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Abstract

Finding closed-form solutions in Bayesian data analysis can be critical
and time-saving, as it eliminates the need for computationally expensive
techniques like MCMC methods. This paper explores Bayesian analysis with
closed-form solutions of the bivariate gamma distribution. We present pre-
dictive density estimations under the Kullback-Leibler divergence, utilizing
three well-known (non-) informative prior distributions, all analyzable in
closed form. We compare these methods through simulation studies and a
real-world example, applying them to hydrological �ood data.

Key words: Bayes estimation; Bivariate gamma distribution; Hydrological
event analysis; Kullback-Leibler divergence; Predictive density estimation.

Resumen

Encontrar soluciones en forma cerrada en el análisis de datos bayesiano
puede ser fundamental y ahorrar tiempo, ya que elimina la necesidad de téc-
nicas computacionalmente costosas como los métodos MCMC. Este artículo
explora el análisis bayesiano con soluciones en forma cerrada para la dis-
tribución gamma bivariada. Presentamos estimaciones de densidad predic-
tiva bajo la divergencia de Kullback-Leibler, utilizando tres distribuciones
a priori bien conocidas (informativas y no informativas), todas analizables
en forma cerrada. Comparamos estos métodos mediante estudios de simu-
lación y un ejemplo del mundo real, aplicándolos a datos hidrológicos de
inundaciones.

Palabras clave: Análisis de eventos hidrológicos; Divergencia de Kullback-
Leibler; Distribución gamma bivariada; Estimación bayesiana; Estimación
de densidad predictiva.
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1. Introduction

The univariate gamma distribution is frequently employed to model time-to-
events and �nds extensive applications across various �elds. Research into the
bivariate gamma distribution can be traced back to Kibble (1941) and Moran
(1969). In recent years, bivariate gamma distributions have garnered attention,
particularly in studies of hydrological events such as �oods and storms. However,
their application extends beyond hydrological events analysis; for instance, (Chate-
lain et al., 2007) explore their use in image registration and change detection, while
(Furman & Landsman, 2005) examine their applicability in insurance.

While the gamma distribution is often suitable for modeling positively skewed
distributions in phenomena like rainfall and �oods (e.g., Husak et al., 2007), an-
alyzing more complex data requires bivariate gamma models. Flood events, for
example, are characterized by factors such as peak, volume, and duration, which
are mutually correlated. Hence, multivariate, including bivariate, gamma distribu-
tions are essential for modeling such events (see, e.g., Yue, 2001 Nadarajah, 2009,
among others).

Note that there are multiple de�nitions for the bivariate gamma distribution,
and the versions used in the literature sometimes de�ne it di�erently. See Nadara-
jah & Gupta (2006) and references there for di�erent versions of bivariate gamma
distributions.

Let x = (x1, x2)
′. Consider the following probability density function (pdf)

f(x; α1, α2, β1, β2) =
xα1−1
1 (x2 − x1)

α2−1 e
−x1
β1

+
x1−x2

β2

βα1
1 βα2

2 Γ(α1) Γ(α2)
,

0 < x1 < x2 <∞, α1 > 0, α2 > 0, β1 > 0, β2 > 0 , (1)

known as the bivariate gamma distribution BG(α1, α2, β1, β2). The joint distribu-
tion of x = (x1, x2)

′ can be viewed as a joint distribution of (u1, u1 + u2), where
u1 and u2 are two independent gamma distributions G(αi, βi) for i = 1, 2, with
the mean of αiβi respectively. It is easy to see

E(x) = (α1β1, α1β1 + α2β2)
′ ,

Cov(x) =

(
α1β

2
1 α1β

2
1

α1β
2
1 α1β

2
1 + α2β

2
2

)
,

and therefore the correlation is ρ =
(

α1β
2
1

α1β2
1+α2β2

2

)1/2

. This is a generalization of the

model introduced by Mathal & Moschopoulos (1992) when β1 = β2 = β, known
as the 3-parameter bivariate gamma, with marginal distributions of G(α1, β), and
G(α1 + α2, β) respectively, with ρ = ( α1

α1+α2
)1/2.

