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Abstract

In this paper, we propose a new discrete model, the discrete analog of the
xLindley distribution, as an alternative for modeling overdispersed data. The
model was derived using the method of in�nite series, allowing us to capture
complex characteristics of the data, and its properties were studied in detail.
Asymptotic results are presented to validate the model parameter estimates
consistency in large samples. Additionally, a Bayesian approach was consid-
ered for inference with complete and right-censored data. The performance
of the Bayesian estimators was evaluated through Monte Carlo simulations,
enabling a comprehensive comparison of the e�ectiveness and e�ciency of the
estimators under di�erent scenarios. The proposed model was applied to two
real datasets, demonstrating its practical utility. The practical application
included the analysis of discrete events in research environments, highlight-
ing the model's �exibility in various situations. Furthermore, a comparison
with other discrete distributions was provided, showcasing the advantages of
the xLindley model over existing alternatives.
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Resumen

En este artículo, proponemos un nuevo modelo discreto, el análogo dis-
creto de la distribución xLindley, como una alternativa para modelar datos
sobredispersos. El modelo fue derivado utilizando el método de series in-
�nitas, lo que nos permite capturar características complejas de los datos, y
se estudiaron en detalle sus propiedades. Se presentan resultados asintóti-
cos para validar la consistencia del modelo en grandes muestras. Además,
se consideró un enfoque bayesiano para la inferencia con datos completos y
censurados a la derecha. El rendimiento de los estimadores bayesianos se
evaluó a través de simulaciones de Monte Carlo, lo que permitió una com-
paración integral de la efectividad y e�ciencia de los estimadores en diferentes
escenarios. El modelo propuesto se aplicó a dos conjuntos de datos reales,
demostrando su utilidad práctica. La aplicación práctica incluyó el análisis
de eventos discretos en entornos de investigación, destacando la �exibilidad
del modelo en diversas situaciones. Además, se proporcionó una compara-
ción con otras distribuciones discretas, mostrando las ventajas del modelo
xLindley sobre alternativas existentes.

Palabras clave: Datos de recuento; Métodos de discretización; Distribución
xLindley; Dispersión de datos; Inferencia bayesiana; Estudio de simulación.

1. Introduction

Recently, it is observed in the literature many studies on the integration of new
probabilistic models through the discretization of continuous random variables.
The goal of discretization is to create probability distributions that can be applied
to strictly discrete data. In survival analysis, it is common to use continuous
distributions to model discrete data, for instance, the data consist of the number
of cycles of a product before failure (breakage) or the number of weeks it took rats
painted with a carcinogen to develop carcinoma.

The use of continuous distributions to model discrete data is a common prac-
tice in many studies, as evidenced in the work of Klein & Moeschberger (1997),
where these distributions are employed in survival analyses. The choice of contin-
uous models is due to their simplicity and broad applicability, allowing for good
estimates of discrete events despite the idealizations regarding the nature of the
data. This approach is emphasized by the works of Meeker & Escobar (1998)
focusing on industrial reliability and Kalb�eisch & Prentice (2002) focusing on
lifetime modeling in medical studies, assuming data in the presence of censoring
and truncation.

Many other studies are introduced in the literature assuming continuous dis-
tributions in survival data analysis, such as the study by Lee & Wang (2003) that
presents risk models applied to biomedical data with applications in chronic diseases
and possible treatments and Lawless (2003) assuming exponential and Weibull dis-
tributions for failure time and reliability data in industrial applications.

Collett (2003), in turn, applies discretization to analyze survival data, espe-
cially in countable events, highlighting the use of cumulative distribution functions
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to estimate probabilities associated with these events, thus providing a robust
statistical framework for clinical analysis. Additionally, Hamada et al. (2008)
introduce a Bayesian approach to modeling the reliability of complex systems,
addressing uncertainty in parameter estimation and enabling the adaptation of
continuous distributions to discrete data, thereby enhancing the understanding
and application of statistical models across various �elds.

An overview of discretization methods for continuous distributions and some
discretized distributions is introduced by Chakraborty (2015) who explores tech-
niques such as the in�nite series method and a quantile-based approach where
properties and characteristics of various discretized distributions are examined,
including discrete versions of some popular probability distributions such as the
normal distribution, the exponential distribution, and the lognormal distribution.
This study also highlights how discretized distributions can capture details and
variations in observational data not captured by continuous distributions, thus ex-
panding the applicability of these distributions in various data analysis contexts.

The �rst method of discretization introduced in the literature is based on de�n-
ing a probability mass function through an in�nite series. This concept was �rst
presented by Good (1953) with the discrete Good distribution to model species
population frequencies.

Other authors followed this line, including Haight (1957), who developed his
work focusing on queue modeling with balking, a phenomenon in which customers
decide not to enter a queue if it is too long. Using the discrete Pearson III distri-
bution, through an approach based on in�nite series, Haight (1957) modeled the
frequency of arrival and balking events, allowing for a more accurate analysis of
the variability in waiting times and balking in service systems.

The study conducted by Siromoney (1964) introduced the Dirichlet Series dis-
tribution, emphasizing the modeling of the frequency of rainy days. The proposed
approach was able to capture the variability associated with these events, provid-
ing a robust model that meets the demands of meteorological applications requir-
ing discrete representations. This line of reasoning is supported by the work of
Kemp (1997), which focused on characterizing the discrete normal distribution.
The discretization of the continuous normal distribution is particularly relevant
for modeling data that follows a normal distribution in discrete contexts, such as
event counting.

Following this perspective, Sato et al. (1999) introduced a consistent formula
for the discrete exponential distribution, applied to defect metrology in wafers,
highlighting the importance of modeling frequencies of discrete events in quality
control in semiconductor manufacturing processes. Complementarily, Bi et al.
(2001) addressed the discrete log-normal distribution, revealing its applicability in
mining massive and skewed data. The study demonstrated that this discretized
version allows for a more precise analysis of phenomena following log-normal pat-
terns in countable data sets.

Furthermore, the research of Inusah & Kozubowski (2006) on a discrete ana-
logue of the Laplace distribution, alongside the investigation by Kozubowski &
Inusah (2006), which introduced a skew discrete Laplace distribution, signi�cantly
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expanded the tools available for modeling data with asymmetry and dispersion
characteristics. These developments highlight the relevance of modeling discrete
distributions across various disciplines, particularly in engineering. Finally, Do-
ray & Luong (1997) enhanced statistical inference techniques for the family of
distributions proposed by Good (1953), while Kemp (2008) introduced the dis-
crete half-normal distribution, broadening the options for modeling discrete data.
Together, these investigations provide a comprehensive and dynamic view of the
discretization of distributions and their practical implications in di�erent contexts.

