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Abstract

The study investigated the dynamics of �commencement-to-event-time�
behaviour in life insurance portfolios, employing Maximum Likelihood Esti-
mation (MLE) and Maximum A Posteriori (MAP) with the Markov Chain
Monte Carlo (MCMC) simulation technique. Focusing on the Lognormal and
Exponential distributions for their e�cacy in modelling time-to-occurrence
data, the research simulated 120 observations from both distributions and
estimated parameters using the �rst 80 ordered samples. Remarkably, esti-
mates for lognormal parameters obtained through MLE and MAP_MCMC
were highly similar, with errors well within 10% of the actual values, high-
lighting the accuracy of both methods. The study also explored the robust-
ness of the MAP_MCMC technique to various prior distributions, demon-
strating its e�ectiveness across di�erent priors, including Exponential, Nor-
mal, Gamma, Pareto, and Weibull prior distributions. In the case of the ex-
ponential distribution, both MLE and MAP_MCMC techniques performed
exceptionally well, providing estimates within 5% of the true value, with
MAP _MCMC exhibiting remarkable precision, just 1% o� the true value.
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Real-life data �tted to the Gamma distribution showed that MLE and MAP
_MCMCmethods, using censored data, closely approximated benchmark es-
timates from the method of moments. The MAP_MCMC approach slightly
outperformed the MLE.

Key words: Bayesian Inference; Maximum Likelihood Estimation; Maxi-
mum a-Posteriori; Markov Chain Monte Carlo Simulation.

Resumen

El estudio investigó la dinámica del comportamiento �inicio-aconteci-
miento-tiempo� en las carteras de seguros de vida, empleando la Estimación
de Máxima Verosimilitud (MLE) y la Máxima A Posteriori (MAP) con la
técnica de simulación Markov Chain Monte Carlo (MCMC). Centrándose en
las distribuciones Lognormal y Exponencial por su e�cacia en la modelización
de datos de tiempo de ocurrencia, la investigación simuló 120 observaciones
de ambas distribuciones y estimó los parámetros utilizando las 80 primeras
muestras ordenadas. Sorprendentemente, las estimaciones de los parámetros
lognormales obtenidas mediante MLE y MAP_MCMC fueron muy similares,
con errores muy inferiores al 10% de los valores reales, lo que pone de re-
lieve la precisión de ambos métodos. El estudio también exploró la robustez
de la técnica MAP_MCMC a varias distribuciones a priori, demostrando
su e�cacia a través de diferentes distribuciones a priori, incluyendo Expo-
nencial, Normal, Gamma, Pareto y Weibull. En el caso de la distribución
exponencial, tanto las técnicas MLE como MAP_MCMC obtuvieron resul-
tados excepcionales, proporcionando estimaciones dentro del 5% del valor
real, con MAP_MCMC mostrando una precisión notable, sólo un 1% por
debajo del valor real. Los datos reales ajustados a la distribución Gamma
mostraron que los métodos MLE y MAP_MCMC, utilizando datos censura-
dos, se aproximaron mucho a las estimaciones de referencia del método de
los momentos. El método MAP_MCMC superó ligeramente al MLE.

Palabras clave: Estimación de máxima verosimilitud; Inferencia bayesiana;
Maximum a posteriori; Simulación Monte Carlo con cadenas de Markov.

1. Introduction

Life is inherently uncertain, with unforeseen events like accidents, illnesses,
or property damage posing signi�cant �nancial challenges. Insurance serves as
a collective risk-pooling mechanism, where individuals and businesses contribute
to a shared fund to provide �nancial protection against losses (Cronk & Aktipis,
2021). This collective approach alleviates the �nancial burden on individuals and
businesses, preventing potential �nancial ruin and highlighting the pivotal role of
insurance in contemporary society (Liedtke, 2007; van der Heide, 2023).

According to Zakaria et al. (2016), life insurance primarily aims to mitigate the
�nancial risks associated with the death or disability of an insured person, with
secondary considerations for potential investment returns. Under an insurance
contract, the insured pays a predetermined premium, and in the event of death
or disability, the insurer compensates the designated bene�ciary with a prede�ned
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claim amount. In this context, a claim represents compensation for the risk of
loss (Ekberg, 2015; Kochenburger & Salve, 2023; Yohandoko et al., 2023), and
these claims are submitted either at the time of maturity or in the event of death
or disability. It is worth studying the time between the commencement of the
life insurance policy and the time of the occurrence of the event (commencement-
to-event-time). It stands as a vital �nancial imperative for insurance companies
to ful�l their obligation to their clients as well as avoid institutional bankruptcy
(Riaman et al., 2023). Therefore, understanding the �commencement-to-event-
time�, frequency, severity, and complexity of claims is essential for insurance pricing
and forecasting future claims (Omari et al., 2018).

The characteristics of claims, including �commencement-to-event-time�, size of
claim, frequency of claim, and portfolio totals, were studied using various distri-
bution models. Notably, Bahnemann (2015) found that discrete standard distri-
butions are suitable for modelling claims' occurrences within a portfolio, while
Omari et al. (2018) suggest the lognormal distribution for claims severity. Even
though the Pareto distribution has seen extensive usage in claims data modelling
(Clemente et al., 2023; Feng, 2023; Gilenko & Mironova, 2017), Moumeesri et al.
(2020) profess heavy-tailed distributions like Gamma and Lognormal to be more
accurate in modelling claim severity.

