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Abstract

The study of longitudinal measures of chlorophyll concentrations is key
to reducing the risk of yield-limiting de�ciencies or costly over fertilizing.
Factors as irrigation and fertilization can in�uence the chlorophyll content.
In this research we analyzed data from a experimental design of chlorophyll
concentrations in chili pepper plants under the e�ect of two factors (fertilizer
and irrigation, both with four levels) recorded weekly (for seven weeks). The
spectral signature curves obtained for each plant was included in the model
as a functional covariate. We propose an alternative for the analysis of data
from experimental designs involving longitudinal data (LD) and a functional
covariate. Two smoothing approaches using basis functions and functional
principal component reduce the problem to the application of a Linear Mixed
Model (LMM) to LD in the presence of multiple scalar covariates. In both
approaches, the results indicate that the inclusion of the functional covari-
ate (spectral signature) contributes to explain the relationship between the
chlorophyll concentration and the factors analyzed.
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Resumen

El estudio de mediciones longitudinales de concentraciones de cloro�la es
clave para reducir el riesgo de de�ciencias que limiten el crecimiento o de una
fertilización excesiva y costosa. Factores como la irrigación y la fertilización
pueden in�uir en el contenido de cloro�la. En esta investigación analizamos
datos de un diseño experimental de concentraciones de cloro�la en plantas de
ají picante, bajo el efecto de dos factores (fertilizante e irrigación, ambos con
cuatro niveles), registrados semanalmente (durante siete semanas). Las cur-
vas de �rma espectral obtenidas por cada planta se incluyeron en el modelo
como una covariable funcional. Proponemos una alternativa para el análisis
de datos de diseños experimentales que involucran datos longitudinales (DL)
y una covariable funcional. Dos enfoques de suavización que utilizan fun-
ciones base y componentes principales funcionales reducen el problema a la
aplicación de un modelo lineal mixto (MLM) a DL en presencia de múltiples
covariables escalares. En ambas alternativas, los resultados indican que la
inclusión de una covariables funcional (�rma espectral) contribuye a explicar
la relación entre la concentración de cloro�la y los factores analizados.

Palabras clave: Análisis de componentes principales funcionales; Análisis
de datos funcionales; Base de funciones; Concentración de cloro�la; Firma
espectral; Modelo de coe�cientes aleatorios.

1. Introduction

Statistical analysis of longitudinal data is widely used in agronomy (Fenzi et al.,
2017; Bonamy et al., 2020; Lark et al., 2020). In particular, the study of longitu-
dinal measures of chlorophyll concentrations is key to reducing the risk of yield-
limiting de�ciencies or costly over fertilizing (Ling et al., 2011). Many factors (for
example, irrigation and fertilization) can in�uence the chlorophyll content. Thus,
analyzing data generated by experimental designs with a longitudinal response is
an essential statistical function in this area. In this paper, we analyze a dataset
where the chlorophyll concentration in response to four levels of irrigation and
fertilization is assessed (Figure 1). We also considered the spectral curve obtained
weekly in each plant as the realization of a functional covariate (Gómez-Escobar,
2017). The spectral signatures were measured with wavelengths between 500 and
950 (nm). The data were collected over seven weeks in an experiment that was
carried out at the agronomic experimental center of Universidad del Valle, Cali,
Colombia.

Longitudinal data (LD) occur when we repeatedly measure the same variable
across time on the study subjects (Weiss, 2005). These records are not neces-
sarily obtained at the same timepoints or the same number of times (unbalanced
data). Many approaches are available for the analysis of LD. Repeated measures
ANOVA (Davis, 2002), generalized estimating equations (GEE) (Hardin & Hilbe,
2002), multivariate ANOVA (Hedeker & Gibbons, 2006), and linear mixed mod-
els (LMM) (Fitzmaurice et al., 2008) are some alternatives. Currently, LMM is
probably the most common method for analyzing LD (Fitzmaurice et al., 2008).
One advantage of using LMM is that it is possible to perform hypothesis test-
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ing on correlation parameters. Classical methods such as the likelihood ratio test
(Crainiceanu et al., 2004) and Bayesian information criterion (Jones, 2011) can
be used to test and compare model �t. LD is usually recorded under several ex-
perimental conditions (combinations of the levels of factors), and generally, some
covariates are also considered. There are di�erent types of covariates: continuous,
discrete, multinomial, and ordered multinomial (Weiss, 2005).
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Figure 1: Above: Chlorophyll weekly data (left) and spectral signatures curves (right).
Bottom: Boxplots of chlorophyll data for each level of irrigation (left) and
fertilizer (right).

