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Abstract

The COVID-19 pandemic has in�icted substantial global morbidity and
mortality since December 2019. This study endeavors to model the survival
and cure rates of COVID-19 patients using advanced defective modeling tech-
niques and leveraging sophisticated machine learning methods to enhance
prediction accuracy. We applied a range of statistical approaches�including
parametric, semi-parametric, and non-parametric methods�to �t estab-
lished and novel models to COVID-19 survival data, with a particular focus
on the Defective Gompertz Distribution. To our knowledge, this study rep-
resents the pioneering use of defective modeling techniques for estimating
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cure rates in COVID-19 research. Furthermore, we conducted a compara-
tive analysis across di�erent locations and countries using geographical and
demographic data from our dataset. This exploration aimed to uncover vari-
ations in survival and cure rates in�uenced by factors such as socioeconomic
status (SES), urban versus rural residence, and healthcare accessibility. Our
�ndings revealed signi�cant disparities in survival and cure rates associated
with demographic variables such as age, gender, SES, urbanicity, and health-
care access. Additionally, the study assessed the impact of various public
health interventions and identi�ed best practices implemented by di�erent
countries. Overall, our results contribute valuable insights to ongoing e�orts
aimed at comprehending and mitigating the impact of COVID-19 through
robust statistical and machine learning modeling techniques. These �ndings
are crucial for informing public health policies and interventions worldwide.

Key words: Cure rate; Cross-location; Defective modeling; Survival
analysis.

Resumen

La pandemia de COVID-19 ha causado una morbilidad y mortalidad
sustancial a nivel global desde diciembre de 2019. Este estudio tiene como
objetivo modelar las tasas de supervivencia y curación de pacientes con
COVID-19 utilizando técnicas avanzadas de modelado defectuoso y méto-
dos so�sticados de aprendizaje automático para mejorar la precisión de las
predicciones. Aplicamos una variedad de enfoques estadísticos, incluyendo
métodos paramétricos, semiparamétricos y no paramétricos, para ajustar
modelos establecidos y novedosos a los datos de supervivencia del COVID-
19, con un enfoque particular en la Distribución de Gompertz Defectuosa.

Según nuestro conocimiento, este estudio representa el uso pionero de
técnicas de modelado defectuoso para estimar tasas de curación en investi-
gaciones relacionadas con COVID-19. Además, realizamos un análisis com-
parativo entre diferentes ubicaciones y países utilizando datos geográ�cos y
demográ�cos de nuestro conjunto de datos. Esta exploración buscó identi-
�car variaciones en las tasas de supervivencia y curación in�uenciadas por
factores como el nivel socioeconómico (NSE), la residencia urbana frente a
rural y el acceso a la atención médica.

Nuestros hallazgos revelaron disparidades signi�cativas en las tasas de
supervivencia y curación asociadas con variables demográ�cas como la edad,
el género, el NSE, la urbanización y el acceso a los servicios de salud. Adi-
cionalmente, el estudio evaluó el impacto de diversas intervenciones de salud
pública e identi�có mejores prácticas implementadas por diferentes países.
En general, nuestros resultados aportan información valiosa a los esfuerzos en
curso para comprender y mitigar el impacto del COVID-19 mediante técnicas
sólidas de modelado estadístico y aprendizaje automático. Estos hallazgos
son cruciales para informar políticas e intervenciones de salud pública a nivel
mundial.

Palabras clave: Análisis de supervivencia; Comparación entre ubicaciones;
Modelado defectuoso; Tasa de curación.
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1. Introduction

In a number of patients, COVID-19 is deadly, with survival outcomes in�uenced
by factors such as age, gender, underlying medical conditions, and biomarker lev-
els. For example, an analysis by Ruan et al. (2020), of 150 COVID-19 patients
from Wuhan, China, identi�ed age and pre-existing cardiovascular conditions as
signi�cant predictors of mortality, underscoring the impact of patient characteris-
tics on survival rates.

Kundu et al. (2021) investigated the variability in survivorship of coronavirus
patients according to age group and sex. Multilevel mixed-e�ects survival models,
along with Kaplan-Meier and the Cox proportional hazard model, were utilized.
It should be noted that even though the population studied in Kundu et al. (2021)
is restricted to patients in India, the obtained results are in total harmony with
the results obtained by the present work.

The cured fraction of COVID-19 patients is estimated using the proportional
hazards mixture cure model by Sreedevi and Sankaran (Sreedevi & Sankaran,
2021), and the e�ect of covariates such as gender and age on lifetime is also con-
sidered. Interesting results are reported by Liu et al. (2021), where the authors
provided a comparative study between statistical models and their performance in
describing COVID-19 data.

Descriptive statistics showed that the cure rate from COVID-19 disease is lower
for elderly patients and those with pre-existing health burdens. For instance,
studies have shown that age and underlying health conditions signi�cantly a�ect
both hospitalization duration and recovery outcomes in COVID-19 patients (Zhao
et al., 2020). Furthermore, cure rate estimations have highlighted the need for
targeted healthcare approaches for vulnerable populations (Diao et al., 2020). Yet,
inferential statistics remain essential, extending beyond immediate data to provide
broader insights and generalizable conclusions that guide public health strategies.

