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Abstract

We know that post-stratification sampling is applied in a situation where
it is not possible to determine the general framework of each of the cate-
gories in population before the selection sample. In this paper, we first use
a method for comparing conventional estimators in the subpopulation, pre-
sented by Salehi & Seber (2021), and then introduce a new estimator in the
post-stratification sampling scheme. We show that this estimator is unbiased
and more precise than the estimators in simple random sampling. We have
conducted a simulation study to evaluate the performance of the proposed
estimator. The simulation results confirmed the theoretical achievements of
the article. The data used in this article is a census of agriculture conducted
by the US government every five years from all 50 states.

Keywords: Finite population; Post-stratification; Stratified sampling; Sub-
population.

Resumen

Se sabe que el muestreo por post-estratificacion se aplica en situaciones en
las que no es posible determinar, antes de seleccionar la muestra, el marco
general de cada una de las categorias de la poblaciéon. En este articulo,
primero se utiliza un método para comparar estimadores convencionales en la
subpoblacién, presentado por Salehi & Seber (2021), y luego se introduce un
nuevo estimador dentro del esquema de muestreo por post-estratificacién. Se
demuestra que este estimador es insesgado y mas preciso que los estimadores
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bajo muestreo aleatorio simple. Ademas, se realiza un estudio de simulacion
para evaluar el desempeno del estimador propuesto. Los resultados de la
simulacion confirmaron los logros teoricos del articulo. Los datos utilizados
corresponden a un censo agricola que el gobierno de Estados Unidos realiza
cada cinco afos en los 50 estados.

Palabras clave: Poblaciones finitas; Post-estratificaciéon; Muestreo estrati-
ficado; Subpoblaciones.

1. Introduction

Sometimes we extract a random sample from a finite population with the aim
of estimating population parameters such as the mean or the total value. After
completing the sampling process, we may be interested in using the same general
sample to estimate parameters of a specific subset of the population, referred to as
a subpopulation. In this regard, Cochran (1977) presented two different estima-
tors for cases in which the size of the subpopulation is either known or unknown.
Salehi & Seber (2021) compared these estimators under different circumstances
and presented a strategy for choosing the appropriate one. In addition to Cochran
(1977), Thompson (2012) also referred to subpopulation estimation. Hossaini &
Rezaei (2021) discussed estimation of subpopulation parameters in one-stage clus-
ter sampling for cases where the subpopulation size is known or unknown. Clark
(2009) introduced a regression estimator for subpopulation parameters, and Salehi
& Chang (2005) proposed another estimator for the total subpopulation parameter
based on reverse sampling.

In some cases, even though stratification of the population is not possible due
to the lack of a framework of classes, we may still want to estimate parameters
in a desired stratum as well as in the population as a whole. In such situations,
post-stratification is recommended. In this paper, we provide an unbiased esti-
mator that performs better than existing estimators by using optimal selection
from subpopulations in the post-stratification sampling method. We also provide
a step-by-step algorithm for computing both the post-stratified and modified post-
stratified estimators, which allows readers to apply the methods in practice. Fur-
ther discussions of post-stratification and subpopulation estimation can be found
in Cochran (1977), Holt & Smith (1979), Jagers et al. (1985), Singh & Chaudhary
(1986), Hedayat & Sinha (1991), Levy & Lemeshow (1991), Little (1993), and
Thompson (2012).

For clarity, we briefly define the main concepts used throughout the paper. A
finite population refers to a set of NV distinct sampling units from which observa-
tions are drawn. A random sample from a finite population is a subset selected
according to a sampling design that specifies selection probabilities for units. A
stratum (plural: strata) denotes a homogeneous subgroup into which the popula-
tion is partitioned in stratified sampling; sampling is then performed independently
within each stratum. An estimator is a rule or formula that produces an estimate
of a population parameter (such as a mean or total) from sample data. Where
relevant, we also refer to inclusion probabilities—the probabilities that given units
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are included in the sample under the chosen design—and to standard variance
estimators used to quantify estimator precision.