The log-likelihood function based on x1, . . . ,xn, from (1) is given by

ℓ = (α1 − 1)

n∑
i=1

log (x1i) + (α2 − 1)

n∑
i=1

log (x2i − x1i)−
t2
β2

− t1
β1

− α2n log (β2)− α1n log (β1)− n log (Γ (α1))− n log (Γ (α2)) , (2)
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where

t1 = t1(x1, . . . ,xn) =

n∑
i=1

x1i, t2 = t2(x1, . . . ,xn) =

n∑
i=1

(x2i − x1i) . (3)

Solving ∂ℓ/∂αi and ∂ℓ/∂βi for i = 1, 2 yields the maximum likelihood estimator
(MLE) of the parameters αi and βi numerically as follows

∂ℓ/∂α1 =

n∑
i=1

log (x1i)− n (ψ (α1) + log (β1)) ,

∂ℓ/∂α2 =

n∑
i=1

log (x2i − x1i)− n (ψ (α2) + log (β2)) ,

∂ℓ/∂β1 =
1

β2
1

n∑
i=1

x1i − n
α1

β1
,

∂ℓ/∂β2 =
1

β2
1

n∑
i=1

(x2i − x1i)− n
α2

β2
,

where ψ(·), known as the diagamma function, is the derivative of the gamma

function, given by Γ′(·)
Γ(·) .

Note that the once β1 = β2 = β, the corresponding the log-likelihood function,
ℓ0, is given as

ℓ0 = (α1 − 1)

n∑
i=1

log (x1i)−
∑n

i=1 x2i
β

+ (α2 − 1)

n∑
i=1

log (x2i − x1i)

− n ((α1 + α2) log(β) + log (Γ (α1)) + log (Γ (α2))) .

The MLE of parameters αi for i = 1, 2 and β can be obtained numerically from

∂ℓ0/∂α1 =

n∑
i=1

log (x1i)− n (ψ (α1) + log (β)) , (4)

∂ℓ0/∂α2 =

n∑
i=1

log (x2i − x1i)− n (ψ (α2) + log (β)) , (5)

∂ℓ0/∂β =
1

β2

n∑
i=1

x2i − n
α1 + α2

β1
, (6)

Zhao et al. (2022) showed that the MLEs α̂iml, for i = 1, 2 and β̂ml obtained
from Equations (4), (5), and (6) are strongly consistent for αi and β > 0, except
for α2 = 2, and converge in distribution to a normal distribution as the sample
size increases to in�nity.

Another essential aspect of statistical analysis is predicting future observations.
Instead of making point-by-point or interval predictions, it is common to estimate
the density of future random variables. In classical inference, predictions are often
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obtained using plug-in density estimation, where parameter estimates (e.g., MLE)
are substituted directly into the density function. In contrast, posterior predictive
density estimation is a key feature of Bayesian inference, leveraging the posterior
distribution of parameters to account for parameter uncertainty. For more infor-
mation on the application of plug-in density estimation, see Ghosh et al. (2008)
and Marchand & Sadeghkhani (2018) for examples. Sadeghkhani & Ahmed (2021)
elaborated on these techniques in the context of a gamma distribution with applica-
tions in sports data. Undoubtedly, there are numerous applications for estimating
future bivariate gamma distributions. For example, we may be interested in esti-
mating the joint distribution of �ood peak, duration, or volume. Understanding
and estimating the density of future events enriches our comprehension of �ood
event behavior.

To our knowledge, there have been limited studies on Bayesian predictive den-
sity estimation in bivariate gamma distributions, and none of them have pursued
closed-form solutions for posterior and predictive distributions. In this paper, we
present a closed-form Bayesian statistical inference for the unknown parameters
of the bivariate gamma model and closed-form posterior predictive inference, em-
phasizing cost-e�ective and e�cient calculations, with applications in the analysis
of �ood data.

