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Abstract

The study investigated the dynamics of “commencement-to-event-time”
behaviour in life insurance portfolios, employing Maximum Likelihood Esti-
mation (MLE) and Maximum A Posteriori (MAP) with the Markov Chain
Monte Carlo (MCMC) simulation technique. Focusing on the Lognormal and
Exponential distributions for their efficacy in modelling time-to-occurrence
data, the research simulated 120 observations from both distributions and
estimated parameters using the first 80 ordered samples. Remarkably, esti-
mates for lognormal parameters obtained through MLE and MAP_MCMC
were highly similar, with errors well within 10% of the actual values, high-
lighting the accuracy of both methods. The study also explored the robust-
ness of the MAP MCMC technique to various prior distributions, demon-
strating its effectiveness across different priors, including Exponential, Nor-
mal, Gamma, Pareto, and Weibull prior distributions. In the case of the ex-
ponential distribution, both MLE and MAP_MCMC techniques performed
exceptionally well, providing estimates within 5% of the true value, with
MAP MCMC exhibiting remarkable precision, just 1% off the true value.
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Real-life data fitted to the Gamma distribution showed that MLE and MAP
_ MCMC methods, using censored data, closely approximated benchmark es-
timates from the method of moments. The MAP _MCMC approach slightly
outperformed the MLE.

Key words: Bayesian Inference; Maximum Likelihood Estimation; Maxi-
mum a-Posteriori; Markov Chain Monte Carlo Simulation.

Resumen

El estudio investigdé la dindmica del comportamiento “inicio-aconteci-
miento-tiempo” en las carteras de seguros de vida, empleando la Estimacion
de Maxima Verosimilitud (MLE) y la Maxima A Posteriori (MAP) con la
técnica de simulacién Markov Chain Monte Carlo (MCMC). Centrandose en
las distribuciones Lognormal y Exponencial por su eficacia en la modelizacion
de datos de tiempo de ocurrencia, la investigaciéon simulé 120 observaciones
de ambas distribuciones y estim6 los pardmetros utilizando las 80 primeras
muestras ordenadas. Sorprendentemente, las estimaciones de los pardmetros
lognormales obtenidas mediante MLE y MAP _MCMC fueron muy similares,
con errores muy inferiores al 10% de los valores reales, lo que pone de re-
lieve la precision de ambos métodos. El estudio también exploré la robustez
de la técnica MAP _MCMC a varias distribuciones a priori, demostrando
su eficacia a través de diferentes distribuciones a priori, incluyendo Expo-
nencial, Normal, Gamma, Pareto y Weibull. En el caso de la distribucién
exponencial, tanto las técnicas MLE como MAP _MCMC obtuvieron resul-
tados excepcionales, proporcionando estimaciones dentro del 5% del valor
real, con MAP MCMC mostrando una precisiéon notable, solo un 1% por
debajo del valor real. Los datos reales ajustados a la distribucion Gamma
mostraron que los métodos MLE y MAP_MCMC, utilizando datos censura-
dos, se aproximaron mucho a las estimaciones de referencia del método de
los momentos. El método MAP_MCMC super6 ligeramente al MLE.

Palabras clave: Estimacion de maxima verosimilitud; Inferencia bayesiana;
Maximum a posteriori; Simulacién Monte Carlo con cadenas de Markov.

1. Introduction

Life is inherently uncertain, with unforeseen events like accidents, illnesses,
or property damage posing significant financial challenges. Insurance serves as
a collective risk-pooling mechanism, where individuals and businesses contribute
to a shared fund to provide financial protection against losses (Cronk & Aktipis,
2021). This collective approach alleviates the financial burden on individuals and
businesses, preventing potential financial ruin and highlighting the pivotal role of
insurance in contemporary society (Liedtke, 2007; van der Heide, 2023).

According to Zakaria et al. (2016), life insurance primarily aims to mitigate the
financial risks associated with the death or disability of an insured person, with
secondary considerations for potential investment returns. Under an insurance
contract, the insured pays a predetermined premium, and in the event of death
or disability, the insurer compensates the designated beneficiary with a predefined
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claim amount. In this context, a claim represents compensation for the risk of
loss (Ekberg, 2015; Kochenburger & Salve, 2023; Yohandoko et al., 2023), and
these claims are submitted either at the time of maturity or in the event of death
or disability. It is worth studying the time between the commencement of the
life insurance policy and the time of the occurrence of the event (commencement-
to-event-time). It stands as a vital financial imperative for insurance companies
to fulfil their obligation to their clients as well as avoid institutional bankruptcy
(Riaman et al., 2023). Therefore, understanding the “commencement-to-event-
time”, frequency, severity, and complexity of claims is essential for insurance pricing
and forecasting future claims (Omari et al., 2018).