Earlier scholars, such as Kaplan & Meier (1958), Cox (1972), and Kleinbaum
& Klein (1996), applied survival analysis techniques, including Kaplan-Meier es-
timates and the Cox proportional hazards model, in an attempt to �t the time
between the occurrences of insurance claims. In the quest to �nd insightful ap-
proaches towards the estimation of claim-time patterns, other scholarly works (Ra-
mani et al., 2023; Zhou, 2024; Abdulkadir & Fernando, 2024) explored machine
learning methods together with other notable distributions such as the Marshall-
Olkin extended Weibull distribution. The survival analysis techniques and the
machine learning approaches prove distinct in their strengths and limitations in
estimating di�erent claim types (Arik et al., 2023).

In the recent works of Zaçaj et al. (2022), bootstrap methods were used to
predict the distribution of future claims development. The approach involved the
application of the maximum likelihood parameter estimation method to specify
the probability distribution that best �ts the data among a family of prede�ned
distributions. It came to light that the Gamma distribution better describes the
claim development data. In a related study, Cousineau & Helie (2013) proposed an
improved alternative to the regular Maximum Likelihood Estimation (MLE) tech-
nique. They found that the Maximum A Posteriori (MAP) estimation technique
yielded accurate estimates for the parameter estimation of the Weibull distribu-
tion for some simulated data. According to Edwards et al. (1963), the MAP is
an extension of the Bayesian estimation (BE) technique that returns the posterior
distribution of the parameters given the data. The sole use of the BE is di�cult to
implement and slow to operate for parameter estimation. Therefore, in its opera-
tionalization, some numerical estimations or the use of Markov Chain Monte Carlo
(MCMC) techniques may be required to estimate the parameters. This approach
is scantly used in �commencement-to-event-time� modelling.
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Louzada & Ramos (2018) support the applicability of the maximum a posteriori
estimator for the Gamma distribution parameters. They argued in a simulation
study to compare di�erent estimation procedures that the MAP approach per-
forms better than the existing closed-form estimators and also produces highly
e�cient estimates for both parameters, even for small sample sizes. Similarly, em-
pirical studies by Bolstad (2007) and Jaroengeratikun et al. (2012) found that the
Bayesian methods with prior distributions, such as Gamma, outperformed some
other heavy-tailed and skewed distributions when assessing time-to-claim data. In
this instance, lognormal distribution was selected as the best distribution to model
the time-to-claim data. These statistical approaches are important because they
help actuaries assess the coverage probabilities of any chosen probability distribu-
tion and its expected length of claim time.

On the speci�c subject of �commencement-to-event-time,� Landriault et al.
(2014) propose a distribution that is contingent on the time of incurrence. While
studies on claim severity, frequency, and aggregate claims abound, little is known
in the literature about �commencement-to-event-time� modelling at the portfolio
level.

Consequently, this study proceeds with the objective of applying the MAP
estimation approach to model �commencement-to-event-time� behaviour in an in-
surance portfolio. The study relied on a censored approach by focusing on the
�rst �commencement-to-event-time� r (r < n) instead of using the traditional
complete-data methods. This was necessary for an e�cient parameter estimation
of the underlying probability density function governing �commencement-to-event-
time�.

In addition, using simulated data, we compared the Bayesian MAP-MCMC
estimation to the MLE with sensitivity analysis of di�erent prior distributions.
These theories were applied to real-world data from a life insurance portfolio of
180 insured individuals. The data recorded the time (in days) from each policy's
commencement to the event's occurrence (death).

In the subsequent sections of this study, we focused on the methods, providing
a detailed illustration of the estimation of the lognormal distribution parame-
ters using MCMC-based approaches. Similar estimation methods are provided
for the exponential and the Gamma �commencement-to-event-time� random vari-
ables. We continued with results and discussion sections and ended the study with
conclusion remarks.

2. Materials and Methods

Consider a scenario where an insurance portfolio comprises n life insurance
policies, and one-time death bene�ts are disbursed to the bene�ciary if the in-
sured person passes away during the policy term. The focus of interest is mod-
elling �commencement-to-event-time� within this portfolio. Let the underlying
�commencement-to-event-time� be denoted asX(1), . . . , X(n), whereX(i) ≤ X(i+1),
i = 1, . . . , n − 1. The distribution function of the �commencement-to-event-time�
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variable X is represented by FX(x), and its probability density function (pdf) is
denoted as fX(x).

In this study, we develop a model based on the �rst r, �commencement-to-
event-time,� within the portfolio, where r ≤ n. The number of claims is consid-
ered �xed, while the �commencement-to-event-time� is treated as a random vari-
able. Although there are other random variables, such as claim severity and claim
frequency, our focus in this study centres on the �commencement-to-event-time�
random variable.

This work compares two popular parameter estimation methods for time-to-
occurrence data: Maximum Likelihood Estimation (MLE) and Maximum A Pos-
teriori (MAP). Both methods utilize Markov Chain Monte Carlo (MCMC) algo-
rithms to e�ciently sample from complex, high-dimensional probability distribu-
tions encountered in practice, allowing for robust inferences.