Since the early 1990s, functional data analysis (FDA) has been a highly de-
veloped �eld in statistics (Ramsay & Silverman, 2005). In FDA, initially, many
records of some characteristic of interest for each individual in the sample (usu-
ally obtained over time) are �t as a curve (function) using smoothing techniques
(nonparametric smoothing, basis functions, polynomial regression, etc.). Subse-
quently, the curves become the objects of study (Ramsay & Silverman, 2005). FDA
encompasses the set of statistical methodologies that allow descriptive and infer-
ential analyses to be carried out with functional data. Regression, ANOVA, mixed
models, or multivariate methods (principal components, cluster, and discriminant
analysis), among others, have been proposed for this class of variables (Ramsay
& Silverman, 2005; Ferraty & Vieu, 2006; Febrero-Bande et al., 2010; Horváth &
Kokoszka, 2012). FDA has also been used to model LD when a large set of records
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is obtained for each individual in the sample. The traditional LMM has been
adapted to this framework generating the so-called functional linear mixed model
(FLMM). Many relatively recent works with theoretical and applied perspectives
consider this problem (Guo, 2002, 2004; Liu & Guo, 2012; Park & Staicu, 2015;
Cederbaum et al., 2016; Liu et al., 2017). Kundu et al. (2016) propose estima-
tion in regression models for longitudinally collected functional covariates; their
methodology extends the analysis of functional linear models by relating a scalar
outcome to a functional predictor both observed longitudinally; this approach may
be viewed as an extension of longitudinal mixed e�ects models, replacing scalar
predictors by functional predictors. Staicu et al. (2020) extend the work by Kundu
et al. (2016). They develop a longitudinal dynamic functional regression (LDFR)
framework to study time-varying association between responses from the expo-
nential family and functional covariates that are observed in a longitudinal design
that enables to recover the full response trajectory.

In this paper, we propose two alternatives (Sections 2.2 and 2.3) for modeling
the dataset described in Section 1. A detailed presentation of the data is given in
Section 3. The methodologies can be also used in the analysis of other datasets
from experimental designs including LD and a functional covariate. We consider
data from a longitudinal response and a functional covariate recorded under the
levels of various factors. A solution based on functional principal components
and the use of con�dence bands generated by bootstrap are methodological con-
tributions of this work. Speci�cally the con�dence bands are obtained using a
combination of parametric bootstrap in mixed models and bootstrap methods for
functional data (Febrero-Bande et al., 2010; Febrero-Bande & Oviedo de la Fuente,
2012). After using basis functions (B-splines, Fourier, etc.) or functional principal
components analysis to smooth the data, the problem becomes that of a classical
experimental design of LD with multiple scalar covariates. Experimental designs
involving LD play an essential role in agricultural sciences. These are routinely
used in this �eld to study changes over time (see for example Fenzi et al. 2017
and Miqueloni, 2019). The proposed methodology is of interest in this context.

The article is organized as follows: Sections 2 and 3 present the methodology
proposed and the application to the dataset of interest, respectively. The paper
ends with a discussion and suggestions for further research.

2. Statistical Methods

In this section, we begin by de�ning the extension of the classical linear mixed
model to include simultaneously longitudinal data and a functional covariate.
Next, we introduce two alternative methods for parameter estimation in this
framework.
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2.1. Mixed Model Including Longitudinal Data and a
Functional Covariate

A classical LMM (Verbeke & Molenberghs, 2000) with a longitudinal variable
is de�ned as

Yi = Xiβ + Zibi + εi, (1)

where Yi is the ni dimensional response vector for subject i, i = 1, . . . , N , N the
number of subjects, Xi and Zi are, respectively (ni × p) and (ni × q) matrices for
the �xed and random e�ects, β is a p-dimensional vector of the �xed e�ects, bi is a
q-dimensional vector of the random e�ects, with bi ∼ N (0,D), and εi ∼ N (0,Σi).
It is assumed that b1, . . . ,bN and ε1, . . . , εN are independent. The extension of
Model (1) to the case where a functional covariate is considered can be de�ned as
follows:

Yi =

∫
T

χi(t)ψ(t)dt+Xiβ + Zibi + εi, (2)

with χi(t), t ∈ T and i = 1, . . . , N , a functional variable and ψ(t) a functional
parameter.