The characteristics of claims, including “commencement-to-event-time”; size of
claim, frequency of claim, and portfolio totals, were studied using various distri-
bution models. Notably, Bahnemann (2015) found that discrete standard distri-
butions are suitable for modelling claims’ occurrences within a portfolio, while
Omari et al. (2018) suggest the lognormal distribution for claims severity. Even
though the Pareto distribution has seen extensive usage in claims data modelling
(Clemente et al., 2023; Feng, 2023; Gilenko & Mironova, 2017), Moumeesri et al.
(2020) profess heavy-tailed distributions like Gamma and Lognormal to be more
accurate in modelling claim severity.

Earlier scholars, such as Kaplan & Meier (1958), Cox (1972), and Kleinbaum
& Klein (1996), applied survival analysis techniques, including Kaplan-Meier es-
timates and the Cox proportional hazards model, in an attempt to fit the time
between the occurrences of insurance claims. In the quest to find insightful ap-
proaches towards the estimation of claim-time patterns, other scholarly works (Ra-
mani et al., 2023; Zhou, 2024; Abdulkadir & Fernando, 2024) explored machine
learning methods together with other notable distributions such as the Marshall-
Olkin extended Weibull distribution. The survival analysis techniques and the
machine learning approaches prove distinct in their strengths and limitations in
estimating different claim types (Arik et al., 2023).

In the recent works of Zacaj et al. (2022), bootstrap methods were used to
predict the distribution of future claims development. The approach involved the
application of the maximum likelihood parameter estimation method to specify
the probability distribution that best fits the data among a family of predefined
distributions. It came to light that the Gamma distribution better describes the
claim development data. In a related study, Cousineau & Helie (2013) proposed an
improved alternative to the regular Maximum Likelihood Estimation (MLE) tech-
nique. They found that the Maximum A Posteriori (MAP) estimation technique
yielded accurate estimates for the parameter estimation of the Weibull distribu-
tion for some simulated data. According to Edwards et al. (1963), the MAP is
an extension of the Bayesian estimation (BE) technique that returns the posterior
distribution of the parameters given the data. The sole use of the BE is difficult to
implement and slow to operate for parameter estimation. Therefore, in its opera-
tionalization, some numerical estimations or the use of Markov Chain Monte Carlo
(MCMC) techniques may be required to estimate the parameters. This approach
is scantly used in “commencement-to-event-time” modelling.
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Louzada & Ramos (2018) support the applicability of the maximum a posteriori
estimator for the Gamma distribution parameters. They argued in a simulation
study to compare different estimation procedures that the MAP approach per-
forms better than the existing closed-form estimators and also produces highly
efficient estimates for both parameters, even for small sample sizes. Similarly, em-
pirical studies by Bolstad (2007) and Jaroengeratikun et al. (2012) found that the
Bayesian methods with prior distributions, such as Gamma, outperformed some
other heavy-tailed and skewed distributions when assessing time-to-claim data. In
this instance, lognormal distribution was selected as the best distribution to model
the time-to-claim data. These statistical approaches are important because they
help actuaries assess the coverage probabilities of any chosen probability distribu-
tion and its expected length of claim time.

On the specific subject of “commencement-to-event-time,” Landriault et al.
(2014) propose a distribution that is contingent on the time of incurrence. While
studies on claim severity, frequency, and aggregate claims abound, little is known
in the literature about “commencement-to-event-time” modelling at the portfolio
level.

Consequently, this study proceeds with the objective of applying the MAP
estimation approach to model “commencement-to-event-time” behaviour in an in-
surance portfolio. The study relied on a censored approach by focusing on the
first “commencement-to-event-time” r (r < n) instead of using the traditional
complete-data methods. This was necessary for an efficient parameter estimation
of the underlying probability density function governing “commencement-to-event-
time”.

In addition, using simulated data, we compared the Bayesian MAP-MCMC
estimation to the MLE with sensitivity analysis of different prior distributions.
These theories were applied to real-world data from a life insurance portfolio of
180 insured individuals. The data recorded the time (in days) from each policy’s
commencement to the event’s occurrence (death).

In the subsequent sections of this study, we focused on the methods, providing
a detailed illustration of the estimation of the lognormal distribution parame-
ters using MCMC-based approaches. Similar estimation methods are provided
for the exponential and the Gamma “commencement-to-event-time” random vari-
ables. We continued with results and discussion sections and ended the study with
conclusion remarks.

2. Materials and Methods

Consider a scenario where an insurance portfolio comprises n life insurance
policies, and one-time death benefits are disbursed to the beneficiary if the in-
sured person passes away during the policy term. The focus of interest is mod-
elling “commencement-to-event-time” within this portfolio. Let the underlying
“commencement-to-event-time” be denoted as X(y), ..., X(y), where X ;) < X411y,
i =1,...,n — 1. The distribution function of the “commencement-to-event-time”
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variable X is represented by F'x(x), and its probability density function (pdf) is
denoted as fx(x).

In this study, we develop a model based on the first r, “commencement-to-
event-time,” within the portfolio, where » < n. The number of claims is consid-
ered fixed, while the “commencement-to-event-time” is treated as a random vari-
able. Although there are other random variables, such as claim severity and claim
frequency, our focus in this study centres on the “commencement-to-event-time”
random variable.