The rest of this paper is organized as follows. In Section 2 we introduce three
well-known priors raging from non-informative to informative, and we �nd the
closed-form posterior distributions along with the corresponding Bayes estimators.
All closed-form posterior predictive density estimations related to the prior dis-
tributions introduced in Section 2 are presented in Section 3. Section 4 compares
the proposed Bayes and posterior predictive density estimators with a simulations
along with a famous hydrological events dataset. Finally, we make some concluding
remarks in Section 5.

2. Three Well-Known Priors

In this section, we explore three widely recognized prior distributions, both
informative and non-informative, for Model (1). These prior distributions facilitate
the derivation of closed-form posterior distributions, aiding in the analysis of the
model.

2.1. Non-Informative Prior

Assuming αi is known, the non-informative prior π(βi) = 1/βi, for i = 1, 2,
and π1(β1, β2) = π(β1)π(β2), the following lemma provides the joint posterior
distribution in Model (1).

Lemma 1. Let x1, . . . ,xn be an IID random sample of size n from BG(α1, α2, β1, β2)
in (1), where x = (x1, x2)

′, and π1(β1, β2) =
1

β1β2
. Then, the joint distribution of
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(β1, β2) | x1, . . . ,xn, provided that αi > 1 for i = 1, 2, is given by

π1((β1, β2) | x1, . . . ,xn) =
β
−(α1+1)
1 β

−(α2+1)
2 tα1

1 (t2 − t1)
α2e

t1−t2
β2

− t1
β1

Γ(α1)Γ(α2)
, (7)

where t1, and t2 is given in (3).

Proof . From the Bayes' formula, we have

π1(β1, β2 | x1, . . . ,xn) =

∏n
i=1 f(xi; α1, α2, β1, β2)π1(β1, β2)

f(x1, . . . ,xn)
, (8)

where the normalization constant is given by

f(x1, . . . ,xn) =

∫ ∞

0

∫ ∞

0

β
−(α1+1)
1 β

−(α2+1)
2 kα1−1

1 kα2−1
2 e

t1−t2
β2

− t1
β1

Γ(α1)Γ(α2)
dβ2 dβ1 , (9)

= kα1−1
1 kα2−1

2 t−α1
1 (t2 − t1)

−α2 , (10)

where

k1 = k1(x1, . . . ,xn) =

n∏
i=1

x1i , k2 = k2(x1, . . . ,xn) =

n∏
i=1

(x2i − x1i) . (11)

Replacing Equation (9) into (8) and simplifying completes the proof.

Corollary 1. Under the assumptions of Lemma 1, the marginal posterior distri-
butions along with their expectations are given as

π1(β1 | x1, . . . ,xn) =
tα1
1 e−

t1
β1

βα1+1
1 Γ(α1)

,

π1(β2 | x1, . . . ,xn) =
(t2 − t1)

α2e−
t2−t1

β2

βα2+1
2 Γ(α2)

,

E(β1 | x1, . . . ,xn) =
t1

α1 − 1
, α1 > 1 , (12)

E(β2 | x1, . . . ,xn) =
t2 − t1
α2 − 1

, α2 > 1 . (13)

Note that the the expectations obtained in (12) and (13) are the Bayes estima-

tor β̂iB1(x1, . . . ,xn) of unknown parameter βi under the squared error loss (SEL)
function

L(β̂iB1(x1, . . . ,xn), βi) = (β̂iB1(x1, . . . ,xn)− βi)
2 ,

and minimizes the risk function E (L(β̂iB1(x1, . . . ,xn), βi) | x1, . . . ,xn). For more
information. See, eg., Lehmann & Casella (2006).
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2.2. Informative Inverse Gamma Prior

In this setup it is assumed that α1 and α2 are known, and two independent
β1 and β2 follow from the inverse gamma distribution IG(ai, bi) with π(βi) =
e−bi/βi (bi/βi)

ai

βi Γ(ai)
, for i = 1, 2, where the hyperparameters ai > 0 (shape) and bi > 0

(scale) are known.