This discretization method by in�nite series is de�ned as follows:

De�nition 1. Let X be a continuous random variable. If X has pdf f
X
(x;θ) with

support on R, then the corresponding discrete random variable Y has probability
mass function (pmf) given by

P (Y = y;θ) =
f
X
(y;θ)

∞∑
j=−∞

f
X
(j;θ)

, y ∈ Z,

where θ is the vector of parameters indexing the distribution of X.

The main goal of this paper is to derive discrete analog for the xLindley distri-
bution, which is a one-parameter lifetime model introduced and studied by Chouia
& Zeghdoudi (2021), using the in�nite series method. The proposed new model
can be a suitable alternative to model overdispersed count datasets. A continuous
random variable X is said to have xLindley distribution if its probability density
function (pdf) can be written as

f
X
(x; θ) =

θ2 (2 + θ + x)

(1 + θ)
2 e−θx, x ∈ R+, (1)

where θ ∈ R+ is the shape parameter. Chouia & Zeghdoudi (2021) shown that
this model can be derived as a 2-component mixture of an Exponential distribu-
tion with mean θ−1 and a Gamma distribution with shape parameter 3 and scale
parameter θ, with mixing proportions given by α (1 + α)

−1
and (1 + α)

−1
, respec-

tively. A comprehensive discussion on the probabilistic properties of the xLindley
distribution such as moments, hazard function, entropies, stochastic orderings, pa-
rameter estimation, among others is also presented on the mentioned paper. The
corresponding survival function of X is given by

S
X
(x; θ) =

(
1 +

θx

(1 + θ)
2

)
e−θx, x ∈ R+, (2)

for θ ∈ R+. This distribution is one of several generalizations of the Lindley dis-
tribution proposed in the literature in the last years such as the power Lindley
distribution introduced by Ghitany et al. (2013), the weighted Lindley distri-
bution proposed by Ghitany et al. (2011), the quasi-Lindley distribution intro-
duced by Shanker & Mishra (2013), the inverse Lindley distribution proposed by
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Sharma et al. (2015), the transmuted Lindley distribution proposed by Merovci
(2013), the inverse power Lindley proposed by Barco et al. (2017), the discrete
Lindley studied by Oliveira et al. (2017), a class of bivariate Lindley distributions
introduced by Oliveira et al. (2021) and many others.

Therefore, based on the discretization method presented above, we propose a
new discrete distribution, named discrete xLindley distribution (DXL), with a pmf
given by:

P (X = x; θ) = g(θ) (2 + θ + x) e−θ (x+1), (3)

for θ ∈ R+ and

g(θ) =

(
eθ − 1

)2
(2 + eθ)eθ − (1 + θ)

. (4)

Note that the equation (3) is a proper pmf since,

∞∑
x=0

P (X = x; θ) = g(θ)

[ ∞∑
x=0

(2 + θ + x)e−θ(x+1)

]
= g(θ)g−1(θ) = 1. (5)

In Figure 1, we illustrate the behavior of pmf in (3) for di�erent values of θ
for which we can see that the proposed distribution is unimodal. Furthermore, it
also satis�es the log-concave inequality P2(X = x) ⩾ P(X = x− 1)P(X = x+ 1)
for x ⩾ 1 which implies unimodality (Keilson & Gerber, 1971).

Figure 1: Behavior of the probability mass function for the DXL distribution assuming
di�erent values for θ (θ = 0.3 → θ = 1.8).
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It is important to point out that the discrete xLindley model proposed in
this study o�ers a robust solution for modeling overdispersed count data, a chal-
lenge that many existing discrete distributions are not suitable for. Traditional
adaptations of continuous distributions to discrete settings frequently fall short in
accurately capturing overdispersion. This model bridges this gap by presenting a
discrete counterpart to the xLindley distribution, speci�cally tailored for overdis-
persed count data. Its application is especially pertinent in �elds such as survival
analysis and reliability studies, where overdispersed discrete data are commonly
encountered and demand e�ective modeling approaches.

The structure of this paper in as follows: in Section 2, the key probabilistic
characteristics of the newly proposed DXL distribution are outlined. In Section 3,
the inference methods for the model parameter are presented. In Section 5, the
results of a comprehensive simulation study are shown to evaluate the properties
of the newly proposed model parameters. In Section 6, two practical applications
of the proposed model to real data sets highlight its usefulness. Finally, in Section
7, some concluding remarks are provided.

2. Probabilistic Properties

In this section, we present a comprehensive study of the probabilistic prop-
erties of the discrete xLindley distribution. These properties include its survival
and cumulative functions (Subsection 2.1), its shape (Subsection 2.2), the haz-
ard function (Subsection 2.3), the quantile function (Subsection 2.4), the moment
properties (Subsection 2.5), the zero-modi�cation measure (Subsection 2.6), the
heavy-tail index (Subsection 2.7), stochastic orderings (Subsection 2.8), and the
reliability measure (Subsection 2.9).

2.1. Survival and Cumulative Functions

Proposition 1. The survival function of the DXL distribution is given by,

P (X > x; θ) =

[
3 + θ + x

(eθ − 1)
2 − (2 + θ + x)e−θ

(eθ − 1)
2

]
e−θxg(θ), (6)

for θ > 0.

Proof . Straightforward noticing that the series
∑

X>x P (X = x; θ) is an conver-
gent series and the sum converges to the expression given in Equation (6) for all
θ > 0.

Remark. Since survival and cumulative functions are complementary functions,
the cumulative function of the DXL distribution is given by,

P (X ⩽ x; θ) = 1−

[
3 + θ + x

(eθ − 1)
2 − (2 + θ + x)e−θ

(eθ − 1)
2

]
e−θxg(θ), (7)

for θ > 0.
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2.2. Mode

Proposition 2. The mode of DXL distribution is given by,

x0 =


⌊
(1 + θ)eθ − (2 + θ)

1− eθ

⌋
, if

(1 + θ)eθ − (2 + θ)

1− eθ
/∈ Z+

(2 + θ)eθ − (3 + θ)

1− eθ
, if

(2 + θ)eθ − (3 + θ)

1− eθ
∈ Z+,

(8)

where ⌊·⌋ is the �oor function. From Equation (8), we have

i) P (X = x+ 1; θ) < P (X = x; θ) if x > x0;

ii) P (X = x+ 1; θ) = P (X = x; θ) if x = x0;

iii) P (X = x+ 1; θ) > P (X = x; θ) if x < x0.

Proof . Since the DXL distribution is unimodal, its pmf satis�es the following
inequalities:

P (X = x; θ) ⩾ P (X = x− 1; θ),∀x ⩽ x0,

and,
P (X = x; θ) ⩾ P (X = x+ 1; θ),∀x ⩾ x0,

where x0 is the mode of DXL distribution. Therefore,

P (X = x; θ) ⩾ P (X = x− 1; θ) ⇔ x ⩽
(1 + θ)eθ − (2 + θ)

1− eθ
,

and,

P (X = x; θ) ⩾ P (X = x+ 1; θ) ⇔ x ⩾
(2 + θ)eθ − (3 + θ)

1− eθ
.

