similarity
in the values of the two series. This work also provides a set of statistical infer-
ence procedures to compute, in addition, interval estimates and test hypotheses
regarding the linear-combination coefficients.

Even if this new methodology is presented as an improvement of one of the
phases in Martinez et al.’s methodology (Martínez et al., 2016), it can be easily
adapted and linked to other methodologies to estimate DCFs in multivariate time
series, such as Forni et al. (2005), Stock & Watson (2011), Lam et al. (2012),
Bujosa et al. (2013); among others.

On the other hand, the simulated scenarios establish several facts about the
importance of this work because, as it could be seen, (1) there are situations in
which a single factor cannot explain the dynamics in the business cycle; and (2) the
estimated factors usually come with opposite signs, requiring the use of negative
multiplicative constants to actually mimic the behavior of the proxy. Finally, the
methodology was applied to the Colombian context producing consistent results
to what had been previously obtained, and offering stronger statistical evidence
to support the conclusion of Chudt & Nieto (2018), by means of the analysis of
the sampling distribution for the linear-combination estimators.
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