Lemma 2 and Corollary 2 show the joint posterior distribution as well as the
marginal distributions with the associated conditional expectations, i.e., the Bayes
estimators of the unknown parameter βi under SEL.

Lemma 2. Let x1, . . . ,xn be an IID random sample of size n, from BG(α1, α2, β1, β2)
in (1), where x = (x1, x2)

′, and π2(β1, β2) = π(β1)π(β2), with βi ∼ IG(ai, bi).
Then the joint distribution of (β1, β2) | x1, . . . ,xn for i = 1, 2, and αi > 0 along
with other hyper-parameters are known, are given by

π2((β1, β2) | x1, . . . ,xn) =
(b1 + t1)

a1+α1(b2 − t1 + t2)
a2+α2e−

b1+t1
β1

− b2−t1+t2
β2

βa1+α1+1
1 βa2+α2+1

2 Γ(a1 + α1)Γ(a2 + α2)
,

(14)
where t1, and t2 are de�ned in (3).

Proof . The proof is analogous to Lemma 1, and hence it is omitted.

Corollary 2. Under the assumptions of Lemma 2, the marginal posterior distri-
butions along with their expectations are given as

π2(β1 | x1, . . . ,xn) =
( b1+t1

β1
)α1+a1e−

b1+t1
β1

β1 Γ(α1 + a1)
,

π2(β2 | x1, . . . ,xn) =
( b2+t2−t1

β2
)
α2+a2

e−
b2+t2−t1

β2

β2 Γ(α2 + a2)
,

E(β1 | x1, . . . ,xn) =
b1 + t1

α1 + a1 − 1
, α1 + a1 > 1 , (15)

E(β2 | x1, . . . ,xn) =
b2 + t2 − t1
α2 + a2 − 1

, α2 + a2 > 1 . (16)

The Equations in (12) and (13) are also the Bayes estimators β̂iB2(x) of un-
known parameters βi for i = 1, 2, under the SEL function.

2.3. Informative Gamma Prior

Suppose the parameter αi is known, and β1 and β2 are independently from

Gam(ai, bi), with π(βi) =
β
ai−1

i e
− βi

bi

b
ai
i Γ(ai)

, for i = 1, 2. The following lemma and corol-

lary provide the joint posterior distribution as well as the marginal distributions
of β1 and β2 given x.
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Lemma 3. Let x1, . . . ,xn be an IID random sample of size n, from BG(α1, α2, β1, β2)
in (1), where x = (x1, x2)

′, and π3(β1, β2) = π(β1)π(β2), with βi ∼ Gam(ai, bi),
then the joint distribution of (β1, β2) | x1, . . . ,xn, for i = 1, 2, assuming that αi

and all other hyper-parameters are known, are as follow

π3((β1, β2) | x1, . . . , xn) =

βa1−α1−1
1 βa2−α2−1

2 (b1t1)
α1−a1

2 (b2(t2 − t1))
α2−a2

2 e−
β1
b1

− β2
b2

− t1
β1

+
t1−t2

β2

4Kα1−a1

(
2
√

t1
b1

)
Kα2−a2

(
2
√

t2−t1
b2

) , (17)

where kc(z) is known as the modi�ed Bessel function of the second kind with order
c, and is given as

1

2c

√
πzc

Γ(c+ 1
2 )

∫ ∞

r

(r2 − 1)c−
1
2 e−zr dr.