This work compares two popular parameter estimation methods for time-to-
occurrence data: Maximum Likelihood Estimation (MLE) and Maximum A Pos-
teriori (MAP). Both methods utilize Markov Chain Monte Carlo (MCMC) algo-
rithms to efficiently sample from complex, high-dimensional probability distribu-
tions encountered in practice, allowing for robust inferences.

We focus on the versatile Lognormal and Exponential distributions due to
their effectiveness in modelling “commencement-to-event-time” data (Kundu et al.,
2005). The Lognormal excels at scenarios where claim processes involve multiple
independent factors and exhibit right-skewness (more early claims). Its link to
the normal distribution through logarithmic transformation further strengthens
its applicability for complex claim dynamics (Zuanetti et al., 2006).

Conversely, the Exponential distribution thrives when claim rates remain con-
stant and the “memoryless” property applies. This renders it a suitable choice for
portfolios with consistent claim patterns (Ndwandwe et al., 2024).

2.1. Lognormal “Commencement-to-Event-Time” Random
Variable

When the random variable X has a lognormal distribution with parameters u
and o, where —oco <u< oo and ¢ > 0, its density function is given by

2
fx(x) = w\/;ﬂTeXp{—; (log%) }, x> 0. (1)

The distribution function can be obtained by integrating the density function as

follows:
* 1 1 (logy—p 2
FX(CU):/O yWeXp{_z( o ) } dy,

and the substitution z = logy yields

log x 9
Fx(x):/ \/Q;?exp{—% (%) }dz.

— 00

As the integrand is the N (,u, 02) density function,
Fx(x) = @ (T52=t). @)
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where ® is the distribution function of the standard normal. Thus, probabilities
under a lognormal distribution can be calculated from the standard normal distri-
bution function. We use the notation LN (u, o) to denote a lognormal distribution
with parameters p and o. From the preceding argument, it follows that if X ~
LN(u, o), then log X ~ N(u, 02). In the next section, we illustrate the estima-
tion of the lognormal distribution parameters using MCMC-based approaches. We
employ both MLE and MAP techniques implemented through MCMC algorithm.

2.1.1. MLE _MCMC Approach

The likelihood function L of the first r-order statistics, X(;) < Xp) < -+ <
X(ry, is given by Ofosu & Hesse (2011)

L(/J" 0) = fX(1)7...,X(T) (xla .. axr)

(ni!r)l [1— Fx(z,)]"" H Ix(x;)
=1

S\ T A2 3)
gty 1o (o)) T { b o - (22) '}

o ()] e - ()]

where £ is independent of the parameters y and o. Determining the MLE esti-
mates can be challenging, as finding a straightforward solution to the likelihood
equations is not always feasible. Fortunately, diverse tools exist for such situations
within the realm of the MLE. Prominent approaches include: Iterative methods,
the Expectation-Maximization (EM) algorithm, Gradient Descent, Quasi-Newton
methods, Monte Carlo methods, Profile Likelihood, Bootstrapping, and Numerical
Optimization (Nocedal & Wright, 1999; Dempster et al., 1977; Gilks et al., 1995;
Press, 1992).

Further, in this method, we employ MCMC sampling to generate samples
from the likelihood function, a technique we will refer to as MLE _MCMC. This
approach effectively circumvents the challenges of solving the likelihood equations
directly and yields parameter estimates that maximize the likelihood function
given the sample data. The core steps of MLE MCMC are:

1. Simulate a large sample from the bivariate likelihood function in Equation
(3) using MCMC techniques.

2. Identify the mode of this simulated sample, which represents the MLE _MCMC
point estimate of the parameter vector 6 = (i, o). That is,

OvLE = argmax{k [1 P (WUTT—;L)}"—T (;)Texp{_é T (logzaﬂ)z}}
i=1

(4)
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The following algorithm is the description for the multivariate Metropolis-Hastings
procedure (Hesse et al., 2016):

1. Sett =1
2. Generate an initial value for 8 ~ U(uq, uz).

3. Repeat
t=t+1
Do a MH step on «,
Generate a proposal 0* ~ N(6,0?%);

Evaluate the acceptance probability ¢ = min [1, %} ;

Generate a u from a Uniform(0,1) distribution

If u < a, accept the proposal and set 6§ = 6*

4. Until <t =T.

2.1.2. MAP MCMC Approach

Maximum A Posteriori (MAP) estimation is the Bayesian counterpart to Maxi-
mum Likelihood Estimation (MLE), incorporating additional information through
the prior distribution. Now, the joint pdf of X(y),..., X(;y and 0 = («, B) is given
by

g(l‘l, ey Ty, 0) = fX(1)7,,_,X(,.) (21317 o 71‘7" 0) 7T(0),

where 7(6), is the prior distribution of the parameter vector ©. We assume « and
[ are independent and exponentially distributed with means a and b, respectively.
Thus,

m(0) = Le /et o> 0,8 > 0.

