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Abstract

We know that post-strati�cation sampling is applied in a situation where
it is not possible to determine the general framework of each of the cate-
gories in population before the selection sample. In this paper, we �rst use
a method for comparing conventional estimators in the subpopulation, pre-
sented by Salehi & Seber (2021), and then introduce a new estimator in the
post-strati�cation sampling scheme. We show that this estimator is unbiased
and more precise than the estimators in simple random sampling. We have
conducted a simulation study to evaluate the performance of the proposed
estimator. The simulation results con�rmed the theoretical achievements of
the article. The data used in this article is a census of agriculture conducted
by the US government every �ve years from all 50 states.

Keywords: Finite population; Post-strati�cation; Strati�ed sampling; Sub-
population.

Resumen

Se sabe que el muestreo por post-estrati�cación se aplica en situaciones en
las que no es posible determinar, antes de seleccionar la muestra, el marco
general de cada una de las categorías de la población. En este artículo,
primero se utiliza un método para comparar estimadores convencionales en la
subpoblación, presentado por Salehi & Seber (2021), y luego se introduce un
nuevo estimador dentro del esquema de muestreo por post-estrati�cación. Se
demuestra que este estimador es insesgado y más preciso que los estimadores

aPh.D Student. E-mail: mo-hossaini@um.ac.ir
bPh.D. E-mail: rezaei@um.ac.ir
cPh.D. E-mail: hussain.phd@utq.edu.iq

77



78 Hossaini, M. et al.

bajo muestreo aleatorio simple. Además, se realiza un estudio de simulación
para evaluar el desempeño del estimador propuesto. Los resultados de la
simulación con�rmaron los logros teóricos del artículo. Los datos utilizados
corresponden a un censo agrícola que el gobierno de Estados Unidos realiza
cada cinco años en los 50 estados.

Palabras clave: Poblaciones �nitas; Post-estrati�cación; Muestreo estrati-
�cado; Subpoblaciones.

1. Introduction

Sometimes we extract a random sample from a �nite population with the aim
of estimating population parameters such as the mean or the total value. After
completing the sampling process, we may be interested in using the same general
sample to estimate parameters of a speci�c subset of the population, referred to as
a subpopulation. In this regard, Cochran (1977) presented two di�erent estima-
tors for cases in which the size of the subpopulation is either known or unknown.
Salehi & Seber (2021) compared these estimators under di�erent circumstances
and presented a strategy for choosing the appropriate one. In addition to Cochran
(1977), Thompson (2012) also referred to subpopulation estimation. Hossaini &
Rezaei (2021) discussed estimation of subpopulation parameters in one-stage clus-
ter sampling for cases where the subpopulation size is known or unknown. Clark
(2009) introduced a regression estimator for subpopulation parameters, and Salehi
& Chang (2005) proposed another estimator for the total subpopulation parameter
based on reverse sampling.

In some cases, even though strati�cation of the population is not possible due
to the lack of a framework of classes, we may still want to estimate parameters
in a desired stratum as well as in the population as a whole. In such situations,
post-strati�cation is recommended. In this paper, we provide an unbiased esti-
mator that performs better than existing estimators by using optimal selection
from subpopulations in the post-strati�cation sampling method. We also provide
a step-by-step algorithm for computing both the post-strati�ed and modi�ed post-
strati�ed estimators, which allows readers to apply the methods in practice. Fur-
ther discussions of post-strati�cation and subpopulation estimation can be found
in Cochran (1977), Holt & Smith (1979), Jagers et al. (1985), Singh & Chaudhary
(1986), Hedayat & Sinha (1991), Levy & Lemeshow (1991), Little (1993), and
Thompson (2012).

For clarity, we brie�y de�ne the main concepts used throughout the paper. A
�nite population refers to a set of N distinct sampling units from which observa-
tions are drawn. A random sample from a �nite population is a subset selected
according to a sampling design that speci�es selection probabilities for units. A
stratum (plural: strata) denotes a homogeneous subgroup into which the popula-
tion is partitioned in strati�ed sampling; sampling is then performed independently
within each stratum. An estimator is a rule or formula that produces an estimate
of a population parameter (such as a mean or total) from sample data. Where
relevant, we also refer to inclusion probabilities�the probabilities that given units
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are included in the sample under the chosen design�and to standard variance
estimators used to quantify estimator precision.