The remainder of this article is organized as follows. Section 2 presents the
estimation of subpopulation parameters and reviews related estimators. Section
3 introduces the proposed post-stratified estimator and discusses its theoretical
properties. Section 4 describes a simulation study conducted to evaluate the per-
formance of the proposed estimator under several distributions. Section 5 provides
an application to real data, including a step-by-step algorithm for practical imple-
mentation. Finally, Section 6 concludes the paper with a summary of findings, a
critical discussion of the estimator’s properties, and possible directions for future
research.

2. Estimation of Subpopulation Parameters

Suppose that the units of the finite population are Uy, Us, ..., Uy, that Y; is
the value of the attribute for unit ¢, and that the parameters Y = Zf\;l Y; and

- Y
Y = N represent the total and mean of population, respectively. Now suppose

that uy,us, ..., u, are sample members and that random variables y; are the value
of the attribute for the unit ¢ in the sample.

We consider the ¢ as a special property that some members of the popula-
tion have, and we call the set of such members subpopulation. After simple ran-
dom sampling, in addition to estimating the parameters of the population, we
are interested in estimating subpopulation parameters by the same random sam-
ple. For this purpose, we assume that IV, is subpopulation size and that Y;, for
i=1,..., N, is the value of the attribute for the unit 7 in subpopulation, in which

— Y,
case Y, = Zf\;cl Y., and Y. = ﬁc also represent the total and mean of subpop-

(&
ulation, respectively. Also, assume that, for j = 1,...,n., the random variable
Yej represents the value of attribute for the unit j in the sample that is located
in the subpopulation ¢, where n. is the sample size located in the subpopulation.

N,
Obviously n. is a random variable with F(n.) = nN .
To estimate Y., Cochran (1977) introduced the following estimators:
?c = NcGe, (1)
PN N Cic
y, = Sele. (2)
n
In which g, = ni ?;1 Ye; is the sample mean in the subpopulation. Similarly,
for the estimate Y., we have
s Yo
YC = Fc =Ye
S
Y(! == FE
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~

But Y, is an estimate of Y if N, is known. Sometimes, N, is unknown for some

populations, so considering that ]vc = ° is an unbiased estimator for N, the

no_
following estimator can be used to estimate Y .:
? NanC

c = T = = Ye-

N.n

It is worth noting that, in accordance with this estimator, to estimate the total
subpopulation, Y, = N.7. and also it is an only estimator from Y, if N, is known.
In cases where IV, is unknown, the estimator

~ Nn,. =
Nye = Cyc =Y,
n
is obtained, which is the Estimator (2).
It is proved that all estimates Y, Y., Y., and Y. are unbiased for their corre-

sponding parameters, and

vy =t | (o) - 5

ne
1 S \2 . . .
where S2 = O Zjv:cl (Ye; —Y,)" is the subpopulation variance.
(&
Fori=1,..., N, we assume that
Y; Uiecc
Y* — 1 K3 )
“ { 0, o.w.

in this case

1 - 2

*2 * _ F

- = § Y-V ) ,

SC N _ 1 — ( (&7 c (3)
in which Y, is the average of Y%, ..., Y. Accordingly, it can be shown

~ *2
V(Y,) = NQ% (1 - %) .

o~

Also, unbiased estimators for V(Y,) and V(}A/C) are, respectively,

and
= s*2 n
Y.) = N2%c (1 7) :
v(Ye) - N
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where s2 and s*? are also sample variances y.; and

* Yi, u; € ¢,
_ 4
Yei { 0, o.W. (4)

for i =1,...,n, respectively.

~

When N, is unknown, }Afc and Y cannot be used to estimate the subpopulation

total and mean. So using }76 and Y. is inevitable for estimation the subpopulation
parameters. But if N, is known, there is no limit to the use of these estimators,
and in such circumstances it is important to decide on the choice of the appropriate
estimator.