g(x1,...,x.,0) =

o (=) @ e {43 (=) - e p) @

=

3

=

Thus, the marginal pdf of X(y),..., X, is

o ()| 7 @ e - () - 4 )

i=1

Gex <x1,...,xr>=/g(xl,...,x,.,mda:
(1) (r) o

which is independent of ;1 and o. The conditional pdf of © given X(yy,..., X(,) is
therefore given by
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7(0|z1,...,2p) =

~xi-a (=) @y en {43 () - )} o

i=

where K is independent of 1 and o. The typical approach in Bayesian estimation
is to employ the posterior mean, E(©|z1,...,z,), as a point estimate for  (Hesse
et al., 2016). The Maximum A Posteriori (MAP) estimator of 6 is the value that
maximizes the posterior distribution. Similar to the MLE MCMC, we utilize
the MCMC sampling approach to draw samples from the posterior distribution.
This specific method of estimation, denoted as MAP_MCMC for the purpose of
this study, identifies the mode of the posterior distribution, representing the point
estimate for the parameter vector 6. Thus,

Oviap =

argmax{K {1 — 0 (IOWTT_”ﬂn_T (1) exp {_é .r (lo,c;agi—u)2 — (g Z)}} '

2.2. Exponential “Commencement-to-Event-Time” Random
Variable

Suppose the “commencement-to-event-time” random variable X follow the ex-
ponential distribution with pdf

fx(@)=+e™™/* 2>0,1>0. (8)
and the distribution function, that is, P(X < z), is

Fx(z)=1—e""* 2>0,X>0.

2.2.1. Maximum Likelihood Estimation

The joint density function of the first r-ordered observations Xy, ..., X(), X(;) <
X(it1), 1 =1,...,n, is given by

L = fX(l),.A.,X(T) (./,517 o 7337“‘ )\)

= ey [ = Fx (@) ] fx ()
=1

sy loxp (—ar A T Bexp (—ai/A),

t=1

— (n_’;!)w,exp{i leiJr(nr)xT]}, 0<2; <..<2,.
i=1
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Hence, the maximum likelihood estimator of 6 is

r

f = Zim Xot+e—r)Xem

r

(10)

It can be shown that A is an unbiased estimator of A and mean-squared error
MSEyig(})) = 2 (Mann et al., 1974).

2.2.2. MAP MCMC Approach

We assume 6 has the exponential distribution with mean a. Then, the posterior
distribution can be written in the form
} . (11)

Since the moments of the posterior distribution cannot easily be obtained, we
resort to the MCMC sampling technique to get samples from the posterior distri-
bution. MAP finds the mode of the posterior distribution which represents the
point estimate of the parameter A\. Thus, the MAP estimator of X is the value of
A that maximizes the posterior distribution. That is,

S\MAp:argmax{K-)\lreXp[ }\lez (n—r)x —i‘jH} (12)

7T()\|1'1,...,.’[T):K exp{ A[le n_'rxr‘f'/\?z

2.3. Gamma “Commencement-to-Event-Time” Random
Variable

The gamma distribution is often employed to model time-to-failure random
variables in life testing when the failure rate is not constant. This distribution is
particularly suitable when the failure rate follows a bathtub-shaped curve, exhibit-
ing both an initial phase of decreasing failure rates (infant mortality) and a later
phase of increasing failure rates (wear-out). The gamma distribution allows for
flexibility in capturing diverse failure rate behaviours and is well-suited for scenar-
ios where the hazard function varies over time (Eric et al., 2021). The continuous
random variable 7', is said to have the gamma distribution with parameters o >
0 and B > 0 if its pdf is given by

Bt 1Bt

fr(t) = s >0 (13)
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2.3.1. Maximum Likelihood Estimation

It can be shown that the likelihood function L of the first r order statistics,
Xy < X@) < < X, is given by

L= 2 D) = (e B (v5) 87 (m) AT (14)

This function yields the following logarithmic likelihood equations:

OlnlL _ ra - . ﬂa_l(nfr)sze_ﬂmT o

o8 *F*;ml*W*Q (15)
omr _ (n—n)[I"(@)-T"(a,fz.)] | nl'(a) - _
da = M@ @B T T Trinf+ Zlnxz =0. (16)

i=1

Similarly, solving Equation (15) and Equation (16) is notably challenging.
When a straightforward solution to the likelihood equations is elusive, various pro-
cedures are available for the MLE. Common methods encompass Iterative meth-
ods, the Expectation-Maximization (EM) algorithm, Gradient Descent, Quasi-
Newton methods, Monte Carlo methods, Profile Likelihood, Bootstrapping, and
Numerical Optimization (Nocedal & Wright, 1999; Dempster et al., 1977; Gilks
et al., 1995; Press, 1992).