The remainder of this article is organized as follows. Section 2 presents the
estimation of subpopulation parameters and reviews related estimators. Section
3 introduces the proposed post-strati�ed estimator and discusses its theoretical
properties. Section 4 describes a simulation study conducted to evaluate the per-
formance of the proposed estimator under several distributions. Section 5 provides
an application to real data, including a step-by-step algorithm for practical imple-
mentation. Finally, Section 6 concludes the paper with a summary of �ndings, a
critical discussion of the estimator's properties, and possible directions for future
research.

2. Estimation of Subpopulation Parameters

Suppose that the units of the �nite population are U1, U2, . . ., UN , that Yi is
the value of the attribute for unit i, and that the parameters Y =

∑N
i=1 Yi and

Y =
Y

N
represent the total and mean of population, respectively. Now suppose

that u1, u2, . . . , un are sample members and that random variables yi are the value
of the attribute for the unit i in the sample.

We consider the c as a special property that some members of the popula-
tion have, and we call the set of such members subpopulation. After simple ran-
dom sampling, in addition to estimating the parameters of the population, we
are interested in estimating subpopulation parameters by the same random sam-
ple. For this purpose, we assume that Nc is subpopulation size and that Yci, for
i = 1, . . . , Nc, is the value of the attribute for the unit i in subpopulation, in which

case Yc =
∑Nc

i=1 Yci and Y c =
Yc

Nc
also represent the total and mean of subpop-

ulation, respectively. Also, assume that, for j = 1, . . . , nc, the random variable
ycj represents the value of attribute for the unit j in the sample that is located
in the subpopulation c, where nc is the sample size located in the subpopulation.

Obviously nc is a random variable with E(nc) =
nNc

N
.

To estimate Yc, Cochran (1977) introduced the following estimators:

Ŷc = Ncȳc, (1)̂̂
Y c =

Nncȳc
n

. (2)

In which ȳc = 1
nc

∑nc

j=1 ycj is the sample mean in the subpopulation. Similarly,

for the estimate Y c, we have

Ŷ c =
Ŷc

Nc
= yc,

̂̂
Y c =

̂̂
Y c

Nc
.
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But
̂̂
Y c is an estimate of Y c if Nc is known. Sometimes, Nc is unknown for some

populations, so considering that N̂c =
Nnc

n
is an unbiased estimator for Nc, the

following estimator can be used to estimate Y c:

Ŷ c =
Nncȳc

N̂cn
= ȳc.

It is worth noting that, in accordance with this estimator, to estimate the total
subpopulation, Ŷc = Ncȳc and also it is an only estimator from Yc, if Nc is known.
In cases where Nc is unknown, the estimator

N̂cȳc =
Nnc

n
ȳc =

̂̂
Y c

is obtained, which is the Estimator (2).

It is proved that all estimates Ŷc,
̂̂
Y c, Ŷ c, and

̂̂
Y c are unbiased for their corre-

sponding parameters, and

V (Ŷc) = N2
c S

2
c

[
E

(
1

nc

)
− 1

Nc

]
,

where S2
c =

1

Nc − 1

∑Nc

j=1

(
Ycj − Y c

)2
is the subpopulation variance.

For i = 1, . . . , N , we assume that

Y ∗
ci =

{
Yi, Ui ∈ c,

0, o.w.

in this case

S∗2
c =

1

N − 1

N∑
i=1

(
Y ∗
ci − Y

∗
c

)2
, (3)

in which Y
∗
c is the average of Y ∗

c1, . . . , Y
∗
cN . Accordingly, it can be shown

V (
̂̂
Y c) = N2S

∗2
c

n

(
1− n

N

)
.

Also, unbiased estimators for V (Ŷc) and V (
̂̂
Y c) are, respectively,

v(Ŷc) = N2
c s

2
c

(
1

nc
− 1

Nc

)
and

v(
̂̂
Y c) = N2 s

∗2
c

n

(
1− n

N

)
,
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where s2c and s∗2c are also sample variances yci and

y∗ci =

{
yi, ui ∈ c,

0, o.w.
(4)

for i = 1, . . . , n, respectively.

When Nc is unknown, Ŷc and
̂̂
Y cannot be used to estimate the subpopulation

total and mean. So using
̂̂
Y c and Ŷ c is inevitable for estimation the subpopulation

parameters. But if Nc is known, there is no limit to the use of these estimators,
and in such circumstances it is important to decide on the choice of the appropriate
estimator.

