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Abstract

Speeding violations are intended as both punitive and educational actions
for drivers who exceed the maximum allowed speed on the roads. From a
tax collection perspective, they have a signi�cant impact on the municipal
budget. Extreme Value Theory has been a valuable tool for modeling the
distribution of speeding violations. Additionally, it is equally important
to model the daily number of speeding occurrences. A powerful method
for jointly modeling both variables is the Compound Poisson Process. By
understanding both speeding behavior and the number of infractions, we can
estimate the expected value of total tax collections. A mixture of Gamma
densities combining with the Generalized Pareto Distribution (GPD) in tail
was proposed to model the distribution of speeding values. The results
indicated signi�cant potential for tax collection.

Key words: Extreme value theory; Speeding violations; Compound Poisson
process; Bayesian approach.

Resumen

Las infracciones por exceso de velocidad están destinadas tanto a ac-
ciones punitivas como educativas para los conductores que superan la veloci-
dad máxima permitida en las carreteras. Desde una perspectiva de recau-
dación �scal, tienen un impacto signi�cativo en el presupuesto municipal.
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La Teoría de Valores Extremos ha sido una herramienta valiosa para mode-
lar la distribución de las infracciones por exceso de velocidad. Además, es
igualmente importante modelar el número diario de estas infracciones. Un
método poderoso para modelar ambas variables conjuntamente es el Proceso
de Poisson Compuesto. Al comprender tanto el comportamiento de los con-
ductores como el número de infracciones, podemos estimar el valor esperado
de la recaudación total de impuestos. Se propuso una mezcla de densidades
Gamma combinada con la Distribución Generalizada de Pareto (GPD, por
sus siglas en inglés) en la cola para modelar la distribución de los valores de
exceso de velocidad. Los resultados indicaron un potencial signi�cativo para
la recaudación �scal.

Palabras clave: Enfoque bayesiano; Infracciones por exceso de velocidad;
Proceso de Poisson compuesto; Teoría de valores extremos.

1. Introduction

The enforcement of tra�c �nes serves as a measure to deter behaviors that
can disrupt the smooth �ow of tra�c, particularly in large cities. As a result of
various discussions aimed at improving road organization, the Brazilian Tra�c
Code (BCT) regulates a comprehensive set of tra�c rules. Speeding regulations,
for instance, limit drivers from traveling at excessively high speeds, reducing the
likelihood of accidents. According to Brazilian government agencies, there were
2,961,624 speeding violations in 2023 alone. In the same year, there were 65,176
tra�c accidents, resulting in a total of 33,743 deaths, �gures comparable to those
of a country at war.

To mitigate this problem, a measure adopted by governments worldwide is to
impose a maximum speed limit on major city roads. However, since many people
do not adhere to this limit despite being aware of it, government agencies install
speed cameras on the busiest streets, recording which cars exceed the limit and
applying �nes to these o�enders. It is understood that if a person is not conscious
of respecting the laws and staying within the limits, a �nancial penalty serves as
an educational measure that works in most situations.

As a consequence of �nes imposed for tra�c violations, public revenue in-
creases. For each tra�c infraction, there is a speci�c �ne amount, which escalates
with the severity of the violation. In the case of speeding, the greater the excess
speed, the higher the �ne to be paid.

In all major Brazilian cities, speed cameras are positioned at various points
along the main avenues. If a vehicle exceeds the permitted speed limit, the camera
captures an image of the car's license plate, generating an infraction code and a
corresponding �ne amount to be paid by the vehicle owner.

In this work, we are interested in analyzing the behavior of two variables: the
daily number of speeding violations and the distribution of these violations. To
jointly analyze these two variables, the Compound Poisson Process will be applied
in conjunction with Extreme Value Theory (EVT). Here, we will model the variable
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N , representing the number of daily infractions, using a Poisson distribution, while
the variable X of the speeding will be �tted using an extreme value model.

In this way, we aim to predict the average number of speeding violations that
may occur per day, assess the probability of encountering a very high speeding
violation, and, by combining these two variables, calculate the potential revenue
that these speed cameras can generate for the municipality.