2.2. Estimation Based on Basis Functions

In practice some basis functions (B-splines, Wavelets, Fourier) can be used
to de�ne curves based on a large set of data (χi(t1), . . . , χi(tm)). Using a basis
function approach we have for each subject i = 1, . . . , N in Model (2)

χi(t) =

k∑
j=1

cijϕj(t)

= ci1ϕ1(t) + . . .+ cikϕk(t)

= cTi ϕ, with cTi = (ci1, . . . , cik) and ϕ = (ϕ1(t), . . . , ϕk(t))
T

(3)

The optimal number of basis functions k is generally derived by generalized cross
validation (GCV) Ramsay & Silverman (2005). Similarly the functional parameter
in Model (2) can be de�ned as

ψ(t) =

k∑
j=1

djθj(t)

= d1θ1(t) + · · ·+ dkθk(t)

= θTd, with d = (d1, . . . , dk)
T
and θT = (θ1(t), . . . , θk(t)) (4)

For simplicity, the same k is usually considered in both representations. Based on
Equations (3) and (4) the model in (2) can be written as follows

Yi =

∫
T

cTi ϕθ
Tddt+Xiβ + Zibi + εi,

= cTi Jd+Xiβ + Zibi + εi, i = 1, . . . , N

(5)
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with

J =


∫
T
ϕ1(t)θ1(t)dt · · ·

∫
T
ϕ1(t)θk(t)dt

...
. . .

...∫
T
ϕk(t)θ1(t)dt · · ·

∫
T
ϕk(t)θk(t)dt


The model in Equation (5) for each subject is given by
Yi1
Yi2
...

Yini

 =


cTi1J xi11 · · · xi1p
cTi2J xi21 · · · xi2p
...

...

cTini
J xini1 · · · xinip



d1
...

dk
β

+

zi11 · · · zi1q
zi21 · · · zi2q
...

. . .
...

zini1 · · · ziniq



bi1
bi2
...

biq

+

εi1
εi2
...

εini


If the basis functions used to de�ne functional data and the functional parameter
are orthonormal we have∫

T

ϕl(t)θm(t)dt =

{
1 if l = m

0 if l ̸= m
, l,m = 1, . . . , k

i.e, in (5) J = Ik×k. Then, the Model (2) becomes

Yi = X̃iβ̃ + Zibi + εi, (6)

where X̃i =
[
cTi ,Xi

]
. After calculating X̃i, the estimations of the model can be

obtained through maximum likelihood or restricted maximum likelihood (REML)
(Patterson & Thompson, 1971). Let Vi = ZiDZti + Σi. This matrix can be
estimated maximizing the REML likelihood function (Verbeke & Molenberghs,
2000)

lREML(γ) =

∣∣∣∣∣
N∑
i=1

X̃T
i V

−1
i X̃i

∣∣∣∣∣
−1/2 N∏

i=1

(2π)−ni/2 |Vi(α
′)|−1/2

exp

(
−1

2
(Yi − X̃iβ)

TV−1
i (α)(Yi − X̃iβ)

)
with respect to all parameters simultaneously γ = (β′,α′)′; whereα is an unknown
vector of variance components. The �xed e�ects are estimated by Verbeke &
Molenberghs (2000)

̂̃
β(α) =

(
N∑
i=1

X̃T
i WiX̃i)

)−1 N∑
i=1

X̃T
i Wiyi,

where Wi = V−1
i . When an estimate α̂ is available V̂i = V̂i(α̂) = Ŵ−1

i . bi in
Equation (6) can be estimated by Verbeke & Molenberghs (2000)

bi(γ) = DZTi Wi(yi − X̃iβ).
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The number of basis functions k that de�nes the functional parameter is de-
termined through the marginal Akaike information criterion (mAIC) (Greven &
Kneib, 2010) as

mAIC = −2l

(
Y | ̂̃β, V̂)+ 2(p+ q),

where V̂ is the covariance matrix given by V̂ = ZD̂ZT + Σ̂, l
(
Y | β̂, V̂

)
is the

maximized log likelihood and p, q are then number of parameters in the model.