We focus on the versatile Lognormal and Exponential distributions due to
their e�ectiveness in modelling �commencement-to-event-time� data (Kundu et al.,
2005). The Lognormal excels at scenarios where claim processes involve multiple
independent factors and exhibit right-skewness (more early claims). Its link to
the normal distribution through logarithmic transformation further strengthens
its applicability for complex claim dynamics (Zuanetti et al., 2006).

Conversely, the Exponential distribution thrives when claim rates remain con-
stant and the �memoryless� property applies. This renders it a suitable choice for
portfolios with consistent claim patterns (Ndwandwe et al., 2024).

2.1. Lognormal �Commencement-to-Event-Time� Random

Variable

When the random variable X has a lognormal distribution with parameters µ
and σ, where −∞ <µ< ∞ and σ > 0, its density function is given by

fX(x) = 1

x
√
2πσ2

exp

{
− 1

2

(
log x−µ

σ

)2}
, x > 0. (1)

The distribution function can be obtained by integrating the density function as
follows:

FX(x) =

∫ x

0

1

y
√
2πσ2

exp

{
− 1

2

(
log y−µ

σ

)2}
dy,

and the substitution z = log y yields

FX(x) =

∫ log x

−∞

1√
2πσ2

exp
{
− 1

2

(
z−µ
σ

)2}
dz.

As the integrand is the N
(
µ, σ2

)
density function,

FX(x) = Φ
(

log x−µ
σ

)
, (2)
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where Φ is the distribution function of the standard normal. Thus, probabilities
under a lognormal distribution can be calculated from the standard normal distri-
bution function. We use the notation LN(µ, σ) to denote a lognormal distribution
with parameters µ and σ. From the preceding argument, it follows that if X ∼
LN (µ, σ), then log X ∼ N (µ, σ2). In the next section, we illustrate the estima-
tion of the lognormal distribution parameters using MCMC-based approaches. We
employ both MLE and MAP techniques implemented through MCMC algorithm.

2.1.1. MLE_MCMC Approach

The likelihood function L of the �rst r-order statistics, X(1) ≤ X(2) ≤ · · · ≤
X(r), is given by Ofosu & Hesse (2011)

L(µ, σ) = fX(1),...,X(r)
(x1, . . . , xr)

= n!
(n−r)! [1− FX(xr)]

n−r
r∏

i=1

fX(xi)

= n!
(n−r)!

[
1− Φ

(
log xr−µ

σ

)]n−r r∏
i=1

{
1

xiσ
√
2π

exp

{
− 1

2

(
log xi−µ

σ

)2}}

= k
[
1− Φ

(
log xr−µ

σ

)]n−r (
1
σ

)r
exp

{
− 1

2

r∑
i=1

(
log xi−µ

σ

)2}
,

(3)

where k is independent of the parameters µ and σ. Determining the MLE esti-
mates can be challenging, as �nding a straightforward solution to the likelihood
equations is not always feasible. Fortunately, diverse tools exist for such situations
within the realm of the MLE. Prominent approaches include: Iterative methods,
the Expectation-Maximization (EM) algorithm, Gradient Descent, Quasi-Newton
methods, Monte Carlo methods, Pro�le Likelihood, Bootstrapping, and Numerical
Optimization (Nocedal & Wright, 1999; Dempster et al., 1977; Gilks et al., 1995;
Press, 1992).

Further, in this method, we employ MCMC sampling to generate samples
from the likelihood function, a technique we will refer to as MLE_MCMC. This
approach e�ectively circumvents the challenges of solving the likelihood equations
directly and yields parameter estimates that maximize the likelihood function
given the sample data. The core steps of MLE_MCMC are:

1. Simulate a large sample from the bivariate likelihood function in Equation
(3) using MCMC techniques.

2. Identify the mode of this simulated sample, which represents the MLE_MCMC
point estimate of the parameter vector θ = (µ, σ). That is,

θMLE = argmax

{
k
[
1− Φ

(
log xr−µ

σ

)]n−r (
1
σ

)r
exp

{
− 1

2

r∑
i=1

(
log xi−µ

σ

)2}}
(4)
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The following algorithm is the description for the multivariate Metropolis-Hastings
procedure (Hesse et al., 2016):

1. Set t = 1

2. Generate an initial value for β ∼ U(u1, u2).

3. Repeat

t = t+ 1

Do a MH step on α,

Generate a proposal θ∗ ∼ N(θ, σ2);

Evaluate the acceptance probability a = min
[
1, L( θ∗|x)

L( θ|x)

]
;

Generate a u from a Uniform(0, 1) distribution

If u ≤ a, accept the proposal and set θ = θ∗

4. Until < t = T .

2.1.2. MAP_MCMC Approach

Maximum A Posteriori (MAP) estimation is the Bayesian counterpart to Maxi-
mum Likelihood Estimation (MLE), incorporating additional information through
the prior distribution. Now, the joint pdf of X(1), . . . , X(r) and θ = (α, β) is given
by

g(x1, . . . , xr, θ) = fX(1),...,X(r)
(x1, . . . , xr| θ)π(θ),

where π(θ), is the prior distribution of the parameter vector Θ. We assume α and
β are independent and exponentially distributed with means a and b, respectively.
Thus,

π(θ) = 1
abe

−(µ/a+σ/b), α > 0, β > 0.

g(x1, . . . , xr, θ) =

k
[
1− Φ

(
log xr−µ

σ

)]n−r (
1
σ

)r
exp

{
− 1

2

r∑
i=1

(
log xi−µ

σ

)2
−
(
µ
a + σ

b

)}
(5)