1.1. Extreme Value Theory

Extreme events are situations or behaviors that are rare but can have a signif-
icant impact on society when they do occur. They are the events that lie close to
the tails of the distribution. Given this context, it is important that we can predict
their occurrences. Studies on extreme values have been ongoing for nearly a cen-
tury, beginning with the work of Fisher & Tippett (1928). von Mises (1954) and
Jenkinson (1955) proposed the Generalized Extreme Value (GEV) distribution for
modeling maxima.

The objective of Extreme Value Theory (EVT) is to analyze observed extreme
values and estimate the probability of the occurrence of these events. Phenomena
in which the probability of an extreme value is relatively high are characterized
by distributions with heavy tails.

The Generalized Pareto Distribution (GPD), introduced by Pickands (1975),
analyzes the distribution of excesses, considering a certain high threshold and has
the following distribution function:

G(x |ξ, η, u) =

 1−
(
1 + ξ (x−u)

η

)−1/ξ

, if ξ ̸= 0

1− exp
{
− (x − u)/η

}
, if ξ = 0.

(1)

where u > 0 , η > 0. The GPD is valid for x > u for ξ ≥ 0 and u < x < (u− η/ξ)
for ξ < 0. The parameters ξ, η and u represent shape, scale and location.

The GPD density is given by

g(x |ξ, η, u) =

 1
η

(
1 + ξ (x−u)

η

)−(1+ξ)/ξ

, if ξ ̸= 0
1
η exp

{
− (x − u)/η

}
, if ξ = 0.

(2)

The parameter ξ measures the weight of the tail, and the higher this value, the
heavier the tail will be, resulting in a greater occurrence of extreme events. Figure
1 illustrates the tail weight for di�erent values of ξ.

According to Coles (2001) and Embrechts et al. (1997), in EVT, it is crucial
to �nd a method for determining the high quantiles above the threshold. If X
follows a Generalized Pareto Distribution (GPD), it is important to know the
probability of an event that is greater than or equal to q , i.e., P(X > q) = 1 − p.
The p-quantile of the GPD distribution is given by:

q(p | ξ, η, u) =

 u +
((1− p)−ξ − 1)η

ξ
, if ξ ̸= 0

u − η(log(1− p)), if ξ = 0.
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Figure 1: GPD density with ξ = −0.3 (dashed), ξ = 0 (full) and ξ = 0.5 (dotted).

1.2. The Compound Poisson Process

In the majority of problems in statistical inference, we consider a sample
X1, . . . , Xn that is independent and identically distributed (iid) with a F dis-
tribution, where the number of events n is �xed. However, in some situations,
the number of occurrences in a given period can be considered random, making
it necessary to estimate its distribution. Since this is a count variable, a natural
approach is to use a Poisson distribution for N . Adelson (1966) is one of the �rst
works to present the Compound Poisson Process.

The Compound Poisson Process is primarily used in insurance risk, where both
the claim amount and the number of claims are random. An example of this is
the work of Zhang et al. (2014). This distribution can also be applied in survival
analysis, as shown by Ata & Ozel (2013). In this work, we will use the Compound
Poisson Process in the context of extreme values, focusing on the daily number of
speeding violations.

1.3. Speeding Violations

The data used in this work originate from measurements of excess speed recorded
by radars in the city of Teresina, PI, Brazil, which is located in the northeastern re-
gion of the country and has a population of nearly 900,000 inhabitants. The radars
whose data were analyzed are positioned on four busy avenues in the city, playing
a vital role in reducing the number of accidents, as many drivers are discouraged
from speeding due to the risk of receiving a �ne.

Regarding the severity of the infraction, it occurs based on the amount of excess
speed recorded; the greater the excess, the higher the �ne to be paid. Based on
this, the Brazilian Tra�c Code (BCT) regulates three levels of severity according
to the percentage of speed over the permitted limit registered during the vehicle's
passage. Mild severity applies to measurements up to 20% above the allowed
limit, high severity is for speeds between 20% and 50% over the limit, and very
high severity is for speeds exceeding 50% of the limit. The increase in severity
results in a higher �ne amount. Tables 1 and 2 show the �nes to be paid according
to the severity level for roads with limits of 40 km/h and 60 km/h, respectively.
Since we are primarily interested in the value of excess speed, we will work with
the variable X representing the speeding value.
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Table 1: Amount of the �ne for speeding on roads with a limit of 40 km/h.