Proof . Applying Bayes' theorem allows us to calculate the normalization constant
under the assumptions of Lemma 3, which is given by∫ ∞

0

∫ ∞

0

tα1−1
1 βa1−α1−1

1 βa2−α2−1
2 (t2 − t1)

α2−1e−
β1
b1

− β2
b2

− t1
β1

+
t1−t2

β2

ba1
1 b

a2
2 Γ(a1)Γ(α1)Γ(a2)Γ(α2)

dβ1 dβ2. (18)

After doing some algebra, one can �nally obtain Equation (18) as

4b−a1
1 b−a2

2 k1α1−1k2α2−1(b1t1)
a1−α1

2 Kα1−a1

(
2
√

t1
b1

)
(b2(t2 − t1))

a2−α2
2 Kα2−a2

(
2
√

t2−t1
b2

)
Γ(a1)Γ(α1)Γ(a2)Γ(α2)

,

where k1, and k2 are given in (11). This completes the proof.

Corollary 3. Under the assumptions of Lemma 3, the marginal posterior distri-
butions and the corresponding expectations are given by

π3(β1 | x1, . . . ,xn) =
βa1−α1−1
1 e−

β1
b1

− t1
β1 (b1t1)

α1−a1
2

2Kα1−a1

(
2
√

t1
b1

) , (19)

π3(β2 | x1, . . . ,xn) =
βa2−α2−1
2 e−

t2−t1
β2

− β2
b2 (b2(t2 − t1))

α2−a2
2

2Kα2−a2

(
2
√

t2−t1
b2

) , (20)

E(β1 | x1, . . . ,xn) =

√
b1t1Ka1−α1+1

(
2
√

t1
b1

)
Kα1−a1

(
2
√

x1

b1

) , (21)

E(β2 | x1, . . . ,xn) =

√
b2(t2 − t1)Ka2−α2+1

(
2
√

t2−t1
b2

)
Kα2−a2

(
2
√

t2−t1
b2

) . (22)

The Equations in (12) and (13) are also the Bayes estimator β̂iB3(x1, . . . ,xn)
of unknown parameter βi under the SEL function.
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Figure 1, illustrates the 3D plot as well the corresponding contour plot of the
joint posterior distribution (17) in Lemma 3 with (α1, α2, a1, a2, b1, b2, t1, t2) =
(3, 4, 5, 5, 4, 1, 3, 7).

x1

x2

x1

x2

Figure 1: The 3D plot (left), and the contour plot (right) of the joint posterior dis-
tribution π3(β1, β2 | x) as in Lemma 3, for (α1, α2, a1, a2, b1, b2, t1, t2) =
(3, 4, 5, 5, 4, 1, 3, 7).

3. Closed-Form Predictive Density Estimation

Suppose we are interested in estimating the distribution of future random vari-
able y = (y1, y2)

′, based on observable x1, . . . ,xn with xi = (x1i, x2i)
′ in Model

(1). The posterior predictive distribution of y given x1, . . . ,xn, is given as (Cor-
cuera & Giummolè, 1999)

ĝ(y;x1, . . . ,xn) =

∫ ∞

0

∫ ∞

0

g(y;α1, α2, β1, β2)π(β1, β2 | x1, . . . ,xn) dβ1 dβ2 ,

(23)
where y ∼ g, and αi (i = 1, 2) is known. Here, we consider three scenarios for the
posterior distribution π(β1, β2 | x1, . . . ,xn) in Equation (23) corresponding to the
(non-)informative priors as introduced in introduced in Section 2.

To assess the proximity of the estimator ĝ(y;x1, . . . ,xn) in estimating the
actual distribution, we apply the Kullback Leibler (KL) divergence (loss function),
given as

KL(ĝ, g) =

∫ ∞

0

∫ y2

0

g(y;α1, α2, β1, β2) log
g(y;α1, α2, β1, β2)

ĝ(y;x1, . . . ,xn)
dy1 dy2 . (24)

Suppose πj(β1, β2) for j = 1, 2, 3 is the prior distribution given in Subsection
2.1, 2.2, and 2.3, respectively. Theorem 1 �nds a closed�form posterior predictive
density estimator for future y in Model (1), under each prior distribution.
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Theorem 1. The posterior predictive density estimator ĝj(y;x1, . . . ,xn) (j =
1, 2, 3) of future y = (y1, y2)