In cases where obtaining a solution to the log-likelihood equations proves diffi-
cult, we turn to MCMC sampling techniques to generate samples from the likeli-
hood function. For the purposes of this study, the estimation technique is referred
to as MLE MCMC. The primary objective is to determine parameter estimates
that maximize the likelihood function given the sample data. The MLE MCMC
approach identifies the mode of the simulated MCMC sample from the bivari-
ate likelihood function in Equation (14), representing the point estimate of the
parameter vector § = («, 3). That is,

fMLE = arg max {k [T(c) = (e, B,)]" " (ﬁ)n pre <H $?1> e f 2z wi} -
i=1
(17)

2.3.2. MAP_ MCMC Approach

If we assume o and 8 are independent and exponentially distributed with
means a and b, respectively, then it can be shown that the posterior distribution
is

(0|21, ..., 2p)

= K [[(a) = y(a, Ba,)]" " (ﬁ)nﬁm (Hwal) e_<%+%+6x=1“). (18)
i=1
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The MAP estimator of 6 is the value that maximizes the posterior distribution.
Thus,

Oniap = arg max {2} (19)

where

0= {K D) ~ vl )" () 67 (H tf‘1> (i) } |
i=1

3. Results

In this section, we present results of some simulated and real-life data for
both the MAP MCMC and the MLE estimation approaches, enabling efficient
parameterization of the Lognormal, Exponential, and Gamma distributions.

3.1. Lognormal Distribution

MATLAB’s ‘lognquantile’ function (MathWorks, 2020) was used to calculate
quantiles for given probabilities simulated from the uniform distribution over the
interval (0,1). Table 1 displays the first 80 out of 120 ordered data points simu-
lated from the lognormal distribution with parameters ¢ = 3 and o = 2. These
observations are assumed to represent the ordered “commencement-to-event-time”
data of an insurance portfolio comprising 120 life insurance policies until the 80"
event-time.

TABLE 1: Ordered data simulated from the lognormal distribution with parameters g = 3
and o = 2.

Simulated ordered data points
0.063  0.067 0.286 0.327 0.376 0.382 0.656 0.866  0.868 1.038
1.121 1.177 1.408 1.484 1.545 1.614 1.687 1.828 1.990 2.181
2.208 2.270 2.336  3.468 3.870 3.896 4.809 4.987 5.015  5.085
5.526 5.780 6.114 6.133 6.153 6.535 7.176 7.277 8.872 9.013
9.115 9.191 9.695 9.821 10.012 10.667 10.753 11.147 12.056 12.090
12.655 12.803 13.091 13.147 13.174 13.271 13.277 13.482 13.766 13.777
16.200 16.365 16.739 16.923 17.142 20.491 21.608 21.734 22.659 23.491
24.629 26.271 26.941 27.058 27.197 27.587 28.210 29.548 32.526 38.423

3.1.1. MLE MCMC Estimate

With n = 120, » = 80, and z,, = 38.423, as specified in Table 1, we imple-
mented a Metropolis-Hastings algorithm to sample from the likelihood function
in Equation (3). The MATLAB code for this component-wise Metropolis sampler
is detailed in Listings A1 and A2 (see Appendix). Analyzing the mode of the
resulting bivariate sample yielded maximum likelihood estimates for the lognor-
mal distribution’s parameters, ¢ and o as; pyvLe = 3.2215 and oy = 2.0824,
respectively.
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The estimated parameters closely align with the true values (1 = 3 and o = 2),
suggesting a highly accurate fit of the model to the data.

3.1.2. MAP MCMC Estimate

To explore the Bayesian posterior distribution, we employed a Metropolis-
Hastings algorithm to simulate a sample, leveraging the data from Table 1. We
assumed independent exponential prior distributions for p and o with means a = 6
and b = 4, respectively. The MATLAB code for this posterior sampling process is
analogous to Listings A1 and A2 in the appendix. MAP MCMC estimates are:
pvap = 3.1726 and oy ap = 2.0281.

These estimates precisely align with those obtained through direct sampling
from the likelihood function, demonstrating robustness to prior assumptions. The
results remain unchanged even with varying a and b (e.g., a = 15, b = 10).

To assess the MAP_MCMC estimator’s sensitivity to prior assumptions, we
performed repeated MCMC simulations with diverse prior distributions for p and
o: Exponential (E), Normal (N), Gamma(QG), Pareto(P), and Weibull (W). Table
2 summarizes the results. All estimated values of p and o landed within 10% of the
true values, showcasing remarkable tolerance to variations in prior assumptions.
Notably, the MAP MCMC estimates for both parameters remained consistent
across different priors, mirroring the results obtained with the MLE MCMC ap-
proach.

TABLE 2: Comparison of Estimates (Lognormal).