Thus, the marginal pdf of X(1), . . . , X(r) is

g
X(1),...,X(r)

(x1, . . . , xr) =

∫
Θ

g(x1, . . . , xr, θ)dθ =

k

∫
Θ

[
1− Φ

(
log xr−µ

σ

)]n−r (
1
σ

)r
exp

{
− 1

2

r∑
i=1

(
log xi−µ

σ

)2
−
(
µ
a + σ

b

)}
dµdσ,

which is independent of µ and σ. The conditional pdf of Θ given X(1), . . . , X(r) is
therefore given by
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π (θ|x1, . . . , xr) =
g(x1, . . . , xr, θ)

g
X(1),...,X(r)

(x1, . . . , xr)

= K
[
1− Φ

(
log xr−µ

σ

)]n−r (
1
σ

)r
exp

{
− 1

2

r∑
i=1

(
log xi−µ

σ

)2
−
(
µ
a + σ

b

)}
(6)

where K is independent of µ and σ. The typical approach in Bayesian estimation
is to employ the posterior mean, E(Θ|x1, . . . , xr), as a point estimate for θ (Hesse
et al., 2016). The Maximum A Posteriori (MAP) estimator of θ is the value that
maximizes the posterior distribution. Similar to the MLE_MCMC, we utilize
the MCMC sampling approach to draw samples from the posterior distribution.
This speci�c method of estimation, denoted as MAP_MCMC for the purpose of
this study, identi�es the mode of the posterior distribution, representing the point
estimate for the parameter vector θ. Thus,

θ̂MAP =

argmax

{
K
[
1− Φ

(
log xr−µ

σ

)]n−r (
1
σ

)r
exp

{
− 1

2

r∑
i=1

(
log xi−µ

σ

)2
−
(
µ
a + σ

b

)}}
.

(7)

2.2. Exponential �Commencement-to-Event-Time� Random

Variable

Suppose the �commencement-to-event-time� random variable X follow the ex-
ponential distribution with pdf

fX(x) = 1
λe

−x/λ, x ≥ 0, λ > 0. (8)

and the distribution function, that is, P (X ≤ x), is

FX(x) = 1− e−x/λ, x ≥ 0, λ > 0.

2.2.1. Maximum Likelihood Estimation

The joint density function of the �rst r-ordered observationsX(1), . . . , X(r), X(i) ≤
X(i+1), i = 1, . . . , n, is given by

L = fX(1),...,X(r)
(x1, . . . , xr|λ)

= n!
(n−r)! [1− FX(xr)]

n−r
r∏

i=1

fX(xi)

= n!
(n−r)! [exp (−xr/λ)]

n−r
r∏

t=1

1
θ exp (−xi/λ) ,

= n!
(n−r)!λr exp

{
− 1

λ

[
r∑

i=1

xi + (n− r)xr

]}
, 0 ≤ x1 ≤ .. ≤ xr.

(9)
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lnL = ln
(

n!
(n−r)!

)
− r lnλ− 1

λ

[
r∑

i=1

xi + (n− r)xr

]

∂ lnL
∂λ = − r

λ + 1
λ2

[
r∑

i=1

xi + (n− r)xr

]

Hence, the maximum likelihood estimator of θ is

λ̂ =
∑r

i=1 X(i)+(n−r)X(r)

r . (10)

It can be shown that λ̂ is an unbiased estimator of λ and mean-squared error

MSEMLE(λ̂) =
λ2

r (Mann et al., 1974).

2.2.2. MAP_MCMC Approach

We assume θ has the exponential distribution with mean a. Then, the posterior
distribution can be written in the form

π (λ|x1, . . . , xr) = K · 1
λr exp

{
− 1

λ

[
r∑

i=1

xi + (n− r)xr +
λ2

a

]}
. (11)

Since the moments of the posterior distribution cannot easily be obtained, we
resort to the MCMC sampling technique to get samples from the posterior distri-
bution. MAP �nds the mode of the posterior distribution which represents the
point estimate of the parameter λ. Thus, the MAP estimator of λ is the value of
λ that maximizes the posterior distribution. That is,

λ̂MAP = argmax

{
K · 1

λr exp

[
− 1

λ

[
r∑

i=1

xi + (n− r)xr − λ2

a

]]}
. (12)

2.3. Gamma �Commencement-to-Event-Time� Random

Variable

The gamma distribution is often employed to model time-to-failure random
variables in life testing when the failure rate is not constant. This distribution is
particularly suitable when the failure rate follows a bathtub-shaped curve, exhibit-
ing both an initial phase of decreasing failure rates (infant mortality) and a later
phase of increasing failure rates (wear-out). The gamma distribution allows for
�exibility in capturing diverse failure rate behaviours and is well-suited for scenar-
ios where the hazard function varies over time (Eric et al., 2021). The continuous
random variable T , is said to have the gamma distribution with parameters α >
0 and β > 0 if its pdf is given by

fT (t) =
βαtα−1e−βt

Γ(α) , t > 0 (13)
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2.3.1. Maximum Likelihood Estimation

It can be shown that the likelihood function L of the �rst r order statistics,
X(1) ≤ X(2) ≤ · · · ≤ X(r), is given by