Thus, the proof is complete since the relations are straightforward from the in-
equalities above.

2.3. Hazard Function

Proposition 3. The hazard rate of DXL distribution is an increasing function.

Proof . The hazard rate is de�ned by

h(x; θ) =
P (X = x; θ)

P (X > x; θ)
=

(2 + θ + x)e−θ(x+1)(eθ − 1)2

(3 + θ + x)e−θx − (2 + θ + x)e−θ(x+1)
,

for θ ∈ R+. Taking the limit with x → ∞, we have,

lim
x→∞

h(x; θ) = eθ − 1,

that is, the hazard rate is an increasing function as θ increases which concludes
the proof.
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2.4. Quantile Function

Proposition 4. The quantile function, Q(u), of the DXL distribution is given by,

Q(u) =

⌊
2 + θ − eθ(3 + θ)

(eθ − 1)
+W−1{e−k(θ)k(θ)(1− u)}

⌋
, (9)

where ⌊·⌋ is the �oor function; W−1{·} is the Lambert W function (Jodra, 2010)
with negative branch and k(θ) =

[
{(2 + θ)eθ − θ − 1}θ

]
/
[
eθ − 1

]
.

Proof . The quantile function is de�ned by,

F (Q(u)) = u ⇔

[
(2 + θ +Q(u))e−θ

(eθ − 1)
2 − 3 + θ +Q(u)

(eθ − 1)
2

]
e−θQ(u)g(θ) = 1− u,

for 0 < u < 1, that is,[
(2 + θ)e−θ − (3 + θ) + (eθ − 1)Q(u)

]
e−θQ(u) =

[
eθ + (1 + θ)(eθ − 1)

]
(1− u).

Setting Z(u) = (2 + θ)e−θ − (3 + θ) + (eθ − 1)Q(u), we have,

Z(u)eZ(u) =
[
eθ + (1 + θ)(eθ − 1)

]
(1− u)e


θ
[
(2 + θ)eθ − (3 + θ)− 1

]
eθ − 1


.

Therefore, the solution for Z(u) is,

Z(u) = W


[
eθ + (1 + θ)(eθ − 1)

]
(1− u)e


θ
[
(2 + θ)eθ − (3 + θ)− 1

]
eθ − 1


 ,

where W{·} is the Lambet W function (Jodra, 2010; Barco et al., 2017). Now,

setting k(θ) =
{(2 + θ)eθ − θ − 1}θ

eθ − 1
and inverting Z(u), we have,

Q(u) =

⌊
2 + θ − eθ(3 + θ)

(eθ − 1)
+W−1{e−k(θ)k(θ)(1− u)}

⌋
, (10)

where ⌊·⌋ is the �oor function; W−1{·} is the Lambert W function with negative
branch. Hence, the proof.

2.5. kth Moment

Proposition 5. The kth moment of the DXL distribution is given by,

E(Xk) =

{
polylog

(
−1− k, e−θ

)
+ polylog

(
−k, e−θ

)
(2 + θ)

} (
eθ + e−θ − 2

)
(2 + θ) eθ − θ − 1

. (11)
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Proof . By de�nition, µ′
k = E(Xk) then

µ′
k = E(Xk) =

∞∑
x=0

xk · g(θ) · (2 + θ + x)e−θ(x+1).

Assuming g(θ) =

(
eθ − 1

)2
eθ + (1 + θ) (eθ − 1)

, we have

µ′
k =

1

(2 + θ)eθ − θ − 1
·

∞∑
x=0

xk · (eθ − 1)2 · (2 + θ + x)e−θ(x+1).

Using some properties of the summations, in addition to the application of
distributive and potentiating properties in the summation, we obtain

µ′
k =

1

(2 + θ) eθ − θ − 1

[
θ eθpolylog

(
−k, e−θ

)
+ eθpolylog

(
−1− k, e−θ

)
+ 2 eθpolylog

(
−k, e−θ

)
− 2 θ polylog

(
−k, e−θ

)
− 2 polylog

(
−1− k, e−θ

)
− 4 polylog

(
−k, e−θ

)
+ e−θθ polylog

(
−k, e−θ

)
+ e−θpolylog

(
−1− k, e−θ

)
+ 2 e−θpolylog

(
−k, e−θ

)]
,

where polylog is the general polylogarithm function (Xu et al., 2016). Thus,

E(Xk) =

{
polylog

(
−1− k, e−θ

)
+ polylog

(
−k, e−θ

)
(2 + θ)

} (
eθ + e−θ − 2

)
(2 + θ) eθ − θ − 1

,

and the proof is complete.

Proposition 6. Let X be a discrete random variable according to a DXL dis-
tribution with parameter θ ∈ R+ and h1(θ) = (2 + θ) eθ − θ − 1 and h2(θ) =[
eθ (1 + θ)− θ

]
(1 + θ) eθ. The equations of the mean (µ), variance (σ2), coe�-

cient of variation (γ), skewness (
√
β1) and kurtosis (β2) are given, respectively,

by

µ =
(3 + θ) eθ − θ − 1

(eθ − 1)h1(θ)
;

σ2 =
(3 + θ)h1(θ)e

2 θ − h2(θ)

(eθ − 1)
2
[h1(θ)]

2
;

γ =

(
eθ − 1

)
h(θ)

(3 + θ) eθ − θ − 1

√
(3 + θ)h(θ)e2 θ − h2(θ)

(eθ − 1)
2
[h(θ)]

2
;
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√
β1 =

{
(3 θ + 17) e2 θ + (3 + θ) e3 θ + (−3 θ + 5) eθ − 1− θ

(eθ − 1)
3
h1(θ)

}

×

{
(3 + θ)h1(θ)e

2θ − h2(θ)

(eθ − 1)
2
[h1(θ)]

2

}− 3
2

;

β2 = −
[
(−θ − 3)e4 θ − (10θ + 46) e3 θ − 66 e2 θ + (10 θ − 6) eθ + θ + 1

]
{− (3 + θ)h1(θ)e2 θ + [h2(θ)]}2 [h1(θ)]

−3
.

Proof . By the simple de�nition of mean (µ), variance (σ2), coe�cient of variation
(γ), skewness (

√
β1) and kurtosis (β2).

A normalized measure of dispersion can be obtained by using the variance-to-
mean relationship. This measure is the well-known index of dispersion (ID) which,
in this case, is given by

ID =
σ2

µ
=

(3 + θ)h1(θ)e
2θ − h2(θ)

(eθ − 1)h1(θ) [h1(θ) + eθ]
. (12)

where hj(θ), j = 1, 2 are de�ned in Proposition 6.

2.6. Zero-Modi�cation Measure

Another useful measure is the zero-modi�cation (ZM) index which is de�ned
based on the Poisson distribution. This index is interpreted as:

� ZM > 0 indicates zero-in�ation.