′ ∼ BG(α1, α2, β1, β2), under the KL divergence (loss
function), based on observing x1, . . . ,xn IID from BG(α1, α2, β1, β2), and postu-
lated prior πj(β1, β2), provided that αi, for i = 1, 2 and other hyperparameters are
known, are as follows

1. If π1(β1, β2) = π(β1)π(β2), with π(βi) = 1/βi, for i = 1, 2, then

ĝ1(y;x1, . . . ,xn) =
Γ(2α1)Γ(2α2)l

α1−1
1 yα1−1(l2 − l1)

α2

Γ(α1)2Γ(α2)2
(l1 + y1)

−2α1 (y2 − y1)
α2−1

×(−l1 + l2 − y1 + y2)
−2α2 .

(25)

2. if π2(β1, β2) = π(β1)π(β2), with βi ∼ IG(ai, bi), then

ĝ2(y;x1, . . . ,xn) =
yα1−1
1 β−a1−2α1−1

1 β−a2−2α2−1
2 (y2 − y1)

α2−1

Γ(α1)Γ(α2)Γ(a1 + α1)Γ(a2 + α2)

×
(

1

b1 + t1

)−a1−α1
(

1

b2 − t1 + t2

)−a2−α2

e−
b1+t1+y1

β1
− b2−t1+t2−y1+y2

β2 .

(26)

3. if π3(β1, β2) = π(β1)π(β2), with βi ∼ Gam(ai, bi), then

ĝ3(y;x1, . . . ,xn) =
y
α1−1
1 β

a1−2α1−1
1 β

a2−2α2−1
2 (y2 − y1)

α2−1(b1t1)
α1−a1

2 (b2(t2 − t1))
α2−a2

2

4Γ(α1)Γ(α2)Kα1−a1

(
2

√
t1
b1

)
Kα2−a2

(
2

√
t2−t1

b2

)

× e
− β1

b1
− β2

b2
+

t1−t2+y1−y2
β2

− t1+y1
β1 . (27)

Note that y2 > y1, and t1, and t2 are given in (3).

Proof . By substituting the posterior distributions presented in the Lemmas 1, 2,
and 3 in (23), and after doing some calculations, the posterior predictive density
estimators in (25), (26), and (27) can be obtained, respectively.

4. Simulation and Real Data Example

In this section, we investigate the correlation coe�cient, ML and Bayesian
estimates of the parameters of Model (1) by simulating the bivariate gamma dis-
tribution. Additionally, we explore predictive density estimates for future bivariate
random variables. To illustrate the practical application of our proposed estima-
tors, we analyze a real dataset concerning hydrological events.

4.1. Simulation Study

In this simulation, we generated data from the bivariate gamma distribution
BG(α1 = 3, α2 = 5, β1 = 2, β2 = 1) with a correlation of 0.86. The simulation
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was repeated N = 1000 times for di�erent sample sizes n = 25, 50, 100, 250. In
the Maximum Likelihood (ML) method, all parameters α1, α2, β1, β2 were treated
as unknown and estimated. In contrast, the Bayesian method assumed α1 and
α2 were known, and only β1 and β2 were estimated using non-informative pri-
ors. The Mean Squared Errors (MSEs) are presented in parentheses next to each
corresponding estimator.

As shown in Table 1, the Bayesian estimators demonstrate slightly better per-
formance compared to the ML estimators for smaller sample sizes (n = 25, 50),
as evidenced by the lower MSE values. This improvement is consistent with the
Bayesian approach's ability to incorporate prior information and reduce variability
in parameter estimation. As the sample size increases (n = 100, 250), the Bayesian
and ML estimators converge, with both showing increasingly smaller MSE values.
This convergence indicates that, with larger sample sizes, both methods provide
similar accuracy in estimating the parameters β1 and β2, re�ecting the consistency
and e�ciency of these estimators as n becomes large.