L = n!
(n−r)! [Γ(α)− γ(α, βxr)]

n−r
(

1
Γ(α)

)n
βrα

(
r∏

i=1

xα−1
i

)
e−β

∑r
i=1 xi . (14)

This function yields the following logarithmic likelihood equations:

∂ lnL
∂β = rα

β −
r∑

i=1

lnxi +
βα−1(n−r)xα

r e−βxr

[Γ(α)−γ(α,βxr)]
= 0. (15)

∂ lnL
∂α =

(n−r)[Γ′(α)−Γ′(α,βxr)]
[Γ(α)−γ(α,βxr)]

+ nΓ′(α)
Γ(α) + r lnβ +

r∑
i=1

lnxi = 0. (16)

Similarly, solving Equation (15) and Equation (16) is notably challenging.
When a straightforward solution to the likelihood equations is elusive, various pro-
cedures are available for the MLE. Common methods encompass Iterative meth-
ods, the Expectation-Maximization (EM) algorithm, Gradient Descent, Quasi-
Newton methods, Monte Carlo methods, Pro�le Likelihood, Bootstrapping, and
Numerical Optimization (Nocedal & Wright, 1999; Dempster et al., 1977; Gilks
et al., 1995; Press, 1992).

In cases where obtaining a solution to the log-likelihood equations proves di�-
cult, we turn to MCMC sampling techniques to generate samples from the likeli-
hood function. For the purposes of this study, the estimation technique is referred
to as MLE_MCMC. The primary objective is to determine parameter estimates
that maximize the likelihood function given the sample data. The MLE_MCMC
approach identi�es the mode of the simulated MCMC sample from the bivari-
ate likelihood function in Equation (14), representing the point estimate of the
parameter vector θ = (α, β). That is,

θMLE = argmax

{
k [Γ(α)− γ(α, βxr)]

n−r
(

1
Γ(α)

)n
βrα

(
r∏

i=1

xα−1
i

)
e−β

∑r
i=1 xi

}
.

(17)

2.3.2. MAP_MCMC Approach

If we assume α and β are independent and exponentially distributed with
means a and b, respectively, then it can be shown that the posterior distribution
is

π (θ|x1, . . . , xr)

= K [Γ(α)− γ(α, βxr)]
n−r

(
1

Γ(α)

)n
βrα

(
r∏

i=1

xα−1
i

)
e
−
(

α
a+

β
b +β

∑r
i=1 xi

)
. (18)
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The MAP estimator of θ is the value that maximizes the posterior distribution.
Thus,

θ̂MAP = argmax {Ω} (19)

where

Ω =

{
K [Γ(α)− γ(α, βtr)]

n−r
(

1
Γ(α)

)n
βrα

(
r∏

i=1

tα−1
i

)
e
−
(

α
a+

β
b +β

∑r
i=1 ti

)}
.

3. Results

In this section, we present results of some simulated and real-life data for
both the MAP_MCMC and the MLE estimation approaches, enabling e�cient
parameterization of the Lognormal, Exponential, and Gamma distributions.

3.1. Lognormal Distribution

MATLAB's `lognquantile' function (MathWorks, 2020) was used to calculate
quantiles for given probabilities simulated from the uniform distribution over the
interval (0, 1). Table 1 displays the �rst 80 out of 120 ordered data points simu-
lated from the lognormal distribution with parameters µ = 3 and σ = 2. These
observations are assumed to represent the ordered �commencement-to-event-time�
data of an insurance portfolio comprising 120 life insurance policies until the 80th

event-time.

Table 1: Ordered data simulated from the lognormal distribution with parameters µ = 3
and σ = 2.

Simulated ordered data points

0.063 0.067 0.286 0.327 0.376 0.382 0.656 0.866 0.868 1.038

1.121 1.177 1.408 1.484 1.545 1.614 1.687 1.828 1.990 2.181

2.208 2.270 2.336 3.468 3.870 3.896 4.809 4.987 5.015 5.085

5.526 5.780 6.114 6.133 6.153 6.535 7.176 7.277 8.872 9.013

9.115 9.191 9.695 9.821 10.012 10.667 10.753 11.147 12.056 12.090

12.655 12.803 13.091 13.147 13.174 13.271 13.277 13.482 13.766 13.777

16.200 16.365 16.739 16.923 17.142 20.491 21.608 21.734 22.659 23.491

24.629 26.271 26.941 27.058 27.197 27.587 28.210 29.548 32.526 38.423

3.1.1. MLE_MCMC Estimate

With n = 120, r = 80, and xr = 38.423, as speci�ed in Table 1, we imple-
mented a Metropolis-Hastings algorithm to sample from the likelihood function
in Equation (3). The MATLAB code for this component-wise Metropolis sampler
is detailed in Listings A1 and A2 (see Appendix). Analyzing the mode of the
resulting bivariate sample yielded maximum likelihood estimates for the lognor-
mal distribution's parameters, µ and σ as; µMLE = 3.2215 and σMLE = 2.0824,
respectively.
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The estimated parameters closely align with the true values (µ = 3 and σ = 2),
suggesting a highly accurate �t of the model to the data.

3.1.2. MAP_MCMC Estimate

To explore the Bayesian posterior distribution, we employed a Metropolis-
Hastings algorithm to simulate a sample, leveraging the data from Table 1. We
assumed independent exponential prior distributions for µ and σ with means a = 6
and b = 4, respectively. The MATLAB code for this posterior sampling process is
analogous to Listings A1 and A2 in the appendix. MAP_MCMC estimates are:
µMAP = 3.1726 and σMAP = 2.0281.