� ZM < 0 indicates zero-de�ation.

� ZM = 0 indicates no zero-modi�cation.

For the xLindley distribution with parameter θ ∈ R+, the ZM index is given
by the expression:

ZM = 1 +
(
eθ − 1

)3 {g(θ)}−1

{
ln
[
(2 + θ)e−θg(θ)

]
k(θ)

}
(13)

where k(θ) = (3 + θ) eθ−θ−1. From (13), we observe that ZM → 0 as θ → ∞ and
ZM → 1 as θ → 0. This implies, besides the usual case (ZM = 0), that the DXL
distribution is suitable to deal with zero-in�ation but is not indicated to model
zero-de�ated datasets. Further, it is clear that the coe�cient of skewness and the
coe�cient of kurtosis are decreasing as θ decreases. The asymmetry degree and
the �atness of a distribution can be measured by its coe�cients of skewness and
kurtosis, respectively. These coe�cients are essential to characterize the shape of
any distribution. Simultaneous large values for the mean, variance and ID (index of
dispersion) are obtained when θ is small. Table 1 summarizes, for selected values
of θ, the nature and the behavior of these coe�cients along with the measures
previously presented.
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Table 1: Theoretical descriptive statistics under DXL distribution.

Measures

θ Mean Variance ID CV ZM Skewness Kurtosis

0.30 4.9962 20.8170 4.1665 0.9132 0.5681 6.1262 21.7198

0.60 1.9228 4.6218 2.4037 1.1181 0.3865 5.1048 18.6762

0.90 1.0071 1.8141 1.8012 1.3373 0.2713 4.5517 17.2863

1.20 0.6009 0.9042 1.5048 1.5825 0.1933 4.2363 16.7269

1.50 0.3848 0.5139 1.3353 1.8627 0.1390 4.0811 16.7868

1.80 0.2574 0.3166 1.2300 2.1861 0.1006 4.0545 17.4372

2.7. Heavy-Tail Index

Proposition 7. The DXL distribution has heavy tails when θ tends to zero.

Proof . The heavy-tail (HT) index is de�ned by

HT = lim
x→∞

P (X = x+ 1; θ)

P (X = x; θ)
,

for θ ∈ R2
+. For the DXL distribution, one can easily obtain HT = eθ. A discrete

distribution is said to have heavy tails if HT → 1 when x → ∞. Hence,

lim
θ→0

HT = lim
θ→0

eθ = 1,

which concludes the proof.

2.8. Stochastic Orderings

Proposition 8. Let X be a random variable with probability mass function given
by in Equation (3), and let Y be a geometric random variable with the probability
mass function PY (X = x; θ) = e−θx(1 − e−θ) then the likelihood ratio order is
Y ⩽lr X and L(x; θ) = PX(X = x; θ)/PY (X = x; θ) is an increasing function in
x. Also, the stochastic order is Y ⩽st X, the hazard rate order is Y ⩽hr X and
the expectation order is Y ⩽E X.

Proof . Since,

L(x; θ) =
(2 + θ + x)(eθ − 1)

(2 + θ)eθ − (θ + 1)
,

we have L(x) ⩽ L(x+ 1),∀θ > 0. Therefore, the proof is complete.

2.9. Reliability Measure

Proposition 9. Suppose X and Y are independent DXL random variables with
parameters θ1 and θ2, respectively. The stress-strength parameter, R = P (X < Y ),
is given by,
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R =
{
A(θ1, θ2 + 1)e3θ2+2θ1 −A(θ1, θ2)e

2θ2+2θ1 +B(θ1, θ2)e
θ1+θ2

− B(θ1, θ2 + 1)eθ1+2θ2 + (1 + θ1)C(θ2)
} (eθ − 1)2

(eθ1+θ2 − 1)
3
C(θ1)C(θ2)

where A(θ1, θ2) = (2 + θ1)(2 + θ2), B(θ1, θ2) = (2θ2 + 3)θ1 + 3θ2 + 3 and C(θi) =
(2 + θi)e

θi − θi − 1.

Proof . The stress-strength parameter is de�ned by

R =

∞∑
x=0

P (X = x; θ1)P (X > x; θ2)

=

∞∑
x=0

{
(3 + θ2 + x)e−θ2x − (2 + θ2 + x)e−θ2(x+1)

}
{2 + x+ θ1}eθ1(x+1)

{(2 + θ2)eθ2 − θ2 − 1}{g(θ1)}−1
,

for θ1, θ2 ∈ R2
+. Setting

� A(θ1, θ2) = (2 + θ1)(2 + θ2).

� B(θ1, θ2) = (2θ2 + 3)θ1 + 3θ2 + 3

� C(θi) = (2 + θi)e
θi − θi − 1

hence the proof.

3. Inference Methods

3.1. Complete Data

Let X = (X1, . . . , Xn) be a random sample of size n from the DXL distribution
and x = (x1, . . . , xn) its observed values. The log-likelihood function of θ can be
expressed as

ℓn (θ;x) = n ln [g(θ)]− nθ(x+ 1) +

n∑
i=1

ln(2 + θ + xi), (14)

where x is the sample mean and g(θ) is de�ned in (3). The MLE θ̂ of θ can be
obtained by direct maximization of the log-likelihood function (14). Hence, the
component of the score vector, Uθ, is given by

Uθ =
∂ℓn (θ;x)

∂θ
=

ng′(θ)

g(θ)
− n(x+ 1) +

n∑
i=1

1

2 + θ + xi
.

There is no closed-form solution for the MLE of θ, and therefore, standard
optimization algorithms such as Newton-Raphson, BFGS or Nelder-Mead based

Revista Colombiana de Estadística - Theoretical Statistics 48 (2025) 39�70



The Discrete xLindley Distribution 51

methods may be used to obtain numerical estimates. On other hand, under suit-
able regularity conditions (Lehmann & Casella, 1998), the asymptotic distribution

of the MLE θ̂ is a univariate Normal distribution with mean θ and variance σ̂θ,
which can be consistently estimated by the inverse of the observed Fisher's infor-
mation given by,

I0 (θ) =
[
Uθθ

]
,

where

Uθθ = n

{
g′′(θ)

g(θ)
−
(
g′(θ)

g(θ)

)2
}

−
n∑

i=1

1

(2 + θ + xi)2
.