3. Modify the Post-Strati�ed Estimators

Suppose that a sample with size n is selected by a simple random sampling
from population with N members and with L strata. Also, assume that Nc, for
c = 1, . . . , L, is the number of members in the stratum c and the random variable nc

is the sample size located on it, so
∑L

c=1 Nc = N and
∑L

c=1 nc = n. By assuming
that for all stratum Nc are known, the unbiased estimator of post-strati�cation
for population mean is as follows:

yst =

L∑
c=1

WcŶ c,

where Ŷ c is the sample mean of the stratum c and Wc =
Nc

N
. To obtain the

variance of this estimator, we need to calculate E

(
1

nc

)
. In practice this is di�-

cult, but by taking a positive value for nc, a good approximation of E

(
1

nc

)
is as

follows (Stephan, 1945):

E

(
1

nc

)
≃ N

nNc
+

N (N −Nc)

n2N2
c

. (5)

Also under the Approximation (5), the variance of yst is

V (yst) ≃
N − n

nN

L∑
c=1

Nc

N
S2
c +

1

n2

L∑
c=1

N −Nc

N
S2
c , (6)

where S2
c =

1

Nc

∑Nc

j=1(Ycj − Y c)
2 is the variance of stratum c. It is worth noting

that without using the strati�cation scheme, in a simple random sampling, y =
1

n

∑n
i=1 yi is a common estimator Y .
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3.1. A New Post-Strati�ed Estimator

In this section, using the estimators introduced in the previous section, we
introduce a new estimator in the post-strati�cation sampling, which is more precise
than y and yst.

Proposition 1. If in the subpopulation c, the inequality

Y
2

c ≤ NS2
c

nNc
(7)

is established, then the
̂̂
Y c is more precise than Ŷc (Salehi & Seber, 2021).

Corollary 1. Proposition 1 refers to this if the subpopulation mean has small

values and members of subpopulation are heterogeneous, then the estimator
̂̂
Y c is

more precise than the estimator Ŷc. In practice, we need to have the parameters
Y c and S2

c for checking (7), usually both of them are unknown. Salehi & Seber
(2021) suggested the following criterion in practice

(Ŷ c)
2 ≤ s2c

[(
2N − n

nNc

)
+

(
N

nNc

)2(
N −Nc

N

)(
N − n

N − 1

)]
. (8)

We know that in post-strati�cation every staratum is a subpopulation. Thus,

in stratum c, if (8) holds for a selected sample, we can use
̂̂
Y c to estimate Yc,

otherwise Ŷc will be used.

Theorem 1. a) The estimator

ymst =
∑
c∈G

Wc

̂̂
Y c +

∑
c∈Ḡ

WcŶ c

is an unbiased estimator for the mean of population, where G is the set index from
stratums, in which the inequality (7) is established.

b) The variance of this estimator under the approximation (5) is as follows:

V (ymst) ≃
∑
c∈G

S∗2
c

n

(
1− n

N

)
+
∑
c∈Ḡ

[
N − n

Nn
WcS

2
c +

1

n2
(1−Wc)S

2
c

]
.

c) Unbiased estimation for the approximate variance of b) is

v(ymst) =
∑
c∈G

s∗2c
n

(
1− n

N

)
+
∑
c∈Ḡ

[
N − n

Nn
Wcs

2
c +

1

n2
(1−Wc) s

2
c

]
.
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Proof . a) Using the conditional expectation, it can be written

E(ymst) = E

E

∑
c∈G

Wc

̂̂
Y c +

∑
c∈Ḡ

WcŶ c|n1, . . . , nL


= E

∑
c∈G

WcE

(̂̂
Y c|nc

)
+
∑
c∈Ḡ

WcE
(
Ŷ c|nc

)
= E

∑
c∈G

WcY c +
∑
c∈Ḡ

WcY c


= Y .

b) Using the de�nition of y∗ci in (4), which results in ncyc = ny∗c , the estimator
ymst can also be written as follows:

ymst =
∑
c∈G

Wc

̂̂
Y c +

∑
c∈Ḡ

WcŶ c

=
∑
c∈G

nc

n
yc +

∑
c∈Ḡ

Wcyc

=
∑
c∈G

y∗c +
∑
c∈Ḡ

Wcyc. (9)

On the other hand,

V (ymst) = E (V (ymst|n1, . . . , nL)) + V (E (ymst|n1, . . . , nL)) . (10)

The second expression to the right of (10) is equal to zero, so by using (9) and
(10), we have

V (ymst) = E

V
∑

c∈G

y∗c +
∑
c∈Ḡ

Wcyc|n1, . . . , nL

 (11)

= E

∑
c∈G

V (y∗c |nc) +
∑
c∈Ḡ

W 2
c V (yc|nc)