These estimates precisely align with those obtained through direct sampling
from the likelihood function, demonstrating robustness to prior assumptions. The
results remain unchanged even with varying a and b (e.g., a = 15, b = 10).

To assess the MAP_MCMC estimator's sensitivity to prior assumptions, we
performed repeated MCMC simulations with diverse prior distributions for µ and
σ: Exponential (E), Normal (N), Gamma(G), Pareto(P), and Weibull (W). Table
2 summarizes the results. All estimated values of µ and σ landed within 10% of the
true values, showcasing remarkable tolerance to variations in prior assumptions.
Notably, the MAP_MCMC estimates for both parameters remained consistent
across di�erent priors, mirroring the results obtained with the MLE_MCMC ap-
proach.

Table 2: Comparison of Estimates (Lognormal).

Bivariate Prior Distribution (MAP_MCMC)

MLE_MCMC E N G P W

Parameters µ σ µ σ µ σ µ σ µ σ µ σ

Actual 3 2 3 2 3 2 3 2 3 2 3 2

Estimate 3.22 2.08 3.17 2.03 3.15 2.11 3.15 2.12 3.14 2.10 3.14 2.10

Error % 7.40 4.10 5.80 1.40 4.90 5.50 5.10 5.80 4.80 5.20 4.60 5.00

3.2. Exponential Distribution

To generate �commencement-to-event-times� following an exponential distribu-
tion with a mean of 150, we leveraged the versatility of the gamma distribution.
Speci�cally, we employed the MS Excel formula �= GAMMA.INV (p, 1, 150)� to
calculate quantiles based on probabilities simulated from a uniform distribution
over (0, 1).

Recall that the exponential distribution emerges as a special case of the gamma
distribution when the shape parameter α equals 1. Table 3 presents the initial 80
�commencement-to-event-times�, extracted from a larger dataset of 120. These val-
ues mirror ordered �commencement-to-event-times� within an insurance portfolio
encompassing 120 life insurance policies, observed up to the 80th claim.

Figures 1 and 2 show the plot of the probability density functions of the log-
normal distribution and exponential distribution with µ = 3, σ = 2, and λ = 150.
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Table 3: Ordered data simulated from the exponential distribution with mean 150.

Simulated ordered data points

0.472 1.370 4.022 5.141 7.379 7.798 9.989 10.597 11.202 13.875

13.925 14.817 17.083 17.375 18.386 19.915 20.057 20.712 23.117 23.219

24.033 25.258 26.285 26.575 27.408 27.815 28.268 28.744 28.843 28.988

30.086 33.212 33.435 35.138 40.870 46.169 52.750 54.439 54.518 54.788

55.396 56.326 56.493 61.768 68.344 75.311 75.402 75.629 75.826 75.902

77.990 78.213 82.214 82.246 83.558 85.845 89.874 91.879 92.302 94.092

96.947 97.009 99.583 104.683 107.628 112.772 115.229 118.058 118.905 119.869

119.910 120.297 125.121 125.279 129.311 140.330 144.147 145.638 153.275 153.823

Figure 1: pdf of the lognormal distribution with µ = 3 and σ = 2.

Figure 2: pdf of the exponential distribution with λ = 150.

3.2.1. MLE Estimate

From Equation (10) and Table 3, given n = 120, r = 80 and xr = 153.8225,

the maximum likelihood estimate of the parameter λ is λ̂MLE = 138.793.
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3.2.2. MLE_MCMC Estimate

The MATLAB code for implementing the Metropolis-Hastings sampler for the
likelihood function in Equation (9) is provided in Listings A3 and A4 of the ap-
pendix. The results show that the maximum likelihood estimate of the parameter
λ is λMLE = 155.533. This estimation was based on the values n = 120, r = 80,
and xr = 153.823, from Table 3.

3.2.3. MAP_MCMC Estimate

Harnessing the data in Table 3, we employed the MAP_MCMC technique
to estimate the value of λ. The Metropolis-Hastings algorithm was implemented
analogously to Listings A3 and A4 in the Appendix, facilitating sampling from
the posterior distribution outlined in Equation (12). This approach yielded a
MAP_MCMC estimate of λMAP = 148.732, that closely aligned with the true
value of λ = 150.

Table 4 reveals the parameter estimates and their absolute percentage di�er-
ences from the true λ value (150). Both MCMC-based techniques, MLE_MCMC
and MAP_MCMC, excel, with estimates hovering within 5% of the true value.
While the MLE estimate falls within a reasonable 10% margin, it exhibits slightly
lower precision compared to its MCMC counterpart. Notably, MAP_MCMC
shines, with an estimate within 1% of the true value, highlighting the potential ad-
vantage of incorporating prior information through MCMC for tighter parameter
estimation.

Table 4: Comparison of Estimates (Exponential).

MLE MLE_MCMC MAP_MCMC

Estimate of λ 138.793 155.533 148.732

Error Percentage 7.5 3.7 0.8

3.3. Application to Real-Life Data

The theory was applied to real-world data from a life insurance portfolio of 180
insured individuals from Hollard Insurance Ghana. The data recorded the time
(in days) from each policy's commencement to the occurrence of the event (death).
Table 5 presents the frequency distribution, with 12 groups, of the number of days
from the start of the policy until the event occurred for these 180 policyholders.