Type % Speeding Fine

Medium until 20% 0 ≤ x ≤ 8 130.16

Serious between 20% and 50% 8 ≤ x ≤ 20 195.23

very Serious higher than 50% x ≥ 20 880.41

Table 2: Amount of the �ne for speeding on roads with a limit of 60 km/h.

Type % Speeding Fine

Medium until 20% 0 ≤ x ≤ 12 130.16

Serious between 20% and 50% 12 ≤ x ≤ 30 195.23

very Serious higher than 50% x ≥ 30 880.41

To calculate the probability of excess speed falling within each of these three
ranges, we will �rst model all excesses x using Extreme Value Theory (EVT). With
this distribution, we can calculate the probability of a vehicle exceeding the speed
limit being in each interval of these tables. Thus, we can calculate the expected
revenue from excess speed by multiplying the probability by the respective �ne
amount.

This work is organized as follows: Section 2 presents the Compound Poisson
Process model applied to extreme values, along with the Bayesian inference proce-
dure using MCMC. Section 3 presents the results of the proposed model as applied
to speeding data. Section 4 summarizes the main conclusions of this work.

2. The Model

Consider that over several years, we have N1, . . . , Nm representing the number
of daily speeding violations at a given measurement point. On a speci�c day j,
let Xj,1, . . . , Xj,Nj

be the vector of speeding violations committed on that day.
Therefore, for all days combined, we will have a vector

X = (X1,1, . . . , X1,N1
, X2,1, . . . , X2,N2

, . . . , Xm,Nm
)

which contains the total speeding violations recorded on all observed days.

The proposed model consists of performing the estimation in two stages. In
the �rst stage, the daily number of excess speed violations N = (N1, . . . , Nm) will
be modeled using the Poisson distribution. In the second stage, the total vector
of speed violations will be modeled by an extreme value distribution. We assume
a separate modeling of these two variables because, given that the value of the
excess has already occurred, the number of daily occurrences does not depend on
the magnitude of the speeding violation. This same idea is applied in insurance
data, where the number of claims is modeled independently of the magnitude of
the claim.
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2.1. The Compound Poisson Process

Initially, we will model the variable N , which refers to the daily number of
infractions. The Poisson distribution is commonly used to model count data.
According to Casella & Berger (2001), one of the basic assumptions upon which
this model is developed is that, for small time intervals, the probability of an
arrival is proportional to the waiting time.

Assuming that Nj ∼ Poisson(λ) and the vector of variables N = (N1, N2, N3,
. . . , Nm) ais independent and identically distributed with a Poisson distribution,
then the distribution of the sum

Yj =

Nj∑
i=1

Xi,j (3)

is known as the Compound Poisson Process, with mean and variance given by

E(Y ) = E(N)E(X) V AR(Y ) = E(N)V ar(X) + (E(X))2V ar(N) (4)

In this work, a Bayesian framework was employed to obtain the posterior dis-
tribution of the parameter λ. Considering the likelihood function for the vector
N = (N1, N2, N3, . . . , Nm), where each Nj ∼ Poisson(λ) and a prior distribution
λ ∼ Gamma(a, b), the posterior distribution can be obtained as follows

π(λ | N = n) ∝
m∏
j=1

(P (Nj = nj))× λa−1 exp(−bλ)

∝
m∏
j=1

(λnj exp(−λ))× λa−1 exp(−bλ)

∝ λ
∑m

j=1 nj exp(−mλ)× λa−1 exp(−bλ)

∝ λ
∑m

j=1 nj+a exp(−(m+ b)λ)

Thus, we see that the parameter λ has a posterior Gamma distribution, given
by

λ | N = n ∼ Gamma(

m∑
j=1

nj + a,m+ b) (5)

Considering that we have no prior information about λ, we will use a non-
informative prior with a = b set close to zero, resulting in a prior with high
variance.