However, under the maximum likelihood theory, a consistent estimator for the
variance of θ̂ is obtained by the inverse of the Fisher information of θ, evaluated
at θ = θ̂, i.e., σ̂θ = I−1

E (θ). Thus, assuming complete data, the expected Fisher's
information for the proposed DXL model is given by,

IE (θ) =

[
n

{(
g′(θ)

g(θ)

)2

− g′′(θ)

g(θ)

}
+ g(θ)

{
Φ

(
1

eθ
, 1, θ

)
eθ − eθ

θ
− 1

1 + θ

} ]
,

where Φ(·) is the Lerch transcendent function (Hassani, 2007; Ferreira et al., 2017).
Finally, in order to obtain interval estimates for the parameter θ, one can use
large sample approximations to get the 100 × (1− α)% two-sided CIs as θ̂ ±
z1−α/2

√
I−1
E (θ) where z1−α/2

is the upper (α/2)th percentile of the standard Normal

distribution.

3.2. Right-Censored Data

Let us consider the situation when the lifetime, Xi, is not completely observed
and may be subject to right censoring and let Ci be the censoring time for the
ith individual. From a sample of size n, it is observed Xi = min {Xi, Ci} and an
indicator variable δi = I(Xi < Ci), where

� δi = 1 if Xi is a complete observed lifetime.

� δi = 0 if it is a right censored lifetime.

In this case, the log-likelihood function assuming the DXL distribution is given by,

ℓn (θ;x) = {nr + n(1− r)} ln [g(θ)]− {nr + nx}θ + 2n(1− r) ln
(
eθ − 1

)
+

n∑
i=1

(1− δi) ln
(
3 + θ + xi − (2 + θ + xi)e

−θ
)

+

n∑
i=1

δi ln(2 + θ + xi), (15)

where x is the sample mean and r =
∑n

i=1 δi is the number of uncensored
observations.
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In the same way as in complete data, the MLE θ̂ for the unknown parameter θ
is obtained by maximizing the log-likelihood function de�ned in (15) from which
we can see that there is no closed-form for the MLE. In addition, under suitable
regularity conditions, the observed Fisher's information is given by,

I0 (θ) =
[
Uθθ

]
,

where

Uθθ = {nr + n(1− r)}

{
g′′(θ)

g(θ)
−
(
g′(θ)

g(θ)

)2
}

− 2n(1− r)eθ

(eθ − 1)
2

+

n∑
i=1

(1− δi)
{
1 + e−2θ +

[
θ2 + (2xi + 5)θ + x2

i + 5xi + 2
]
e−θ
}

{(2 + θ + xi)e−θ − (x+ θ + 3)}2

−
n∑

i=1

δi
(2 + θ + xi)2

.

In this case, a consistent estimator for the variance of θ̂ is also obtained by
the inverse of the Fisher information of θ, evaluated at θ = θ̂, i.e., σ̂θ = I−1

E (θ).
Thus, assuming the right-censored data, the expected Fisher's information for the
proposed DXL model is given by,

IE (θ) = {nr + n(1− r)}

{(
g′(θ)

g(θ)

)2

− g′′(θ)

g(θ)

}
+

2n(1− r)eθ

(eθ − 1)
2

+ nrg(θ)

{
Φ

(
1

eθ
, 1, θ

)
eθ − eθ

θ
− 1

1 + θ

}
+ (n− r)g(θ)

{
(2 + θ)

{
e2θ + 1 +

(
θ2 + 5θ + 2

)
eθ
}

[(3 + θ) eθ − θ − 2]
2
eθ

}

× 6F5

{[
1, 3 + θ,A(θ), A(θ),−B(θ) + θ +

7

2
, B(θ) + θ +

7

2

]
,

[
θ + 2, C(θ), C(θ), B(θ) + θ +

5

2
,−B(θ) + θ +

5

2

]
,
1

eθ

}
,

where Φ(·) is the Lerch transcendent function and pFq is the generalized hyper-
geometric function (Virchenko et al., 2001) where p is number of operands of the
�rst argument, q is number of operands of the second argument, and,

A(θ) =
(3 + θ) eθ − θ − 2

eθ − 1

B(θ) =

√
[17eθ − 4(e2θ + 1)] e−θ

2

C(θ) =
(4 + θ) eθ − θ − 3

eθ − 1
.
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Similarly to the uncensored case, one can use large sample approximations to

get the 100 × (1− α)% two-sided CIs as θ̂ ± z1−α/2

√
I−1
E (θ) where z1−α/2

is the

upper (α/2)th percentile of the standard Normal distribution.

3.3. Bayesian Inference

The Byesian paradigm is based on specifying a probability model for the ob-
served data D, given a vector of unknown parameters η (assuming η is a random
variable) and provides a rational method for updating the new information using
the Bayes' rule and prior distributions for the uncertainty about η. Thus, in this
work, we have adopted a squared loss function, L(η, a) = (η−a)2, to determine the
Bayesian estimators for complete and right-censored data. In addition, in presence
of covariates, we have adopted the following regression structure for θ:

θi = exp

β0 +

n∑
j=1

βjxji

, (16)

where β is the vector of regression parameters. Since in some cases, there is
no expert's information available to justify the choice of informative priors for
the model parameters, we have to specify prior distributions that represent weak
information, such as proper distributions with large variance. For this work, the
weak prior distributions adopted are given by,

θ ∼ Gamma(0.001, 0.001) (Complete and Right-censored Data - Scenario 1).

θ ∼ Uniform(0, 10) (Complete and Right-censored Data - Scenario 2).

θ ∼ Je�reys's prior (Complete and Right-censored Data - Scenario 3).

β ∼ Normalq+1

(
0, 102Iq

)
(Regression Data).

where β is the vector of regression parameters and Iq+1 is an identity matrix
of order q + 1. The Bayesian approach for the estimation of parameters from
DXL distribution can be considered by writing the unnormalized joint posterior
distribution of the vector ζ of all parameters as,

π(ζ; t) ∝ exp {ℓ(ζ; t)}π(θ) (Complete Data).

π(ζ; t, δ) ∝ exp {ℓ(ζ; t, δ)}π(θ) (Right-censored Data).

π(ζ; t, δ) ∝ exp {ℓ(ζ; t, δ)}π(β) (Regression Data). (17)

Inferences for the components of the vector ζ are entirely based on the marginal
posterior densities, which can be obtained by integrating the expressions in Equa-
tion (17), apart from the normalizing constant. However, deriving analytical ex-
pressions for these densities is infeasible, mainly due to the complexity of the
associated log-likelihood function. In this case, we may resort to usual Markov
Chain Monte Carlo (MCMC) methods (Gelfand & Smith, 1990; Chib & Green-
berg, 1995) to drawn pseudo-random samples for the marginal posterior densities.
In this work, we have adopted the Metropolis-within-Gibbs (MwG) sampler, whose
steps are described in the following.
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� Step 1: Choose an initial value ζ(0) for ζ. Denote ζ at the kth step as ζ(k);

� Step 2: Generate θ(k) from π(θ; t) for complete data model;

� Step 3: Generate θ(k) from π(θ; t, δ) for right-censored data model;

� Step 4: Generate β(k) from π(β; t, δ) for regression model;

� Step 5: Repeat Steps 2-4 N times;

� Step 6: Compute the component-wise Monte Carlo posterior estimate of ζ
as

ζ̂ =
1

N − b

N−1∑
k=b

ζ(k+1),

where b is the burn-in period.