The data was �tted to the Normal, Exponential, Gamma, Weibull, and Log-
normal distributions, and the test results are summarized in Table 6.
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Table 5: Frequency Distribution of the Number of Days (Commencement to Occurrence
of the Death).

Number of Days Frequency Percent Valid Percent Cumulative
Percent

100 - 299 10 5.5 5.5 5.5

300 - 499 37 20.4 20.4 26.0

500 - 699 17 9.4 9.4 35.4

700 - 899 27 14.9 14.9 50.3

900 - 1099 17 9.4 9.4 59.7

1100 - 1299 21 11.6 11.6 71.3

1300 - 1499 17 9.4 9.4 80.7

1500 - 1699 12 6.6 6.6 87.3

1700 - 1899 4 2.2 2.2 89.5

1900 - 2099 14 7.7 7.7 97.2

2100 - 2299 2 1.1 1.1 98.3

2300 - 2499 3 1.7 1.7 100.0

Total 181 100.0 100.0

Table 6: Summary of the Goodness of Fit Test.

Distribution Log-Likelihood AIC BIC Best Fit?

Normal �443.12 890.24 896.64 No

Exponential �471.91 945.82 949.01 No

Gamma �428.26 860.52 866.91 Yes

Weibull �428.49 860.98 867.38 Close Fit

Lognormal �433.39 870.79 877.18 No

The Gamma distribution is the best �t for the data, as it has the lowest AIC
and BIC values and the highest log-likelihood. It is closely followed by the Weibull
distribution. Both distributions handle skewness well, but Gamma slightly out-
performs the Weibull distribution.

The method of moment was used to estimate the parameters of the Gamma
distribution based on the entire dataset, serving as a benchmark estimate for com-
parison. The method of moment estimates of α and β of the Gamma distribution,
based on the complete data from 180 policies, were calculated as 3.2151 and 0.0032,
respectively. Figure 3 shows the graph of the �tted gamma distribution using the
estimated parameters.

From Equation (17) and given n = 180, r = 100, xr = 962, the component-wise
Metropolis sampler was used to determine maximum likelihood estimates for the
α and β of the Gamma distribution using the �rst 100 ordered samples of the 180
policies, which are given by αMLE = 3.3526 and βMLE = 0.0029, respectively. We
may have noticed that the maximum likelihood estimates (using the �rst 100 or-
dered samples) are not signi�cantly di�erent from the method of moment estimates
(using the complete data).
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Figure 3: Graph of the �tted gamma.

Again, using the �rst 100 ordered samples from the 180 policies, the Metropolis-
Hastings algorithm was employed to generate a sample from the Bayesian posterior
distribution. It was assumed that α and β are independent and exponentially
distributed with parameters a = 3 and b = 0.02, respectively. The results indicate
that the MAP_MCMC estimates of α and β are αMAP = 3.3561 and βMAP =
0.0034, precisely matching the estimates obtained by sampling directly from the
likelihood function. Even when we vary the values of a and b, the �ndings remain
consistent. Similar consistent parameter estimates were obtained (across the three
estimation techniques above) for the Weibull distribution.

4. Concluding Remarks

The study explored the dynamics of �commencement-to-event-time� behaviour
within life insurance portfolios by employing two parameter estimation techniques:
Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), uti-
lizing the Markov Chain Monte Carlo (MCMC) simulation technique. Due to
their e�ectiveness in modelling time-to-occurrence data, we focused on the versa-
tile Lognormal, Exponential, and Gamma distributions.

We simulated 120 observations from both lognormal and exponential distri-
butions by using the �rst 80 ordered samples. The estimates for the lognormal
parameters (µ and σ) obtained through MLE and MAP_MCMC were remarkably
similar, with errors within 10% of the actual values. This indicates the e�ective-
ness of both methods in providing accurate estimations for the parameters of the
lognormal distribution. Furthermore, the study explored the sensitivity of the
MAP_MCMC technique to various prior distributions, demonstrating its robust-
ness across di�erent priors, including Exponential, Normal, Gamma, Pareto, and
Weibull prior distributions.
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The MLE and MAP_MCMC techniques demonstrated excellent performance
regarding the exponential distribution, providing estimates within 5% of the true
value. Although the MLE estimate remained within a reasonable 10% margin,
it showed slightly lower precision than its MAP_MCMC counterpart. The ex-
ceptional performance of MAP_MCMC was particularly noteworthy, with an es-
timate within 1% of the true value. This underscores the potential advantage of
incorporating prior distribution through MCMC to achieve more precise parameter
estimation.

Further, we applied our methodology to real-life data, which was �tted to the
Gamma distribution. The method of moment was used to estimate the parameters
of the Gamma distribution based on the entire dataset, serving as a benchmark
estimate for comparison. The result showed that based on censored data, the
MLE and MAP_MCMC estimation techniques, produced estimates closer to the
benchmark. It is important to note that our MAP_MCMC approach slightly
outperformed the MLE approach.