2.3. Estimation Based on Functional Principal Components
Analysis (FPCA)

Consider the model in Equation (2). Suppose that based on the set of curves
χ1(t), . . . , χk(t) a functional principal components analysis is carried out obtaining
the eigenfunctions ξ1(t), . . . , ξk(t). The functional data and functional parameters
in Model (2) are de�ned in terms of the eigenfunctions as

χi(t) =

k∑
j=1

αijξj(t), (7)

and

ψ(t) =

k∑
j=1

τjξj(t), (8)

Using these representations (7) and (8) the model in (2) can be written as

Yi =

∫
T

χi(t)ψ(t)dt+Xiβ + Zibi + εi, (9)

Yi =

∫
T

AT
i ξ(t)ξ

t(t)τdt+Xiβ + Zibi + εi

Yi = AT
i

(∫
T

ξ(t)ξt(t)dt

)
τ +Xiβ + Zibi + εi,

where AT
i = (αij) is the j-th score of the i-th functional datum. Considering that

the eigenfunctions belong to an orthonormal base, we have
∫
T
ξ(t)ξt(t)dt = Ik×k,

and the model can be written as

Yi = AT
i τ +Xiβ + Zibi + εi (10)

The Model (10) can be de�ned as

Yi = X̃iβ̃ + Zibi + εi, (11)

with X̃i = (AT
i ,Xi) and β̃ = (τ ,β). The estimation of the parameters in Model

(11) is carried out as in Section 2.2.
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2.4. Verifying Model Assumptions

The validation of the assumptions is carried out graphically. The normality is
evaluated using a QQ plot of the standardized residuals and the homogeneity of
variance trough a predicted versus standardized residuals plot. The residuals are
de�ned as

r∗i = L−1(yi − X̃iβ̂)

where Σ̂ = LLT is the Cholesky decomposition of the estimated errors covariance
matrix.

2.5. Con�dence Bands Approach via Bootstrap

To obtain the con�dence bands for the functional parameter ψ(t) in Equation
(2), we perform a combination of fully parametric bootstrap methods in mixed
and functional models (Lahiri, 2003; Febrero-Bande et al., 2010; Febrero-Bande
& Oviedo de la Fuente, 2012). For the model in (9), the con�dence area (CA) is
de�ned as

CA(ψ(t)) =
{
ψ(t) ∈ L2 :

∥∥∥ψ(t)− ψ̂(t) ⩽ Dα

∥∥∥} ,
where the statistic Dα, meets the condition of

P (ψ(t)) ∈ CA(ψ(t)) = 1− α

P
(∥∥∥ψ(t)− ψ̂(t)

∥∥∥) = 1− α

The procedure to obtain the con�dence bands is as follows:

� Step 1: Fit Model (9) with the original data to obtain the respective esti-
mates.

� Step 2: Generate {bi}Ni=1 of size N of a q-dimensional normal distribution

with means vector 0 and covariance matrix D̂ (estimated in step 1).

� Step 3: Generate N samples for {εi}Ni of size ni of a multivariate normal

distribution with means vector 0 and covariances matrix Σ̂ estimated in step
1.

� Step 4: Obtain the bootstrap observation of the response variable as

y∗
i =

∫
T

χ(t)ψ(t)dt+Xiβ + Zib
∗
i + ε∗i

� Step 5: Fit Model (9) taking the bootstrap observations of the response
variable y∗

i , and obtain the estimates of the functional parameter denoted

as (ψ(t))
j
.

� Step 6: Replicate steps 1 to 5 B times.
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� Step 7: The estimated value D̂α is obtained through the percentile (1 − α)
of

di�j =

∥∥∥∥ψ̂(t)− (ψ̂(t))j∥∥∥∥ =

∫
T

(
ψ̂(t)−

(
ψ̂(t)

)j)
dt

� Step 8: Plot the estimated values di�j ≤ D̂α.