= E

∑
c∈G

S∗2
c

n

(
1− n

N

)
+
∑
c∈Ḡ

W 2
c S

2
c

(
1

nc
− 1

Nc

)
=

∑
c∈G

S∗2
c

n

(
1− n

N

)
+
∑
c∈Ḡ

W 2
c S

2
c

[
E

(
1

nc

)
− 1

Nc

]
. (12)

Now, by substituting (5) into (12),V (ymst) is obtained.

c) It is obvious, because s2c and s∗2c are, respectively, unbiased estimators S2
c

and S∗2
c .
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Note 1. It should be noted that if, for every c = 1, . . . , L, the inequality (7) is
established, then

ymst =
1

n

n∑
i=1

yi = y.

In this case, ymst is the estimator population mean in the simple random sampling,
and if, for every c = 1, . . . , L, it is not established, then

ymst =

L∑
c=1

Wcyc = yst.

In this case, the estimator ymst is the same as the post-strati�ed estimator. In the
following theorem, we show that ymst is more precise than y and yst.

Theorem 2. The estimator ymst is more precise than y and yst.

Proof . We have

V (ymst) = E

V
∑

c∈G

Wc

̂̂
Y c +

∑
c∈Ḡ

WcŶ c|n1, . . . , nL


= E

∑
c∈G

W 2
c V

(̂̂
Y c|nc

)
+
∑
c∈Ḡ

W 2
c V
(
Ŷ c|nc

)
≤ E

[
L∑

c=1

W 2
c V

(̂̂
Y c|nc

)]

= E

[
V

(
L∑

c=1

Wc

̂̂
Y c|n1, . . . , nL

)]

= E

[
V

(
L∑

c=1

nc

n
yc|n1, . . . , nL

)]
= E [V (y|n1, . . . , nL)] = V (y).

The inequality of the third line is obtained by using Proposition 1 and the de�nition
of G indexes. Similarly, we can show that V (ymst) ≤ V (yst).

In practice, for the derivation of G indexes, we need the parameters Y c and S2
c ,

usually both of them are unknown. Therefore, we can obtain the approximation
from G indexes by using unbiased estimator Y c and S2

c in a prototype, instead
of checking the inequality (7), we suggest that to check inequality (8) for each
stratum.
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4. Simulation Study

In this section, to compare the estimators discussed in this article, we simulate
data for three populations, the �rst population from the normal distribution, the
second from the uniform distribution, and the third from the Laplace distribution.
Each population has four strata, each stratum has the same probability density
function (pdf) with di�erent parameters such that sets G = {1} and G = {2, 3}.
Details are given in the Table 1. Although the current study focuses on continu-
ous distributions, the proposed method can be extended to discrete distributions,
which will be considered in future work.

Table 1: The populations with their pdfs and size of subpopulations.

Population pdf(1) pdf(2) pdf(3) N1 N2 N3

1 N(0, 10) N(6, 15) N(10, 20) 2000 1500 1000

2 U(−5, 5) U(0, 6) U(2, 10) 2000 1500 1000

3 Laplace(0,8) Laplace(4,12) Laplace(12,20) 2000 1500 1000

For every time with M = 1000 repetitions, we select samples with size n =
{100, 200, 300, 400} from each population using simple random sampling method.
For every population, R statistical software was used to compute the following
quantities in this simulation study:

yh =
1

M

M∑
l=1

y
(l)
h ,

MSE =
1

M

M∑
l=1

(
y
(l)
h − Y

)2
.

Where y
(l)
h , for l = 1, 2, . . . ,M and h = st,mst, is the introduced estimators of

population mean based on lth sample. Details are given in Table 2. Here, h denotes
the stratum, st the post-strati�ed estimator, and mst the modi�ed post-strati�ed
estimator.

Table 2: The value of estimators and their MSE for the populations.

population Y n ymst yst y MSE (ymst) MSE (yst) MSE (y)

1 4.22 100 4.186 4.147 4.299 1.322 1.851 1.954

200 4.216 4.207 4.215 1.066 1.148 1.187

300 4.218 4.222 4.197 1.008 1.022 1.115

400 4.223 4.217 4.226 0.428 0.563 0.528

2 2.33 100 2.329 2.330 2.346 0.037 0.048 0.072

200 2.335 2.337 2.331 0.025 0.028 0.053

300 2.330 2.334 2.334 0.021 0.027 0.051

400 2.330 2.329 2.334 0.012 0.014 0.026

3 4.00 100 4.034 4.071 4.057 2.842 3.385 3.597

200 4.018 4.038 3.939 1.694 1.750 1.799

300 4.019 4.055 3.980 1.418 1.668 1.639

400 4.008 4.032 4.021 0.662 0.856 0.819
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Plots of the MSEs for all samples are given in Figure 1. According to Table
2 and Figure 1, it can be said that the MSE of ymst is less than that of the two
estimators in all samples and in all three populations. In terms of MSE after
ymst, yst has performed better than y in most cases. It is also observed that with
increasing n, MSE of all estimators decreases, which is the expected scenario.