2.2. The MPGDk Model for Speeding

The second modeling step is to propose a distribution for the observed speeding
violations. In Extreme Value Theory, values greater than a given threshold are
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estimated using the Generalized Pareto Distribution (GPD). For values below the
threshold, several approaches can be proposed, one of which is the �nite mixture
of distributions.

Nascimento et al. (2012) proposed a model for extreme data that employs a
non-parametric approximation based on a mixture of Gamma distributions for the
non-tail. The �nite mixture of Gammas, derived from the work of Wiper et al.
(2001), is given by

h(x | µ, η, p) =
k∑

j=1

pjfG(x | µj , ηj),

For the tail of the data, Nascimento et al. (2012) proposes a Generalized Pareto
Distribution (GPD). Thus, the density of the model proposed by Nascimento et al.
(2012), referred to as MGPDk is given by

f(x|θ, p,Ψ) =

{
h(x|µ, η, p), if x ≤ u

(1−H(u|µ, η, p))g(x|Ψ), if x > u
(6)

where g is the density of the GPD distribution with parameters Ψ = (ξ, σ, u),
σ > 0. The GPD density is valid for (x− u) ≤ −σ/ξ and x > u.

The model proposed by Nascimento et al. (2012) has proven to be e�cient in
estimating the entire dataset and correctly identifying the true threshold using a
Markov Chain Monte Carlo (MCMC) procedure.

In the database for this work, as we are dealing with speeding violations, it
may seem intuitive to model all excesses using the Generalized Pareto Distribu-
tion (GPD), taking the speed limit as the threshold. However, this speed limit
is an amount imposed by tra�c authorities and may not necessarily represent an
appropriate threshold according to Extreme Value Theory (EVT). According to
Pickands (1975), excesses converge to the GPD as u → ∞, and based on this, the
GPD modeling is e�ective for a suitably high threshold value. Thus, the model
proposed by Nascimento et al. (2012) allows the threshold to be a free parameter,
with the data modeling itself indicating which portion is better represented by a
mixture of distributions and which part is better modeled by the GPD. Neverthe-
less, for comparison purposes, modeling that considers all excesses derived from
the GPD distribution was also conducted.

After estimating the parameters for the number of daily occurrences N and the
parameters for speeding X considering for this the best model according to the
Table 3, we can estimate the parameters of the Compound Poisson Process Y and
the expected value through Equation (4). Speci�cally, in this work, as the value
of the �ne can increase for each speeding range, we will estimate the probability of
each excess range associated with the amount to be paid within that range. This
will allow us to obtain an estimate of the expected collection value.
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3. Applications to Real Data

To illustrate the applicability of the proposed model, radar data were col-
lected over a period of seven years, from 2015 to 2022, in the city of Teresina, PI,
Brazil. The radars are located on four avenues in the city: Av Alameda Parnaíba
(Alameda), Av Raul Lopes Shopping (Shopping), Av Maranhão (Maranhao) and
Av Barão de Castelo Branco (Barao).

For each radar, an analysis of all excesses was initially performed using the
MGPDk model from Nascimento et al. (2012). To choose the optimal number
k of Gamma mixture components in the MGPDk model, the DIC (Spiegelhalter
et al., 2002) criterion was used.

Table 3 presents the results for all models, including the use of a full GPD
distribution and the MGPDk models with k = 1 and k = 2. For all radar
speeding data, the MGPD2 model was found to be the best �t.

Table 3: DIC �t measures.

Endereço GPD k = 1 k = 2

Alameda 263278.7 247517.2 218385.2

Shopping 267665.1 253704.1 210970.1

Maranhao 151864.8 145195.4 122570.4

Barao 168909.7 160787.6 157461.5

Table 4 presents the estimation of the model parameters. Note that in all
cases, the estimation of the threshold u is found at a low value of excess speed,
indicating that almost all excesses are modeled by the GPD. This was expected
because we are analyzing speeding data, and the very nature of this data makes
the GPD distribution suitable, with only a small portion being modeled by the
Gamma mixture. Although the thresholds are low, considering this small portion
of the data modeled by the Gamma mixture provided an advantage over treating
all excesses as a GPD distribution, as indicated by the DIC in Table 3.