3. Application to Chlorophyll Data

Table 1 contains information on the levels of fertilizer and irrigation used in
the experiment described in Section 1.

Table 1: Levels of the factors fertilizer and irrigation used in the experiment.

Factors Levels

Fertilizer F1 Boron Solution

F2 Solution without Iron

F3 Solution without Magnesium

F4 Complete Solution

Irrigation I1 225(ml)

I2 15(ml)

I3 75(ml)

I4 150(ml)

3.1. Model

For modeling the chlorophyll concentration in SPAD measurements, using the
spectral signature of the plants as a covariate, we speci�ed the �rst level of the
model as

Chlorophylli = β0i+β1.+β2.+β3it+β4.t+β5.t+β6.t+

∫
T

ψ(λ)χ(λ)dt+ ei (12)

where the indexing of the parameter and the functional variable is denoted as
λ, λ ∈ [500 − 1100nm], to di�erentiate it from time (t). In the second level of
the model, we study the change ln the intercept of the subject-speci�c and the
variation of their respective time slopes. The follow equations are speci�ed:

β0i = β0 + b0i

β1. = β1F1 + β2F2 + β3F3 + β4I1 + β5I2 + β6I3

β2. = β7F1I1 + β8F1I2 + β9F1I3 + β10F2I1 + β11F2I2 + β12F2I3

+ β13F3I1 + β14F3I2 + β15F3I3

β3i = β16 + b1i

β4. = β17F1 + β18F2 + β19F3

β5. = β20I1 + β21I2 + β22I3

β6. = β23F1I1 + β24F1I2 + β25F1I3 + β26F2I1 + β27F2I2 + β28F2I3

+ β29F3I1 + β30F3I2 + β31F3I3
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where F1, F2, and F3 and I1, I2, and I3 are indicator variables, that express the
levels of the fertilizer and irrigation factors

Fertilizer 1 if F1 = F2 = F3 = 0

Fertilizer 2 if F1 = 1 and F2 = F3 = 0

Fertilizer 3 if F2 = 1 and F1 = F3 = 0

Fertilizer 4 if F3 = 1 and F1 = F2 = 0


Irrigation 1 if I1 = I2 = I3 = 0

Irrigation 2 if I1 = 1 and I2 = I3 = 0

Irrigation 3 if I2 = 1 and I1 = I3 = 0

Irrigation 4 if I3 = 1 and I1 = I2 = 0

� yi is the vector that contains the seven (7) measurements of clorophyll for
individual i, i = 1, 2, . . . , 128.

� β0 represents the �xed intercept parameter.

� β1, β2 and β3 correspond to the regression parameters for the variables as-
sociated with fertilizer levels 2, 3 and 4.

� β4, β5 and β6 are the regression parameters for the variables associated with
irrigation levels 2, 3, and 4.

� β7, β8, . . . , β15 are the regression parameters for the interactions doubles
between the variables F1, F2, F3, I1, I2 y I3.

� β17, β18, and β19 correspond to the regression parameters for the e�ects
associated with the interactions between the variables F1, F2, and, F3, and
time.

� β20, β21, β22 are the regression parameters for the interactions of the variables
I1, I2, I3, and time.

� β23, β24, . . . , β31 correspond to the regression parameters for the triple inter-
actions among the variables F1, F2, F3, I1, I2, I3, and time

� β16 is the regression parameter associated with the time slope.

� b0i is the random e�ect corresponding to the intercept for the i -th individual

� b1i corresponds to the random e�ect of the time slope.

� b0i and b1i are assumed to follow the distribution N (0,D). We assume
the variance-covariance matrix D is unstructured (Verbeke & Molenberghs,
2000).

� εi is the random error vector for individual i, which is assumed to follow the
distribution N (0,Σi).
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3.2. Results

The chlorophyll concentration in SPAD measurements varied between 28.6 and
64.2 (top left, Figure 1). We observed an increasing trend over time (top left Figure
1) and that there were no marked di�erences among the levels of the factors
(irrigation and fertilizer) with respect to the chlorophyll concentration (bottom
left and right panels in Figure 1). With respect to the spectral signature curves
we noted high variability after 750 nm (top right Figure 1). This may be due to a
combination of factors related to the absorption and re�ection of electromagnetic
radiation in the environment, the sensitivity of the detectors, the optical properties
of the materials, and the behavior of the radiation. It is important to consider these
factors when interpreting spectral measurements in the near-infrared region. Next,
we present the results obtained with the modeling approaches given in Sections
2.2 to 2.5.