Figure 1: The MSE of the estimators in simulation study: (a) population 1 (Normal
distribution), (b) population 2 (Uniform distribution) and (c) population 3
(Laplace distribution).

5. Real data application

In this section, we analyse a real dataset taken from the literature to implement
the proposed. The data set is used in Lohr (2010, p. 31 and 79) and Salehi & Seber
(2021). The data is a Census of Agriculture that the U.S. government conducts it
every �ve years, collecting data on all farms (de�ned as any place from which 1000
dollars or more of agricultural products were produced and sold) in the 50 states.
The acres devoted to farming in 1992 and 1987 are for N = 3078 counties in the
USA. We are interested in comparing the introduced estimators by estimating the
total number of acreage devoted to farming in the USA in 1992. Note that this
number is equal to Y = 943 881 045.

Although agricultural activity occurs in every U.S. state, it is particularly
concentrated in the Central Valley of California and in the Great Plains, a vast
expanse of �at arable land in the center of the nation, in the region west of the
Great Lakes and east of the Rocky Mountains. The eastern wetter half is a ma-
jor corn and soybean-producing region known as the Corn Belt, and the western
drier half is known as the Wheat Belt because of its high rate of wheat produc-
tion Hat�eld (2012). Therefore, it seems that classi�cation of American states
can increase the precise of estimators. For this reason, the American states are
classi�ed into four strata: northern, southern, eastern, and western states. For
each stratum c = 1, 2, 3, 4, Nc denotes the number of counties and Y c is the mean
acreage devoted to farming. Details are given in Table 3.
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Table 3: The details of the strata.

Stratum Subpopulation size (Nc) Y c Standard deviation (Sc)

(1) northern states 944 295883.0 719263.8

(2) southern states 936 343938.6 377643.3

(3) eastern states 632 22877.17 226539.1

(4) western states 566 579827.9 719263.8

Now, to compare the proposed estimator with previous estimators, we take
samples from this population with sizes n = 25, 50, 100, 250, 500, 1000 using a sim-
ple random sampling method. Based on these samples, the values of the estimators
and their standard deviations are listed in the Table 4. It should be noted that
according to Table 3, we can say that inequality (7) is valid only for stratum (3)
for n < 478. So for n < 478 we have G = {3} and G = {1, 2, 4}.

Table 4: The value of estimators and their standard deviations.

n Ŷmst = Nymst Ŷst = Nyst Ŷ = Ny SD(Ŷmst) SD(Ŷst) SD(Ŷ )

25 928540854 911184951 867795191 2.248× 108 2.352× 108 2.584× 108

50 850783164 828196001 752905455 1.001× 108 1.046× 108 1.137× 108

100 987723918 1009432136 1085410899 1.090× 108 1.139× 108 1.225× 108

250 954484872 952219418 973141970 8.564× 107 8.755× 107 9.516× 107

500 928647680 928647680 947599673 5.475× 107 5.475× 107 5.763× 107

1000 946926467 946926467 937550957 3.020× 107 3.020× 107 3.081× 107

According to Table 3, we can say that the standard deviation of Ŷmst is less
than that of the two estimators in all samples, for n = 25, 50, 100, 250.

6. Conclusions

A new unbiased estimator in the post-strati�cation sampling scheme is pro-
posed. We have shown that this estimator performs more accurately than con-
ventional and post-strati�cation estimators under the standard assumptions. A
simulation study of three populations con�rmed the theoretical �ndings of the ar-
ticle. During a real data analysis using census data of the acres devoted to farming
in American states, the proposed estimator had a lower standard deviation than
that of the other two estimators.

We provided a step-by-step algorithm for practical computation of the post-
strati�ed and modi�ed post-strati�ed estimators, making the methods directly
applicable in practice. The proposed estimator performs particularly well when
the required conditions are met; however, its behavior under violation of these
conditions requires further investigation. This limitation is a potential avenue for
future research. Overall, the enhanced discussion and practical guidance improve
the applicability and understanding of the proposed methods for practitioners and
researchers in �nite population sampling.
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