Table 1: Simulation results for di�erent sample sizes: ML and Bayes estimators.

Sample Size α̂1 (ML) α̂2 (ML) β̂1 (ML) β̂1 (Bayes) β̂2 (ML) β̂2 (Bayes)

25 3.390 (1.172) 5.678 (3.860) 1.915 (0.332) 1.925 (0.320) 0.961 (0.084) 0.972 (0.078)

50 3.185 (0.413) 5.287 (1.241) 1.959 (0.162) 1.964 (0.157) 0.984 (0.042) 0.989 (0.040)

100 3.048 (0.160) 5.139 (0.514) 2.002 (0.080) 2.005 (0.078) 0.989 (0.020) 0.991 (0.019)

250 3.026 (0.069) 5.081 (0.202) 1.996 (0.035) 1.997 (0.034) 0.991 (0.008) 0.992 (0.008)

In addition, Table 2 provides the plug-in and posterior predictive density
estimators (with respect to noninformative prior) for the simulated data with
n = 250. The plug-in density estimator is obtained by plugging in the MLE
(or other Bayesian estimators) of the parameters into Model (1), resulting in

f̂(y; α̂1, α̂2, β̂1, β̂2), where α̂i and β̂i can be referenced from Table 1.

Table 2: Plug-in and posterior predictive density estimators based on simulation.

Type Predictive Distribution

Plug-in f̂ 0.001 y2.1641 e−1.162 (y2−y1)−0.507y1 (y2 − y1)4.848

Posterior predictive density ĝ1
5.230995309040582×10441y2

1(y1−y2)
4

(y1+143.03)78(y2−y1+133.24)130

4.2. Real Example

Table 5 reports the �ood data available from the HYDAT CD (Canada, 1998).
Q represents the �ood peaks (in m3/s), and R is the �ood volume ratio (in day
m3/s) for the Madawaska basin located in Québec, Canada, covering the period
from 1919 to 1995. The corresponding scatter plot is presented in Figure 2.
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Figure 2: Scatter plot of �ood data.

The mean vector and the covariance matrix for the data are (118.227, 254.74)′

and (
1162.68 1956.66

1956.66 5756.69

)
,

respectively. The correlation matrix(
1 0.756

0.756 1

)
,

con�rms a fairly strong positive correlation between R and Q.

Zhao et al. (2022) proposed a 3-parameter bivariate gamma model (i.e., Model
(1) with β1 = β2 = β) for the �ood data. However, based on the AIC values, it
is evident that our proposed four-parameter model BG(α1, α2, β1, β2) is a better
�t for this data. The AIC for the three-parameter model was 1596.868, while the
AIC for our four-parameter model was 1587.561.

This signi�cant di�erence in AIC indicates that the additional �exibility pro-
vided by allowing β1 and β2 to vary independently in the four-parameter model is
justi�ed by the data. The four-parameter model better captures the relationship
between R and Q, leading to an improved �t despite the increased complexity.
The lower AIC shows that this model balances model complexity and goodness-
of-�t more e�ectively, con�rming that the extra parameter provides a meaningful
improvement.

The ML and Bayes estimators (based on noninformative prior) for the param-
eters are presented in Table 3.

Table 3: ML and Bayes estimators for the �ood data.

Model α̂1 α̂2 β̂1 β̂2

Four-Parameter (ML) 12.291 6.481 9.619 21.064

Four-Parameter (Bayes) * * 9.506 20.910

Three-Parameter (ML) 7.898 8.725 15.325 -

Three-Parameter (Bayes) * * 15.201 -

Additionally, Table 4 displays the plug-in and posterior predictive density esti-
mators for y = (y1, y2)

′, where y1 denotes the future random variable representing
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the ratio of �ood volume to duration (R), and y2 represents the future random
variable �ood peak (Q). Di�erent priors, as per Theorem 1, are considered, and
the hyperparameters for Bayes 2 and 3 are set accordingly.