3.2.1. Linear Mixed Model Based on Basis Functions

Consider the model de�ned in Section 3.1. Initially, we assumed that the covari-
ance structure of the errors is var(ϵi) = σ2. Through the marginal Akaike infor-
mation criterion (mAIC) (Greven & Kneib, 2010), we determined that Kψ(λ) = 10
is the optimal number of B-spline basis functions to describe the functional param-
eter ψ(λ) (Gómez-Escobar, 2017). Using AIC and Bayesian information criterion
(BIC), we established that AR(1) was an appropriate covariance structure for the
errors, and based on these indicators, we determined that a random coe�cients
model (including intercept and slope) was adequate for modeling the chlorophyll
data. Similarly, the model including the functional covariate yielded low values of
AIC and BIC (Table 2).

Table 2: Comparison of the model including and excluding the random slope and the
model with the intercept and random slope with and without the functional
covariate.

Model df AIC BIC

Model with b0i 46 4780.5 4993.3

Model with b0i,b1i 47 4768.1 4990.4

Model with χ(t) 47 4768.1 4990.4

Model without χ(t) 37 4948.0 5124.0

Table 3: Test of the �xed e�ects including the functional covariate.

Source of variation F p-value

Intercept 44218.2 0.00

Fertilizer 1.2 0.30

Irrigation 4.8 0.00

Time 543.5 0.00

Fertilizer:Irrigation 0.8 0.56

Fertilizer:Time 2.7 0.04

Irrigation:Time 6.6 0.00

Fertilizer:Irrigation:Time 0.6 0.77
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Table 3 shows the variance analysis for �xed e�ects of the design model.
The results reveals that the interactions of irrigation, time and fertilization-time
were statistically signi�cant at α = 0.05. The parameters estimations for the
model (12) can be found on Gómez-Escobar (2017) (pages 43 and 44, https:
//hdl.handle.net/10893/13510). We used bootstrapping to obtain con�dence
bands for the functional parameter. Figure 2 shows the bootstrap functional pa-

rameters that meet

∥∥∥∥ψ̂(t)− (ψ̂(t))j∥∥∥∥ ≤ D̂α, where ≤ D̂α is the percentile (1−α)

of the statistics di�j =

∥∥∥∥ψ̂(t)− (ψ̂(t))j∥∥∥∥. The con�dence bands indicate that the
functional parameter was signi�cantly di�erent from zero.
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Figure 2: Con�dence bands for the spectral signature (functional covariate). Case of

the linear mixed model based on basis functions.

3.2.2. Mixed Model Through Functional Principal Components
Analysis (FPCA)

The �rst four eigenfunctions ξ1(t), . . . , ξ4(t) (Figure 3) obtained from the cen-
tered functional data accounted for 99.3% of the variability. The �rst eigenfunction
explained 91.4% of this variability and followed the mean behavior pattern of the
spectral signatures (Figure 1). The remaining three (corresponding to 7.9% of the
variability) were associated with curves with a behavior pattern di�erent from the
global one, particularly for wavelengths greater than 750 nm.

Three models were �tted (Table 4). The �rst one did not include the func-
tional covariate χ(t). In the second case a functional covariate was considered and
the corresponding curves were obtained by using a size 20 B-spline basis func-
tions. In the third model, we also included a functional covariate, but in this
case, the modeling was carried out through an FPCA, avoiding, on the one hand,
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Figure 3: Four eigenfunctions obtained from a functional principal component analysis
based on centered spectral signature curves. ξ1(t) explains 91.4% of the
variability. The remaining (ξ2(t) to ξ4(t)) accumulate 7.9%.

a possible collinearity problem, and reducing, on the other hand, the dimension-
ality of the model. The three models were compared using the AIC and BIC
criteria (Table 4). Based on the results, we concluded that it was appropriate
to include a functional covariate (spectral signature) to explain the relationship
between the chlorophyll concentration and the factors fertilizer and irrigation. It
was also clear that using an FPCA contributed to reducing the dimensionality
of the problem and improving the goodness of �t. Additionally, the bootstrap
con�dence bands for the model based on FPCA (Gómez-Escobar, 2017, page 52,
https://hdl.handle.net/10893/13510) indicated that the functional parameter
was signi�cantly di�erent from zero (or from a constant value), meaning that the
functional covariate must be considered in the model. From Table 5, we concluded
that the interaction between irrigation and time was signi�cant.