This research pushes the boundaries of �commencement-to-event-time� mod-
elling, opening doors to exciting future explorations. For example, within survival
analysis, one may contemplate a statistical framework designed to analyse time-
to-event data, which could apply to modelling the duration between instances
of an insurance claim. Approaches such as the Cox proportional hazards model
and Kaplan-Meier estimates o�er insights into the analysis of �commencement-
to-event-time�. Another avenue worth exploring in modelling �commencement-
to-event-time� involves renewal processes, which characterise the time intervals
between recurrent events, similar to the arrival of claims in an insurance portfolio.
Renewal theory and concepts, such as inter-arrival times and renewal intervals,
provide a valuable framework for analysing and predicting �commencement-to-
event-time� patterns.[
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Appendix

Listings A1. Likelihood Function of µ and σ for the

Lognormal Distribution

function y = MLE_lognormal(mu,sigma,x,n,xr,r)

y=(1-normcdf((log(xr))))∧(n-r)*(1/sigma)∧r*exp(-0.5*sum((log(x)-mu)/sigma)∧2);

Listings A2. Metropolis Hastings in MATLAB

using the Likelihood Function for Lognormal

Distribution

% % Metropolis procedure to sample from the posterior distribution

% Component-wise updating. Use a normal proposal distribution

opts = spreadsheetImportOptions("NumVariables", 1);

% Specify sheet and range

opts.Sheet = "Sheet1";

opts.DataRange = "A1:A80";

% Specify column names and types

opts.VariableNames = "x";

opts.VariableTypes = "double";

% Import the data

x = readtable("C:\Users\USER\Lognormal.xlsx", opts, "UseExcel", false);

x=table2array(x);

r=length(x);

xr=x(80);

n=120;
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% % Initialize the Metropolis sampler

T=5000; % Set the maximum number of iteration

propsigma=[0.014,0.006]; % standard deviation of proposal distribution

parametermin=[2,1]; % de�ne minimum for alpha and beta

parametermax=[4,3]; % de�ne maximum for alpha and beta

seed=1; rand( 'state' , seed ); randn('state',seed ); %#ok<RAND> % set the random

seed

state=zeros(2,T); % storage space for the state of the sampler

mu=unifrnd(parametermin(1),parametermax(1)); % Start value for mu

sigma=unifrnd(parametermin(2),parametermax(2)); % Start value for sigma

t=1; % initialize iteration at 1

state(1,t)=mu; % save the current state

state(2,t)=sigma;

% % Start sampling

while t<T % Iterate until we have T samples

t=t+1;

% % Propose a new value for mu

new_mu=normrnd(mu,propsigma(1));

pratio=MLE_lognormal(new_mu,sigma,x,n,xr,r)/MLE_lognormal(mu,sigma,x,n,xr,r);

a=min([1 pratio]); % Calculate the acceptance ratio

u=rand; % Draw a uniform deviate from [0 1]

if u<a % Do we accept this proposal?

mu=new_mu; % proposal becomes new value for mu

end

% % Propose a new value for sigma

new_sigma=normrnd(sigma,propsigma(2));

pratio=MLE_lognormal(mu,new_sigma,x,n,xr,r)/MLE_lognormal(mu,sigma,x,n,xr,r);

a=min([1 pratio]); % Calculate the acceptance ratio

u=rand; % Draw a uniform deviate from [0 1]

if u<a % Do we accept this proposal?

sigma=new_sigma; % proposal becomes new value for beta

end

% % Save state

state(1,t) = mu;

state(2,t) = sigma;

end

Mean=mean(state,2)

Mode=mode(state,2)

Listings A3. Likelihood function for λ

function y = MLE_Exponential(lambda,x,n,xr,r)

y=1/(lambda∧r)*exp(-(sum(x)+(n-r)*xr)/lambda);
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Listings A4. Metropolis Hastings in MATLAB

using the Likelihood Function for exponential

distribution

% % Metropolis procedure to sample from the posterior distribution

% Component-wise updating. Use a normal proposal distribution

opts = spreadsheetImportOptions("NumVariables", 1);

% Specify sheet and range

opts.Sheet = "Sheet1";

opts.DataRange = "A1:A80";

% Specify column names and types

opts.VariableNames = "x";

opts.VariableTypes = "double";

% Import the data

x = readtable("C:\Users\USER\Exp.xlsx", opts, "UseExcel", false);

x=table2array(x);

r=length(x);

xr=x(80);

n=120;

% % Initialize the Metropolis sampler

T=5000; % Set the maximum number of iteration

sigma = 0.5; % Set standard deviation of normal proposal density

lambdamin = 140; lambdamax = 160; % de�ne a range for starting values

lambda = zeros( 1 , T ); % Init storage space for our samples

lambda(1) = unifrnd( lambdamin , lambdamax ); % Generate start value

%% Start sampling

t = 1;

while t < T % Iterate until we have T samples

t = t + 1;

% Propose a new value for theta using a normal proposal density

lambda_star = normrnd( lambda(t-1) , sigma );

% Calculate the acceptance ratio

alpha = min([1 MLE_Exponential(lambda_star,x,n,xr,r) / MLE_Exponential(lambda(t-

1),x,n,xr,r)]);

% Draw a uniform deviate from [ 0 1 ]

u = rand;

% Do we accept this proposal?

if u < alpha

lambda(t) = lambda_star; % If so, proposal becomes new state

else

lambda(t) = lambda(t-1); % If not, copy old state

end

end

Mean=mean(lambda)

Mode=mode(lambda)
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