Bivariate Prior Distribution (MAP MCMC)

MLE MCMC E N G P A
Parameters o I o I o m o I o n o
Actual 3 2 3 2 3 2 3 2 3 2 3 2
Estimate 3.22 2.08 3.17 2.03 3.15 2.11 3.15 2.12 3.14 2.10 3.14 2.10
Error % 7.40 4.10 5.80 1.40 4.90 5.50 5.10 5.80 4.80 5.20 4.60 5.00

3.2. Exponential Distribution

To generate “commencement-to-event-times” following an exponential distribu-
tion with a mean of 150, we leveraged the versatility of the gamma distribution.
Specifically, we employed the MS Excel formula “= GAMMA.INV (p,1,150)” to
calculate quantiles based on probabilities simulated from a uniform distribution
over (0,1).

Recall that the exponential distribution emerges as a special case of the gamma,
distribution when the shape parameter o equals 1. Table 3 presents the initial 80
“commencement-to-event-times”’, extracted from a larger dataset of 120. These val-
ues mirror ordered “commencement-to-event-times” within an insurance portfolio
encompassing 120 life insurance policies, observed up to the 80 claim.

Figures 1 and 2 show the plot of the probability density functions of the log-
normal distribution and exponential distribution with y =3, o = 2, and A = 150.
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TABLE 3: Ordered data simulated from the exponential distribution with mean 150.

Simulated ordered data points
0.472 1.370 4.022 5.141 7.379 7.798 9.989 10.597 11.202 13.875
13.925 14.817 17.083 17.375 18.386 19.915 20.057 20.712 23.117 23.219
24.033 25.258 26.285 26.575 27.408 27.815 28.268 28.744 28.843 28.988
30.086 33.212 33.435 35.138 40.870 46.169 52.750 54.439 54.518 54.788
55.396 56.326 56.493 61.768 68.344 75.311 75.402 75.629 75.826 75.902
77.990 78.213 82.214 82.246 83.558 85.845 89.874 91.879 92.302 94.092
96.947 97.009 99.583 104.683 107.628 112.772 115.229 118.058 118.905 119.869
119.910 120.297 125.121 125.279 129.311 140.330 144.147 145.638 153.275 153.823
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0.04 1
0.03 1

0.02 1

0.01 T T T T T T T T T T
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Ficure 1: pdf of the lognormal distribution with ¢ =3 and o = 2.
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0007 +
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F1Gure 2: pdf of the exponential distribution with A = 150.

3.2.1. MLE Estimate

From Equation (10) and Table 3, given n = 120, r = 80 and z, = 153.8225,
the maximum likelihood estimate of the parameter \ is Aypg = 138.793.
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3.2.2. MLE MCMC Estimate

The MATLAB code for implementing the Metropolis-Hastings sampler for the
likelihood function in Equation (9) is provided in Listings A3 and A4 of the ap-
pendix. The results show that the maximum likelihood estimate of the parameter
A is AmLe = 155.533. This estimation was based on the values n = 120, r = 80,
and x, = 153.823, from Table 3.

3.2.3. MAP MCMC Estimate

Harnessing the data in Table 3, we employed the MAP MCMC technique
to estimate the value of A\. The Metropolis-Hastings algorithm was implemented
analogously to Listings A3 and A4 in the Appendix, facilitating sampling from
the posterior distribution outlined in Equation (12). This approach yielded a
MAP_ MCMC estimate of Ayap = 148.732, that closely aligned with the true
value of A = 150.

Table 4 reveals the parameter estimates and their absolute percentage differ-
ences from the true A value (150). Both MCMC-based techniques, MLE_ MCMC
and MAP_ MCMC, excel, with estimates hovering within 5% of the true value.
While the MLE estimate falls within a reasonable 10% margin, it exhibits slightly
lower precision compared to its MCMC counterpart. Notably, MAP MCMC
shines, with an estimate within 1% of the true value, highlighting the potential ad-
vantage of incorporating prior information through MCMC for tighter parameter
estimation.

TABLE 4: Comparison of Estimates (Exponential).

MLE MLE MCMC MAP_ MCMC
Estimate of A 138.793 155.533 148.732
Error Percentage 7.5 3.7 0.8

3.3. Application to Real-Life Data

The theory was applied to real-world data from a life insurance portfolio of 180
insured individuals from Hollard Insurance Ghana. The data recorded the time
(in days) from each policy’s commencement to the occurrence of the event (death).
Table 5 presents the frequency distribution, with 12 groups, of the number of days
from the start of the policy until the event occurred for these 180 policyholders.

The data was fitted to the Normal, Exponential, Gamma, Weibull, and Log-
normal distributions, and the test results are summarized in Table 6.
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TABLE 5: Frequency Distribution of the Number of Days (Commencement to Occurrence
of the Death).

Number of Days Frequency Percent Valid Percent = Cumulative
Percent
100 - 299 10 5.5 5.5 5.5
300 - 499 37 20.4 20.4 26.0
500 - 699 17 9.4 9.4 35.4
700 - 899 27 14.9 14.9 50.3
900 - 1099 17 9.4 9.4 59.7
1100 - 1299 21 11.6 11.6 71.3
1300 - 1499 17 9.4 9.4 80.7
1500 - 1699 12 6.6 6.6 87.3
1700 - 1899 4 2.2 2.2 89.5
1900 - 2099 14 7.7 7.7 97.2
2100 - 2299 2 1.1 1.1 98.3
2300 - 2499 3 1.7 1.7 100.0
Total 181 100.0 100.0

TABLE 6: Summary of the Goodness of Fit Test.