3. Modify the Post-Stratified Estimators

Suppose that a sample with size n is selected by a simple random sampling
from population with N members and with L strata. Also, assume that N, for
c=1,...,L,isthe number of members in the stratum c and the random variable n..
is the sample size located on it, so ZCL=1 N, = N and Z£=1 n. = n. By assuming
that for all stratum N, are known, the unbiased estimator of post-stratification
for population mean is as follows:

L
yst = Z W6707
c=1

ES N,
where Y. is the sample mean of the stratum ¢ and W, = WG To obtain the

1
variance of this estimator, we need to calculate F (> In practice this is diffi-
C

1
cult, but by taking a positive value for n., a good approximation of £ () is as
Ne
follows (Stephan, 1945):

1 N N(N-N,)
Fl— |~ .
(nc> nN, + n?N? (5)

Also under the Approximation (5), the variance of 7, is

L

L
. N-n&N., 1 E&N-N, .,
V({Ta) =~ — WSC'F@Z*N 5S¢ (6)

c=1 c=1

1 —

where 52 = A Z;V:H(ch —Y.)? is the variance of stratum c. It is worth noting
C

that without using the stratification scheme, in a simple random sampling, § =

1 . . -
=" | y; is a common estimator Y.
n
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3.1. A New Post-Stratified Estimator

In this section, using the estimators introduced in the previous section, we
introduce a new estimator in the post-stratification sampling, which is more precise
than § and 7.

Proposition 1. If in the subpopulation c, the inequality

—2 NS?
YC S nN‘ (7)

is established, then the Y. is more precise than Y. (Salehi & Seber, 2021).

Corollary 1. Proposition 1 refers to this if the subpopulation mean has small

values and members of subpopulation are heterogeneous, then the estimator }A/C 18
more precise than the estimator Y.. In practice, we need to have the parameters
Y. and S? for checking (7), usually both of them are unknown. Salehi & Seber
(2021) suggested the following criterion in practice

e () ) GG

We know that in post-stratification every staratum is a subpopulation. Thus,

in stratum ¢, if (8) holds for a selected sample, we can use Y. to estimate Y,,
otherwise Y, will be used.

Theorem 1. a) The estimator

?mst = Z WC%C + Z Wc§c
ceG ce

(2]

is an unbiased estimator for the mean of population, where G is the set index from
stratums, in which the inequality (7) is established.

b) The variance of this estimator under the approzimation (5) is as follows:

*2 _
V) = X5 (1o 1)+ S|t mest+ - wos2).
ceG ceG

¢) Unbiased estimation for the approzimate variance of b) is

W) = 2 (1= )+ Y [NN;”Wcsi b (=W 52] .
ceG

ceG
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Proof. a) Using the conditional expectation, it can be written

~
=

Efpe) = E|E[S WY+ WV lni,...ons
celd ceCG
- B w.E (§n> +S w.E (?cmc)
ceEG ceG
= E() WY +> WY,

ceEG ceG
=Y.

b) Using the definition of y; in (4), which results in n.y, = n¥;, the estimator
Ymst CAN also be written as follows:

ymst = Wc?c + Wc?c
ceG ceG

= Z Eyﬂ + Z chr

ceG ceG

= D T+ W (9)

ceG ce@
On the other hand,
V(?mst) =F (V (?mst‘nl’ te ’nL)) + Vv (E (?mst|n17 e nL)) . (10)

The second expression to the right of (10) is equal to zero, so by using (9) and
(10), we have

V(ns) = E VD 7+ Welelm,....ne (11)
ceG ceG
= F ZV (Talne) +ZW2 (T.|ne)
_CEG ceG
S*
= E 1—— W252< )
Yo ew)r X X
CEZepemeep()-d] o
G ceG N

Now, by substituting (5) into (12),V (7,,s) is obtained.

c) It is obvious, because s and s}? are, respectively, unbiased estimators S2

and S*?. O
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Note 1. It should be noted that if, for every ¢ = 1,...,
established, then

L, the inequality (7) is

Ymst

1 n
:;;yi:y

In this case, 7,,,; is the estimator population mean in the simple random sampling,
and if, for every ¢ = 1,..., L, it is not established, then

L
= Z chc = yst‘
c=1

In this case, the estimator 7, ., is the same as the post-stratified estimator. In the

Ymst

following theorem, we show that ¥,,; is more precise than 3 and ¥,.