4. Model Diagnostics

4.1. Gelman-Rubin Diagnostic

The Gelman-Rubin diagnostic, also known as the R̂ statistic, is a commonly
used method for assessing the convergence of Markov Chain Monte Carlo (MCMC)
simulations. It evaluates convergence by comparing the variance within multiple
chains to the variance between chains. When multiple MCMC chains are initiated
from di�erent starting values, this diagnostic examines whether the chains are
converging to the same stationary distribution. In this way, for each parameter,
two types of variances are calculated:

� Within-chain variance (W ): This measures the variability within each
individual chain.

� Between-chain variance (B): This measures the variability between the
means of the di�erent chains.

The Gelman-Rubin statistic R̂ is the square root of the ratio of the estimated
variance of the parameter (a weighted average of within- and between-chain vari-
ances) to the within-chain variance:

R̂ =

√
V̂

W
,

where V̂ is an estimate of the total variance, combining both between-chain and
within-chain components. For this measure, if R̂ ≈ 1, it indicates that the between-
chain and within-chain variances are approximately equal, suggesting that the
chains have likely converged. Otherwise, if R̂ > 1.1, it implies that the chains
may not have fully converged and may still be exploring di�erent regions of the
parameter space.
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4.2. Geweke Diagnostic

The Geweke diagnostic is another convergence assessment tool for MCMC sim-
ulations, focusing on the behavior of a single chain. It is based on comparing the
means of di�erent sections of the chain to detect whether the chain has reached
equilibrium. In this case, the chain is divided into two segments:

� Early segment: Typically the �rst 10% of the chain.

� Late segment: Typically the last 50% of the chain.

The Geweke diagnostic computes a z-score-like statistic by comparing the mean
of the parameter in the early and late segments:

Z =
X1 −X2√

Var(X1) +Var(X2)
,

where X1 and X2 represent the means of the early and late portions of the chain,
and Var(X1) and Var(X2) are their variances. For this measure, if the chain has
converged, the Geweke statistic Z should be approximately normally distributed
with mean 0 and variance 1, as the early and late means should not di�er signi�-
cantly.

4.3. Heidelberger-Welch Diagnostic

The Heidelberger-Welch diagnostic is a widely-used tool for assessing the con-
vergence of Markov Chain Monte Carlo (MCMC) simulations. It evaluates whether
a chain has reached stationarity and tests if the samples can be treated as coming
from a stationary distribution. This diagnostic operates in two phases: a station-
arity test and a half-width test. That is,

� Stationarity Test: The stationarity test checks if the MCMC chain has
converged to its stationary distribution. This is done by applying a Cramér-
von Mises test to the null hypothesis that the �rst portion of the chain is
drawn from the same distribution as the later portion. The test iteratively
discards early samples (burn-in period) until the remaining sequence passes
the test, indicating convergence.

� Half-Width Test: After passing the stationarity test, the half-width test
assesses the accuracy of the estimates based on the remaining samples. It
calculates the mean and con�dence interval (CI) for each parameter and
veri�es whether the half-width of the con�dence interval is within a prede-
termined tolerance (relative to the mean). This ensures that the sample size
is su�cient for reliable estimation.
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4.4. Deviance Information Criteria (DIC)

There are many methods for Bayesian model selection that are useful for com-
paring competing models. The most popular method is the Deviance Information
Criterion (DIC), which works simultaneously to measure the model's �t and com-
plexity. The DIC criterion is de�ned as

DIC = Eθ [D (θ)] + p
D
= D (θ) + p

D
,

where D(θ) = −2ℓ(θ;y,x, z) is the deviance function and p
D
= D(θ) − D(θ̂) is

the e�ective number of model parameters, where θ̂ is the posterior expected value.
Noticeably, we are not able to compute the expectation of D(θ) over θ analytically.
Therefore, an approximate Monte Carlo estimator for such a measure is

D̂ (θ) = − 2

B

B∑
i=1

ℓ (θi;y,x, z) ,

and so the DIC can be estimated by

D̂IC= 2D̂ (θ)−D(θ̂).

4.5. Cox-Snell Residuals

Model validation procedures play an essential role when evaluating the suit-
ability of any �tted model. In general, residual metrics are widely used in such
a context, being those measures responsible for indicating departures from the
underlying model assumptions by quantifying the data variability that the �tted
model did not accommodate. In this way, we will consider here a popular residual
metric proposed by Cox & Snell (1968), which can be straightforwardly used in
our context to assess the appropriateness of the proposed model when used in the
analysis of real datasets. The Cox-Snell residuals are de�ned by

ri = − log [S(ti)] .

If the obtained model �t is adequate, then the Cox-Snell residuals should follow
an Exponential distribution with mean equals 1 (if T has survival distribution S(t),
then − log[S(T )] ∼ exp(1). However, if a survival time is right-censored, then the
corresponding Cox-Snell residual, say r+i , is lower than ri, which was obtained from
an uncensored observation with the same lifetime. These modi�ed residuals were
derived by assuming that the di�erence between the cumulative hazard functions,
H(ti) and H(t+i ), also follow exp(1) distributions. Thus, the modi�ed Cox-Snell
residuals for censored observations are de�ned by

r+i = 1− log [S(ti)] or r+i = log(2)− log [S(ti)] .
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5. Monte Carlo Simulation Study

In this section, by using B = 10, 000 Monte Carlo simulation, we evaluated
the bias (B) and the mean squared error (MSE) of the Bayesian estimators of θ̂
of the DXL distribution under complete data. To run the simulation, we have
considered θ = 0.3, . . . (0.3) . . . , 1.8 for sample sizes ranging from 10 to 100 by 10
and the prior distributions speci�ed in Section 3.3 for θ. The inverse-transform
method for discrete distributions (Devroye, 2006) was implemented to generate
the pseudo-random samples according to the steps:

� Step 1: Generate U ∼ Uniform(0, 1).

� Step 2: De�ne X by F (X − 1) =
∑

i<X pi < U ≤
∑

i≤X pi = F (X) where
P (X = i) = pi. Set X = 0 and S = p0.

� Step 3: While U > S, do X = X + 1 and S = S + pX .

� Step 4: Return X.

The simulation process was performed R software (R Development Core Team,
2017) coupled with JAGS software via using R2jags package (Su & Yajima, 2012).
The quantities of interest were estimated by,

� BIAS(θ̂) = B−1

B∑
i=1

(θ̂i − θ);

� MSE(θ̂) = B1/2

B∑
i=1

(θ̂i − θ)2;

The boxplot of the biases and mean squared error for the Bayesian estimators
are presented in Figures 2, 4, 6 for biases, and Figures 3, 5, 7 for mean squared
error. From the obtained results, in each scenario, we observe that the bias of θ̂
converges to zero when the sample size increases, as well as, the mean squared
error of θ̂, independent of prior choice. These result indicates a good performance
for the Bayesian estimators for parameter θ.