Distribution Log-Likelihood AIC BIC Best Fit?
Normal —443.12 890.24 896.64 No
Exponential —471.91 945.82 949.01 No
Gamma —428.26 860.52 866.91 Yes
Weibull —428.49 860.98 867.38 Close Fit
Lognormal -433.39 870.79 877.18 No

The Gamma distribution is the best fit for the data, as it has the lowest AIC
and BIC values and the highest log-likelihood. It is closely followed by the Weibull
distribution. Both distributions handle skewness well, but Gamma slightly out-
performs the Weibull distribution.

The method of moment was used to estimate the parameters of the Gamma
distribution based on the entire dataset, serving as a benchmark estimate for com-
parison. The method of moment estimates of o and 8 of the Gamma distribution,
based on the complete data from 180 policies, were calculated as 3.2151 and 0.0032,
respectively. Figure 3 shows the graph of the fitted gamma distribution using the
estimated parameters.

From Equation (17) and given n = 180, » = 100, =, = 962, the component-wise
Metropolis sampler was used to determine maximum likelihood estimates for the
«a and S of the Gamma distribution using the first 100 ordered samples of the 180
policies, which are given by ayrg = 3.3526 and Syg = 0.0029, respectively. We
may have noticed that the maximum likelihood estimates (using the first 100 or-
dered samples) are not significantly different from the method of moment estimates
(using the complete data).
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FiGure 3: Graph of the fitted gamma.

Again, using the first 100 ordered samples from the 180 policies, the Metropolis-
Hastings algorithm was employed to generate a sample from the Bayesian posterior
distribution. It was assumed that o and § are independent and exponentially
distributed with parameters a = 3 and b = 0.02, respectively. The results indicate
that the MAP MCMC estimates of o and 8 are apap = 3.3561 and Syap =
0.0034, precisely matching the estimates obtained by sampling directly from the
likelihood function. Even when we vary the values of a and b, the findings remain
consistent. Similar consistent parameter estimates were obtained (across the three
estimation techniques above) for the Weibull distribution.

4. Concluding Remarks

The study explored the dynamics of “commencement-to-event-time” behaviour
within life insurance portfolios by employing two parameter estimation techniques:
Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), uti-
lizing the Markov Chain Monte Carlo (MCMC) simulation technique. Due to
their effectiveness in modelling time-to-occurrence data, we focused on the versa-
tile Lognormal, Exponential, and Gamma distributions.

We simulated 120 observations from both lognormal and exponential distri-
butions by using the first 80 ordered samples. The estimates for the lognormal
parameters (4 and o) obtained through MLE and MAP _MCMC were remarkably
similar, with errors within 10% of the actual values. This indicates the effective-
ness of both methods in providing accurate estimations for the parameters of the
lognormal distribution. Furthermore, the study explored the sensitivity of the
MAP_ MCMC technique to various prior distributions, demonstrating its robust-
ness across different priors, including Exponential, Normal, Gamma, Pareto, and
Weibull prior distributions.
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The MLE and MAP _MCMC techniques demonstrated excellent performance
regarding the exponential distribution, providing estimates within 5% of the true
value. Although the MLE estimate remained within a reasonable 10% margin,
it showed slightly lower precision than its MAP MCMC counterpart. The ex-
ceptional performance of MAP_MCMC was particularly noteworthy, with an es-
timate within 1% of the true value. This underscores the potential advantage of
incorporating prior distribution through MCMC to achieve more precise parameter
estimation.

Further, we applied our methodology to real-life data, which was fitted to the
Gamma, distribution. The method of moment was used to estimate the parameters
of the Gamma distribution based on the entire dataset, serving as a benchmark
estimate for comparison. The result showed that based on censored data, the
MLE and MAP_MCMC estimation techniques, produced estimates closer to the
benchmark. It is important to note that our MAP MCMC approach slightly
outperformed the MLE approach.