Theorem 2. The estimator y,,,; is more precise than § and G, .

Proof. We have

=i

V(?mst) = Fk

VI 2w+

celG

Z Wc?cmh )

ceG

“<\>>

e (v

ceG

) - wev (Vo)
i w2y (?m)]
| (Zw?/ _— )]

The inequality of the third line is obtained by using Proposition 1 and the definition
of G indexes. Similarly, we can show that V(7,,..) < V(Ty)- O

IN
=

= FE

— BV (@ln,...

In practice, for the derivation of G indexes, we need the parameters Y. and S?,
usually both of them are unknown. Therefore, we can obtain the approximation
from G indexes by using unbiased estimator Y. and S? in a prototype, instead
of checking the inequality (7), we suggest that to check inequality (8) for each
stratum.
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4. Simulation Study

In this section, to compare the estimators discussed in this article, we simulate
data for three populations, the first population from the normal distribution, the
second from the uniform distribution, and the third from the Laplace distribution.
Each population has four strata, each stratum has the same probability density
function (pdf) with different parameters such that sets G = {1} and G = {2,3}.
Details are given in the Table 1. Although the current study focuses on continu-
ous distributions, the proposed method can be extended to discrete distributions,
which will be considered in future work.

TABLE 1: The populations with their pdfs and size of subpopulations.

Population pdf(1) pdf(2) pdf(3) Ny No N3
1 N(0, 10) N(6,15) N(10, 20) 2000 1500 1000
2 U(=5,5) U(0,6) U(2,10) 2000 1500 1000
3 Laplace(0,8) Laplace(4,12) Laplace(12,20) 2000 1500 1000

For every time with M = 1000 repetitions, we select samples with size n =
{100, 200, 300, 400} from each population using simple random sampling method.
For every population, R statistical software was used to compute the following
quantities in this simulation study:

_ L
Yn - M
MSE =

Where gg), for { =1,2,...,M and h = st,mst, is the introduced estimators of
population mean based on [th sample. Details are given in Table 2. Here, h denotes
the stratum, st the post-stratified estimator, and mst the modified post-stratified
estimator.

TABLE 2: The value of estimators and their MSE for the populations.

population Y  n Gy Uy §  MSE(,,) MSE(g,) MSE ()
1 4.22 100 4.186 4.147 4.299 1.322 1.851 1.954
200 4.216  4.207 4.215 1.066 1.148 1.187
300 4.218 4.222 4.197 1.008 1.022 1.115
400 4.223 4.217 4.226 0.428 0.563 0.528
2 2.33 100  2.329 2.330 2.346 0.037 0.048 0.072
200 2.335 2.337  2.331 0.025 0.028 0.053
300 2.330 2.334 2.334 0.021 0.027 0.051
400 2.330 2.329 2.334 0.012 0.014 0.026
3 4.00 100 4.034 4.071  4.057 2.842 3.385 3.597
200 4.018 4.038  3.939 1.694 1.750 1.799
300 4.019 4.055 3.980 1.418 1.668 1.639
400 4.008 4.032 4.021 0.662 0.856 0.819
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Plots of the MSEs for all samples are given in Figure 1. According to Table
2 and Figure 1, it can be said that the MSE of ¥,,,, is less than that of the two
estimators in all samples and in all three populations. In terms of MSFE after
Ymst> Ys¢ Nas performed better than 7 in most cases. It is also observed that with
increasing n, M SE of all estimators decreases, which is the expected scenario.

& o MSE(Trm)
- MSE(y,)
MSE(F)

1

L
25
L

MSE
MSE
MSE

10

/

\\z 24

001 002 003 004 005 0058 007
1

1

b == MSE(jng)
A - MSE(y,)
MSE(y)

T T T T T T T T T T T T T
100 150 200 250 300 350 400 100 150 200 260 300 350 400 100 150 200 250 300 350

n n n

(a) (b) (c)
F1GURE 1: The MSE of the estimators in simulation study: (a) population 1 (Normal

distribution), (b) population 2 (Uniform distribution) and (c) population 3
(Laplace distribution).