Considering the other parameters of the GPD distribution, we observe that
the radars on Alameda and Barao avenues exhibit greater dispersion, with the
parameter σ being larger than that of the radars on the other two avenues. Re-
garding the weight of the tail, the radar on Avenida Maranhao has observations
with heavier tails, while Alameda and Shopping have lighter tails. For the radar
on Barão Avenue, the estimate of ξ ≈ 0 indicates that the speeding behavior at
this location has an exponential tail.

Figure 2 illustrates the evolution of the estimated high quantiles for each radar.
It is observed that on Shopping Avenue, the 95% and 99% quantiles exhibit the
lowest levels of high excess quantiles, while the radar on Maranhao Avenue shows
the highest values of excess in the high quantiles.
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Figure 2: Quantile plot of the speedings: Estimated quantile (black line), with empir-
ical quantile (red line) and 95% CI (grey area). Top: Alameda (Left) and
Maranhao (Right). Bottom: Shopping (Left) and Barao (Right).

3.1. Estimating Revenue from Speeding Fines

Considering the Compound Poisson Process model, which represents the daily
number of speedings using the Poisson distribution, and the value of each speeding
violation through the MGPDk model, we present the estimation of the expected
value of daily and annual tax collection from speeding �nes. The concept of the
expected value in the Compound Poisson Process will be used to estimate the
expected value of daily collection.

Thus, considering Tables 1 and 2, the expected daily tax collection distribution
for radars with speed limits of 40 km/h and 60 km/h can be calculated as follows:

A40 = λ̂(130.16P (X ≤ 8) + 195.23P (8 ≤ X ≤ 20) + 880.41P (X ≥ 20))

A60 = λ̂(130.16P (X ≤ 12) + 195.23P (12 ≤ X ≤ 30) + 880.41P (X ≥ 30)),

where λ̂ is the estimated value of the number of speeding violations, calculated
according to the posterior mean of λ in (5) for each radar. The probabilities of X
is estimated according to the MGPD2 distributions for each radar.

Table 5 presents the estimated value of daily collections for each radar. It
concludes that the Shopping Avenue radar has the highest daily collection poten-
tial, with a value of 6383.88. Following this, Alameda Avenue has an estimated
collection of 3727.48. Maranhao and Barao avenues have values that are closer to
the 2000.00 range.

Table 5: Expected daily tax collection.

Endereço IC - IC + Median

Alameda 3704.352 3764.832 3727.48

Shopping 6336.130 6427.172 6383.88

Maranhao 2657.423 2728.497 2693.00

Barao 2841.207 2900.338 2875.46
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By multiplying the daily collection by the 365 days of the year, Table 6 presents
the annual collection potential of each radar for �nes. Notably, the Shopping
Avenue radar is the only one to exceed the 2 million mark, with the potential
of 2.32 million. Alameda and Barao surpass the 1 million barrier. Maranhao is
restricted to an annual potential of just under 0.8 million.

Table 6: Expected annual tax collection.

Endereço IC − IC + Median

Alameda 1352088.7 1374163.9 1360530

Shopping 2312687.5 2345918.0 2330116

Maranhao 969959.2 995901.6 982945

Barao 1037040.7 1058623.2 1049543

4. Concluding Remarks

This work was motivated by the need to predict revenue collection from speci�c
radars, utilizing the Compound Poisson Process methodology within the context
of extreme values.

By successfully modeling both the daily number of speed violations and the
distribution of those violations, we were able to estimate the daily and annual
revenue potential for the municipality. This information allows for better planning
of expenses and revenues, ultimately enabling more e�ective organization of public
tra�c policies.

The model proposed in this work can also be applied in other �elds, particularly
in the insurance sector, where there is signi�cant interest in analyzing both the
value of claims and the number of claims occurring within a given period.[
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