Table 4: Comparison among three models of longitudinal chlorophyll data including
and excluding the spectral signature χ(t) as a functional covariate. DF: De-
gree freedom. AIC: Akaike information criterion. BIC: Bayesian information
criterion.

Model DF AIC BIC

1. Without χ(t) 37 4948.2 5123.6

2. With χ(t) 47 4768.1 4990.4

3. With χ(t) by FPCA 41 4751.1 4945.3
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Table 5: Test of the �xed e�ects including the functional covariate.

Source of variation F value p value

Intercept 40590.0 0.00

Fertilizer 1.1 0.35

Irrigation 4.4 0.01

Time 506.7 0.00

Fertilizer:Irrigation 0.9 0.55

Fertilizer:Time 2.1 0.09

Irrigation:Time 6.1 0.00

Fertilizer:Irrigation:Time 0.7 0.72

4. Discussion

We propose an alternative for modeling data from experimental designs in-
cluding LD and a functional covariate. In this context, we include data from the
response variable and a functional covariate recorded under the levels of various
factors. Basis functions and functional principal component analysis were con-
sidered as approaches to include this covariate in the model. In the paper by
Kundu et al. (2016) penalized least squares are used while Staicu et al. (2020)
propose employing penalized maximum likelihood. In our approach, after using
basis functions and functional principal components, the estimation problem be-
comes a classical problem of a linear mixed model with longitudinal data where
the estimation is carried out by restricted maximum likelihood (REML) and gen-
eralized least squares. This approach is computationally more straightforward and
allows statistical inference in a classical sense.

We also model the covariance matrix of the errors (it was not assumed to
be an identity matrix). To assess the statistical signi�cance of the functional
parameter, con�dence bands were obtained using a combination of parametric
bootstrap in mixed models and bootstrap methods for functional data (Febrero-
Bande et al., 2010; Febrero-Bande & Oviedo de la Fuente, 2012). The AIC and
BIC values highlighted the importance of including the random slope in the model,
indicating di�erences among plants regarding linear growth rates of chlorophyll
concentration. In both modeling approaches, smaller values of these statistics
were obtained when the functional covariate was included. We also found that
the covariance structure AR(1) was the most suitable for modeling the covariance
structure of the errors. We propose the FPCA as a method for summarizing
the spectral signature information and facilitate its inclusion in a mixed model.
This approach avoids dealing with high dimensionality and collinearity (Aguilera
et al., 2006). In summary, we give an alternative for modeling experimental designs
including longitudinal data and a functional covariate. We used basis functions and
functional principal components to smooth the functional data. Other alternatives,
such as functional partial least squares, could also be considered.

Remote sensing as a tool for crop characterization is based on the construction
of indices (vegetation indices) derived from the observation of spectral signatures.
Among the most well-known indices are CTR1 and CTR2 by Carter (1994), the
modi�ed Red Edge Ratio simple (mSR705) proposed by Sims & Gamon (2002),
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the indices VOG1, VOG2, and VOG3 proposed by Vogelmann et al. (1993), and
the NDVI705 and mNDVI705 indices proposed by Gitelson & Merzlyak (1994),
among others. Unlike these indices, the proposed model allows for a complete anal-
ysis of the spectral signature. Additionally, an alternative to the method given
by Goldsmith et al. (2012) for modeling the residual variance-covariance matrix is
proposed, which can model dependencies in longitudinal data (Verbeke & Molen-
berghs, 2000). In this case study, it was found that the �rst-order autoregres-
sive dependence structure is the most suitable for the residual variance-covariance
matrix. [

Received: March 2024 � Accepted: September 2024
]
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