5. Real data application

In this section, we analyse a real dataset taken from the literature to implement
the proposed. The data set is used in Lohr (2010, p. 31 and 79) and Salehi & Seber
(2021). The data is a Census of Agriculture that the U.S. government conducts it
every five years, collecting data on all farms (defined as any place from which 1000
dollars or more of agricultural products were produced and sold) in the 50 states.
The acres devoted to farming in 1992 and 1987 are for N = 3078 counties in the
USA. We are interested in comparing the introduced estimators by estimating the
total number of acreage devoted to farming in the USA in 1992. Note that this
number is equal to Y = 943 881 045.

Although agricultural activity occurs in every U.S. state, it is particularly
concentrated in the Central Valley of California and in the Great Plains, a vast
expanse of flat arable land in the center of the nation, in the region west of the
Great Lakes and east of the Rocky Mountains. The eastern wetter half is a ma-
jor corn and soybean-producing region known as the Corn Belt, and the western
drier half is known as the Wheat Belt because of its high rate of wheat produc-
tion Hatfield (2012). Therefore, it seems that classification of American states
can increase the precise of estimators. For this reason, the American states are
classified into four strata: northern, southern, eastern, and western states. For
each stratum ¢ = 1,2, 3,4, N, denotes the number of counties and Y, is the mean
acreage devoted to farming. Details are given in Table 3.
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TABLE 3: The details of the strata.

Stratum Subpopulation size (N.) Y. Standard deviation (Sc)
(1) northern states 944 295883.0 719263.8
(2) southern states 936 343938.6 377643.3
(3) eastern states 632 22877.17 226539.1
(4) western states 566 579827.9 719263.8

Now, to compare the proposed estimator with previous estimators, we take
samples from this population with sizes n = 25, 50, 100, 250, 500, 1000 using a sim-
ple random sampling method. Based on these samples, the values of the estimators
and their standard deviations are listed in the Table 4. It should be noted that
according to Table 3, we can say that inequality (7) is valid only for stratum (3)
for n < 478. So for n < 478 we have G = {3} and G = {1,2,4}.

TABLE 4: The value of estimators and their standard deviations.

N Ymet =N, Yt =Ny, Y=Ny SDYms) SDVsr) SD(Y)
25 928540854 911184951 867795191 2.248 x 10% 2.352 x 108 2.584 x 108
50 850783164 828196001 752905455 1.001 x 108 1.046 x 108 1.137 x 108
100 987723918 1009432136 1085410899 1.090 x 10% 1.139 x 10% 1.225 x 108
250 954484872 952219418 973141970 8.564 x 107 8.755 x 107 9.516 x 107
500 928647680 928647680 947599673  5.475 x 107 5.475 x 107 5.763 x 107
1000 946926467 946926467 937550957 3.020 x 107 3.020 x 107 3.081 x 107

According to Table 3, we can say that the standard deviation of lA/mst is less
than that of the two estimators in all samples, for n = 25,50, 100, 250.

6. Conclusions

A new unbiased estimator in the post-stratification sampling scheme is pro-
posed. We have shown that this estimator performs more accurately than con-
ventional and post-stratification estimators under the standard assumptions. A
simulation study of three populations confirmed the theoretical findings of the ar-
ticle. During a real data analysis using census data of the acres devoted to farming
in American states, the proposed estimator had a lower standard deviation than
that of the other two estimators.

We provided a step-by-step algorithm for practical computation of the post-
stratified and modified post-stratified estimators, making the methods directly
applicable in practice. The proposed estimator performs particularly well when
the required conditions are met; however, its behavior under violation of these
conditions requires further investigation. This limitation is a potential avenue for
future research. Overall, the enhanced discussion and practical guidance improve
the applicability and understanding of the proposed methods for practitioners and
researchers in finite population sampling.

[Received: February 2024 — Accepted: November 2025]
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