Table 4: Plug-in and posterior predictive density estimators for the �ood data.

Type Predictive Distribution

Plug-in f̂ 2.1496× 10−28y6.8971 e0.0652(y1−y2)−0.0652y1 (y2 − y1)7.725

Posterior predictive density ĝ1
1.1413×10589y6.8976

1 (y2−y1)
7.725

(y2+2331.22)182.849

5. Conclusions

In summary, we introduced a closed-form Bayesian inference approach for a
bivariate gamma model, speci�cally designed to analyze the joint distribution of
two positively correlated random variables with gamma marginals. We explored
various predictive density estimation techniques, including plug-in and posterior
predictive methods, and applied these techniques to model hydrological �ood data
using �ood peaks (Q) and the �ood volume ratio (R). These methods allowed us
to estimate the density of the future joint distribution of these variables e�ectively.

The main contributions of this work include providing a Bayesian framework for
the bivariate gamma model that incorporates closed-form posterior distributions,
which can facilitate computational e�ciency and analytical tractability. Addi-
tionally, the study demonstrated the advantages of the Bayesian approach in pre-
dictive density estimation, where posterior predictive distributions o�er a more
comprehensive way to account for parameter uncertainty compared to traditional
methods.

Moreover, we proposed prior distributions for two parameters, β1 and β2, while
assuming that α1 and α2 were known. The choice to focus on β1 and β2 was
driven by the challenge of estimating all four parameters in the bivariate gamma
model simultaneously. In practice, estimating all four parameters would require
substantial data or additional prior information, especially in cases where the
marginals are highly correlated. Moreover, while the MLE approach can estimate
all four parameters, it does not provide a way to incorporate uncertainty into
predictions as the Bayesian method does through posterior predictive distributions.
This trade-o� between parameter estimation and uncertainty quanti�cation is a
critical aspect of choosing the appropriate method, and further research could
explore alternative ways to handle these challenges within the Bayesian framework.

Looking ahead, future work could extend this approach by exploring multi-
variate gamma distributions that generalize the bivariate case, allowing for the
modeling of multiple correlated gamma-distributed variables simultaneously. This
extension would be valuable in applications where more than two correlated com-
ponents are present, such as multivariate �ood analysis across multiple locations.
Additionally, the development of e�cient computational methods for parameter
estimation in such multivariate settings, possibly through hierarchical Bayesian
models, would be a promising avenue for further research.
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Table 5: Flood data of the Madawaska basin in Québec, Canada from 1919 to 1995:
R represents the �ood volume ratio (in day m3/s), and Q denotes the �ood
peaks (in m3/s).

R Q R Q R Q

120.57 292 74.336 208 72.528 289

63.635 146 70.436 183 128.461 279

103.028 260 99.617 279 80.067 137

135.93 311 107.35 309 110.633 261

87.267 162 93.931 202 112.743 306

214.885 405 113.81 183 131.77 219

121.808 210 84.193 200 125.14 289

129.528 239 171.5 294 185.191 371

123.339 245 69.817 189 110.731 229

175.188 240 172.177 331 98.742 206

106.426 157 120.163 184 92.917 275

130.815 286 154.686 230 135.197 233

183.887 351 77.882 156 95.65 168

170.667 343 114.536 214 153.448 303

136.319 300 67.617 143 107.592 232

79.216 182 54.197 121 92.253 186

85.825 173 117.459 292 168.239 416

113.684 246 127.073 248 143.877 297

158.333 371 151.2 442 96.226 260

139.744 236 175.954 334 102.956 310

107.844 383 74.368 151 120.562 197

154.064 283 139.619 390 154.67 405

81.772 176 96.179 181 113. 233

96.711 187 94.119 216 86.256 196

182.397 424 113.254 255 96.895 257

115.383 232 134.015 286
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