This research pushes the boundaries of “commencement-to-event-time” mod-
elling, opening doors to exciting future explorations. For example, within survival
analysis, one may contemplate a statistical framework designed to analyse time-
to-event data, which could apply to modelling the duration between instances
of an insurance claim. Approaches such as the Cox proportional hazards model
and Kaplan-Meier estimates offer insights into the analysis of “commencement-
to-event-time”. Another avenue worth exploring in modelling “commencement-
to-event-time” involves renewal processes, which characterise the time intervals
between recurrent events, similar to the arrival of claims in an insurance portfolio.
Renewal theory and concepts, such as inter-arrival times and renewal intervals,
provide a valuable framework for analysing and predicting “commencement-to-
event-time” patterns.
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Appendix

Listings A1l. Likelihood Function of ;4 and o for the
Lognormal Distribution

function y = MLE_ lognormal(mu,sigma,x,n,xr,r)
y=(1-normecdf((log(xr))))A(n-r)*(1/sigma) Ar*exp(-0.5*sum((log(x)-mu) /sigma)A2);

Listings A2. Metropolis Hastings in MATLAB
using the Likelihood Function for Lognormal
Distribution

% % Metropolis procedure to sample from the posterior distribution
% Component-wise updating. Use a normal proposal distribution
opts = spreadsheetImportOptions("NumVariables", 1);
% Specify sheet and range
opts.Sheet = "Sheet1";
opts.DataRange = "A1:A80";
% Specify column names and types
opts.VariableNames = "x";
opts.VariableTypes = "double";
% Import the data
x = readtable("C:\Users\USER\Lognormal.xlsx", opts, "UseExcel", false);
x—table2array(x);
r=length(x);
xr=x(80);
n=120;

Revista Colombiana de Estadistica - Theoretical Statistics 48 (2025) 93-114



Efficient Parameter Estimation for Claim-Time Behaviour in Insurance Portfolios 113

% % Initialize the Metropolis sampler

T=5000; % Set the maximum number of iteration

propsigma=[0.014,0.006]; % standard deviation of proposal distribution
parametermin=[2,1]; % define minimum for alpha and beta
parametermax=|[4,3]; % define maximum for alpha and beta

seed=1; rand( ’state’ , seed ); randn(’state’,seed ); %#ok<RAND> % set the random
seed

state=zeros(2,T); % storage space for the state of the sampler
mu=unifrnd(parametermin(1),parametermax(1)); % Start value for mu
sigma=unifrnd(parametermin(2),parametermax(2)); % Start value for sigma
t=1; % initialize iteration at 1

state(1,t)=mu; % save the current state

state(2,t)=sigma;

% % Start sampling

while t<T % Iterate until we have T samples

t=t-+1;

% % Propose a new value for mu

new_mu—normrnd(mu,propsigma(1));

pratio=MLE _lognormal(new mu,sigma,x,n,xr,r)/MLE lognormal(mu,sigma,x,n,xr,r);
a=min([1 pratio]); % Calculate the acceptance ratio

u=rand; % Draw a uniform deviate from [0 1]

if u<a % Do we accept this proposal?

mu=new_mu; % proposal becomes new value for mu

end

% % Propose a new value for sigma

new _sigma=normrnd(sigma,propsigma(2));
pratio=MLE_lognormal(mu,new_sigma,x,n,xr,r)/MLE lognormal(mu,sigma,x,nxr,r);
a=min([1 pratio]); % Calculate the acceptance ratio

u=rand; % Draw a uniform deviate from [0 1]

if u<a % Do we accept this proposal?

sigma=new _sigma; % proposal becomes new value for beta

end

% % Save state

state(1,t) = mu;

state(2,t) = sigma;

end

Mean=mean(state,2)

Mode=mode(state,2)

Listings A3. Likelihood function for A\

function y = MLE _Exponential(lambda,x,n,xr,r)
y=1/(lambdaAr)*exp(-(sum(x)+(n-r)*xr)/lambda);
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Listings A4. Metropolis Hastings in MATLAB
using the Likelihood Function for exponential
distribution

% % Metropolis procedure to sample from the posterior distribution
% Component-wise updating. Use a normal proposal distribution
opts = spreadsheetImportOptions("NumVariables", 1);
% Specify sheet and range
opts.Sheet = "Sheet1";
opts.DataRange = "A1:A80";
% Specify column names and types
opts.VariableNames = "x";
opts.VariableTypes = "double";
% Import the data
x = readtable("C:\Users\USER\Exp.xlsx", opts, "UseExcel", false);
x—=table2array(x);
r=length(x);
xr=x(80);
n=120;
% % Initialize the Metropolis sampler
T=5000; % Set the maximum number of iteration
sigma = 0.5; % Set standard deviation of normal proposal density
lambdamin = 140; lambdamax = 160; % define a range for starting values
lambda = zeros( 1, T ); % Init storage space for our samples
lambda(1l) = unifrnd( lambdamin , lambdamax ); % Generate start value
%% Start sampling

t=1;
while t < T % Iterate until we have T samples
t=t+1;

% Propose a new value for theta using a normal proposal density
lambda_star = normrnd( lambda(t-1) , sigma );

% Calculate the acceptance ratio

alpha = min([1 MLE _Exponential(lambda_ star,x,n,xr,r) / MLE Exponential(lambda(t-
1),x,n,xr,r)]);

% Draw a uniform deviate from [ 0 1 |

u = rand;

% Do we accept this proposal?

if u < alpha

lambda(t) = lambda_star; % If so, proposal becomes new state
else

lambda(t) = lambda(t-1); % If not, copy old state

end

end

Mean=mean(lambda)

Mode=mode(lambda)
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