Revista Colombiana de Estadística - Theoretical Statistics 48 (2025) 39�70



58 Debastiani et. al

Figure 2: Estimated bias for θ (θ = 0.3 → θ = 1.8) for discrete DXL distribution under
the assumption of Gamma(0.001, 0.001) prior distribution.

Figure 3: Estimated mse for θ (θ = 0.3 → θ = 1.8) for DXL distribution under the
assumption of Gamma(0.001, 0.001) prior distribution.
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Figure 4: Estimated bias for θ (θ = 0.3 → θ = 1.8) for discrete DXL distribution under
the assumption of Uniform(0, 10) prior distribution.

Figure 5: Estimated mse for θ (θ = 0.3 → θ = 1.8) for DXL distribution under the
assumption of Uniform(0, 10) prior distribution.
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Figure 6: Estimated bias for θ (θ = 0.3 → θ = 1.8) for discrete DXL distribution under
the assumption of Je�rey's prior distribution.

Figure 7: Estimated mse for θ (θ = 0.3 → θ = 1.8) for DXL distribution under the
assumption of Je�rey's prior distribution.
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6. Real Data Applications

In this section, we present some applications using real dataset as a way to show
that the proposed model may be attractive alternatives to some standard existing
discrete distributions. We consider here just the Bayesian approach to estimate
the model parameters. All computations were performed using R2jags (Su &
Yajima, 2012) package from the R (R Development Core Team, 2017) software.
To obtain the posterior marginal distributions and corresponding summaries of
interest we adopted the MwG algorithm for MCMC sampling. For each generated
sample, three chains with N = 10, 000 values was generated for each component
of ζ considering a burn-in period of 5% of the chain's size. To obtain pseudo-
independent samples from the posterior distribution (17), one value out of every
10 generated values was kept in the chain, resulting in chains of length 1000 for
each parameter.

6.1. Alberta Fires

The �rst application studied is based on data about the monthly number of
�res that occurred in a 67,000 km2 region of boreal forest in northeastern Alberta,
Canada over a seven year period from 1996 to 2002. The data was collected
from the Alberta government's Historical Wild�re Database. Information tracked
for each �re includes: cause, size, location (latitude and longitude, legal land
description, and forest area), time and duration, weather conditions, sta�ng and
physical resources used to suppress the �re, and area burned.

For the statistical analysis, the number of �res was used as the response
variable and the parameters of the DXL distribution were estimated using a
Bayesian approach assuming three di�erent scenarios for prior distributions as-
sumptions for the parameter θ: an approximately non-informative gamma prior �
Gamma(0.001, 0.001), an approximately non-informative uniform prior � U(0, 10),
and the Je�rey's prior distribution. The MwG algorithm was run and tests for con-
vergence were performed, revealing stationary (DXLmodel passed on Heidelberger-
Welch diagnostic) of the generated chains after burn-in. The obtained results are
presented in Table 2, with the �t of the DXL distribution compared with the �ts
of the Geometric (with PMF given by P (X = x) = (1 − θ)xθ and θ ∼ U(0, 1))
and Poisson (with PMF given by P (X = x) = (e−θθx)/x! and θ ∼ U(0, 100))
distributions. As a discrimination criteria, we have adopted DIC criterion which
is also presented in Table 2 where we can observe the DXL model is better �tted
by the data (smaller value).

The estimated mean (µ) and 95% credible intervals for each model were also
shown in the Table 2, indicating that the estimated mean for the DXL distribution
was close to the empirical mean, suggesting a good �t for the data. The best �tted
model was concluded to be the DXL distribution, using the DIC criteria.
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Table 2: Posterior summaries for the parameters θ and the mean (µ) of DXL, Geometric
(G) and Poisson (P) distributions for the number of �res in northeastern of
Alberta, Canada.

Model Param. Post. Mean Std. Dev. 95% Cred. Int. Rhat DIC

DXL (Gamma Prior)
θ 0.1401 0.0032 (0.1340, 0.1467) 1.001

6309.4
µ 12.4460 0.3247 (11.7989, 13.0815) 1.002

DXL (Uniform Prior)
θ 0.1402 0.0033 (0.1338, 0.1467) 1.009

6309.1
µ 12.4351 0.3337 (11.8009, 13.1058) 1.009

DXL (Je�rey's Prior)
θ 0.1403 0.0033 (0.1341, 0.1468) 1.005

6309.9
µ 12.4273 0.3278 (11.7880, 13.0674) 1.005

G
θ 0.9255 0.0024 (0.9211, 0.9303) 1.007

6332.3
µ 13.4457 0.4198 (12.6292, 14.2928) 1.007

P
θ 12.4411 0.1213 (12.2142, 12.6881) 1.010

11222.7
µ 12.4411 0.1213 (12.2142, 12.6881) 1.010

Given that the choice of prior is interchangeable (see Table 2), Figures 8 and
9 present the diagnostics plots for the Gelman-Rubin and Geweke diagnostics ap-
plied to the DXL model, assuming only the uniform prior (selected by the DIC

criteria). The Gelman-Rubin diagnostic plots show the R̂ values for each parame-
ter, where values close to 1 indicate convergence. From this, we can conclude that
the parameters of the DXL model exhibit convergence across chains if R̂ ≤ 1.1.
Meanwhile, the Geweke diagnostic plots compare early and late segments of each
chain, showing Z-scores for each parameter. Values within an acceptable range
con�rm stationarity within the chain. Together, these diagnostics suggest that
the DXL model has reached a stable posterior distribution, assuming both tests
fall within acceptable convergence thresholds.

Figure 8: Gelman-Rubin diagnostic plot for the DXL model parameters (left-panel is for

θ and right-panel is for µ), displaying the R̂ values for each parameter, with
values approaching 1 indicating convergence across multiple MCMC chains.
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Figure 9: Geweke diagnostic plot for the DXL model parameters (upper-panel is for θ
and lower-panel is for µ), illustrating the Z-scores comparing the means of
the early and late segments of each MCMC chain.

Figure 10 presents the traceplots for the DXL model parameters. Each trace-
plot displays the MCMC samples over iterations for a given parameter, providing
a visual assessment of convergence. Since the traceplots for the proposed exhibit
stable patterns with no visible trends or drifts, indicating that the MCMC chains
for the DXL model have converged successfully. This suggests that the chains are
well-mixed, providing reliable estimates from the posterior distribution.

Figure 10: Traceplots for the DXL model parameters (left-panel is for θ and right-panel
is for µ) showing MCMC samples over iterations (black is for chain 1, red
is for chain 2, and blue is for chain 3).
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6.2. Breast Cancer

Breast cancer is the second most common cancer diagnosed in women globally,
particularly in the US, as pointed by Mayo Clinic. In a second study, a dataset of
81 breast cancer patients from the Department of Breast Surgery, Cancer Institute
Hospital of Japanese Foundation for Cancer Research was used for the analysis.
The survival times of the patients, in complete months, were assumed to follow the
DXL distribution under a Bayesian approach. In addition, the following regression
model was assumed for the i-th patient:

θi = exp

β0 +

4∑
j=1

βjxji

 , (18)

where

� x1i: Presenting Symptom (incidental imaging �nding, in�ammation, lump,
or nipple inversion/blood discharge PDO);

� x2i: Cancer Grade (Grade 1, Grade 2, or Grade 3);

� x3i: Vascular Invasion (Present, or Absent);

� x4i: Surgical Procedure (Breast conserving surgery, or Mastectomy);

Approximately non-informative normal prior distributions were used for the
regression parameters. The results of the MwG algorithm are shown in Table 3.
The generated chains were found to be stationary after the burn-in period. The
analysis of the results showed that none of the four covariates had a signi�cant
impact on the patients' survival times, as evidenced by the fact that zero is included
in the 95% credible intervals for each covariate's regression parameters. The Half-
Normal probability plot in Figure 11 also suggests the good �t of the DXL model
for the data, as the estimated Cox & Snell (1968) residuals are within the simulated
envelope and there are no severe violations of the model assumptions.

Table 3: Posterior summaries for the parameters of DXL regression model.

Model Param. Post. Mean Std. Dev. 95% Cred. Int. Rhat DIC

DXL Regression Model

β0 -3.7009 0.5874 (-4.8517, -2.5618) 1.009

796.7

β1 0.0104 0.1626 (-0.3168, 0.3230) 1.012

β2 -0.0902 0.1095 (-0.3023, 0.1253) 1.001

β3 -0.1321 0.1805 (-0.4960, 0.2202) 1.004

β4 -0.0691 0.1664 (-0.3937, 0.2609) 1.003
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Figure 11: Half-Normal plot with simulated envelope for the Cox-Snell residuals.

Figure 12 presents the traceplots for the DXL regression model parameters.
Each traceplot displays the MCMC samples over iterations for a given parameter,
providing a visual assessment of convergence. Since the traceplots for the proposed
exhibit stable patterns with no visible trends or drifts, indicating that the MCMC
chains for the DXL model have converged successfully. This suggests that the
chains are well-mixed, providing reliable estimates from the posterior distribution.

Figure 12: Traceplots for the DXL regression model parameters (left-panel is for θ and
right-panel is for µ) showing MCMC samples over iterations (black is for
chain 1, red is for chain 2, and blue is for chain 3).
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7. Concluding Remarks

This study presents a discrete adaptation of the xLindley distribution, named
the Discrete xLindley (DXL) distribution, to address the modeling of count datasets
exhibiting overdispersion. The DXL model was formulated using the method of
in�nite series, and its fundamental probabilistic properties�such as the mean,
variance, moment-generating function, and coe�cients of variation, skewness, and
kurtosis�were rigorously derived. This distribution demonstrates suitability for
zero-in�ated datasets, evaluated through the Zero-Modi�ed (ZM) measure. Addi-
tionally, the log-likelihood function, score function, and asymptotic interval esti-
mators for the parameters were established.

A Monte Carlo simulation study validated the applicability of the DXL dis-
tribution, and empirical testing was conducted using two real datasets, with pa-
rameters estimated through a Bayesian approach employing the Metropolis-within-
Gibbs (MwG) algorithm. Model selection was guided by the Deviance Information
Criterion (DIC), with results indicating the DXL model's competitive performance
compared to standard discrete models, such as the Poisson and Geometric distri-
butions. An R package is currently under development to provide comprehensive
tools for �tting the DXL model, and the scripts used in model �tting are available
upon request from the authors.

[
Received: May 2024 � Accepted: November 2024

]
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Appendix A. Je�rey's Prior Distribution

The Je�rey's prior distribution is characterized by its non-informative nature,
speci�cally designed to o�er a Bayesian framework that accommodates uncertainty
in the parameters. This prior is typically expressed in terms of the likelihood
function of the model, ensuring that it remains invariant under reparameterization.
For the proposed DXL model, assuming complete data, the Je�rey's prior π(θ) for
the parameter θ can be formulated as:

π(θ) =

{
n

{(
g′(θ)

g(θ)

)2

− g′′(θ)

g(θ)

}
+ g(θ)

{
Φ

(
1

eθ
, 1, θ

)
eθ − eθ

θ
− 1

1 + θ

} }1/2

where Φ(·) is the Lerch transcendent function (Hassani, 2007; Ferreira et al., 2017).

Appendix B. Posterior Distribution

In this section, we will derive the posterior distribution for the proposed DXL
model only under complete data assumption, since for right-censored and regres-
sion follows the same procedure. The derivation of the posterior distribution in a
Bayesian framework involves applying Bayes' theorem, which combines the prior
distribution with the likelihood of the observed data. Given a parameter θ, the
posterior distribution π(θ | x), where x represents the observed data, is expressed
as follows:

π(θ | x) ∝ L(θ) · π(θ)
where L(θ) is the likelihood function, and π(θ) is the prior distribution, which
captures our beliefs about θ before observing the data.

In this paper, we considered three classes of prior distributions: gamma, uni-
form and Je�rey's. Here, we will assume only the Je�rey's prior for the calculation,
since for the other classes are straightforward. Then, substituting the Je�rey's
prior into the equation above, we have:

π(θ | x) ∝ L(θ) ·
√

I(θ)

Then, given the likelihood of the proposed DXL for complete data, the unnor-
malized posterior distribution is:

π(θ | x) = exp

{
n ln [g(θ)]− nθ(x+ 1) +

n∑
i=1

ln(2 + θ + xi)

}

×

{
n

{(
g′(θ)

g(θ)

)2

− g′′(θ)

g(θ)

}
+ g(θ)

{
Φ

(
1

eθ
, 1, θ

)
eθ − eθ

θ
− 1

1 + θ

} }1/2
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where θ ∈ R+, Φ(·) is the Lerch transcendent function (Hassani, 2007), and

g(θ) =

(
eθ − 1

)2
(2 + eθ)eθ − (1 + θ)

. (A1)

To obtain the posterior distribution in a usable form, it is necessary to normal-
ize the posterior by integrating over all possible values of θ, that is, it is necessary
to divide the unnormalized posterior above for

∫
L(θ′) ·

√
I(θ′) dθ′. In this case,

this integral acts as the normalization constant, ensuring that the posterior dis-
tribution is correctly scaled to integrate to one. For the proposed DXL model,
however, to solve this integral numerical methods are required, since it cannot be
solved by analytical methods.
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