To the best of our knowledge, this study is the �rst to utilize defective mod-
eling techniques for cure rate estimation. Defective modeling is a contemporary
concept. It is used to describe survival data with a proportion of survivors (also
called cure rate, cured fraction, long-term survivors, and proportion of immune).
Inherently, the survival function of a distribution converges to zero as time goes
by. The medical interpretation of this fact is that all the patients in the study are
susceptible to the event of interest, which is usually death. This de�nition does not
consider the existence of a proportion of survivors. To consider this proportion,
(Haybittle, 1959) put forward the idea of changing the domain of the model's un-
known parameters. The modi�cation is such that the survival function no longer
converges to zero as time approaches in�nity. Instead, it converges to the cure
rate. Thus, the cure rate is modeled without having to add an extra parameter
like traditional cure rate models such as mixture models (Boag, 1949) and non-
mixture models (Lambert et al., 2010). Besides, with defective models, there is no
need to assume the existence of a cure fraction since it can be concluded from the
range of the estimated parameters of the model.
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A few defective models have been introduced in recent years, aimed at enhanc-
ing survival analysis by accounting for long-term survivors and populations with
a surviving fraction. For instance, (Hamdeni & Gasmi, 2020) developed the Mar-
shall�Olkin generalized defective Gompertz distribution, which provides �exibility
in modeling survival data where a portion of the population does not experience
the event. Similarly, (Hamdeni & Gasmi, 2022) proposed a proportional-hazards
model speci�cally designed for datasets with long-term survivors, as demonstrated
in their application to amyotrophic lateral sclerosis (ALS) data. These models
contribute signi�cantly to the �eld by o�ering improved approaches to capture
complex survival patterns and support accurate prognosis in chronic and termi-
nal diseases. Our goal from this manuscript is to provide a clear and accessible
overview of the defective modeling concept that caters not only to experts in the
�eld but also to readers from diverse backgrounds. By elucidating these concepts,
we aim to facilitate a deeper understanding and broader applicability of these
models beyond their traditional domain.

Although the most statistically signi�cant characteristics of COVID-19 include
vaccination status, genetic factors, behavioral and lifestyle aspects (such as phys-
ical activities and smoking), and comorbidities like chronic respiratory diseases
(Hamdeni et al., 2024), in this study, we aim to explore and highlight the contri-
butions of less signi�cant features.

Geographic disparities play a significant role in COVID-19 outcomes, as evi-
denced by a population-based study comparing urban and rural areas in Germany
and Italy (Assche et al., 2024). This study found notable differences in hospital-
ization and mortality rates, with rural populations often facing higher mortality
despite lower population density. Contributing factors include limited healthcare
access, differences in demographic composition, and variations in public health in-
frastructure. These findings underscore the importance of accounting for geographic
factors in survival analysis and support the need for location-specific strategies to
mitigate COVID-19's impact. Such insights are crucial in developing models that
address both demographic and geographic influences on survival outcomes.

Therefore, we conducted a cross-location comparative study using location and
country information within the dataset to explore variations in survival and cure
rates across di�erent regions. Socioeconomic status (SES), urban vs. rural resi-
dence, and healthcare access were integrated into the analysis to provide a compre-
hensive understanding of how these factors in�uence COVID-19 outcomes. We ob-
served signi�cant di�erences in survival and cure rates in�uenced by demographic
factors such as age, gender, SES, urban vs. rural residence, and healthcare access.
The study also evaluates the impact of public health interventions and highlights
best practices from di�erent countries.

The rest of the paper is organized as follows: Section 2 we introduce the col-
lected datasets and develop the pre-processing techniques. Section 3 is reserved
for a comparative study of well-founded distributions to �t COVID-19 survival
data. Section 4 presents the parametric, non-parametric, and semi-parametric ap-
proaches to assess the signi�cance of some demographic and locational explanatory
variables. Finally, we devote Section 5 to the conclusion.
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2. Data Collection and Pre-Processing

In this study, we use data collected by Johns Hopkins University Center for
Systems Science and Engineering (JHU CSSE) on 1084 cases of COVID-19. Orig-
inal data sets are publicly available (Johns Hopkins University, n.d.). The dataset
includes symptom onset dates for each subject and death dates if the subject is de-
ceased. The authors have converted these dates into durations. The observations
were treated as survival data with right-censoring.

Nevertheless, the dataset available from Johns Hopkins University does not
include information about location characteristics. Since our study focuses on
the impact of location characteristics on COVID-19 survival, we sought additional
datasets related to income levels, education, and healthcare access. We found
the necessary information in the World Bank Open Data (World Bank, n.d.). By
merging both sources, we were able to incorporate these additional features into
our analysis.

We preprocessed the additional features, which included various categorical
variables, by encoding them into numerical codes to facilitate computational anal-
ysis. This encoding process ensures that our data is suitable for statistical analysis
and machine learning model training, which are essential for understanding the
factors in�uencing COVID-19 survival rates.

We encoded Socioeconomic Status (SES) with high, medium, and low levels
represented as 3, 2, and 1, respectively. This categorization re�ects the varying
degrees of income, education, and access to resources among individuals. Similarly,
the Urban/Rural variable was encoded with urban areas represented as 1 and rural
areas as 0. This distinction helps in analyzing the impact of population density,
infrastructure, and access to services on COVID-19 outcomes.

Healthcare Access was another crucial variable that we encoded to re�ect the
level of medical services available to individuals. High access to hospitals and
healthcare facilities was encoded as 3, moderate access with limited healthcare
workers as 2, and limited access with few healthcare facilities as 1. This encoding
allows us to quantitatively assess how di�erent levels of healthcare access a�ect
survival rates.

Encoding these categorical variables into numerical codes o�ers several ad-
vantages. It facilitates statistical analysis by allowing the application of various
statistical techniques that require numerical input. Additionally, it enables the use
of machine learning models, which generally require numerical data for processing
and learning. This numerical representation simpli�es data handling and improves
computational e�ciency, making it easier to manage and analyze large datasets.
Furthermore, encoding ensures consistency and standardization, reducing the risk
of errors and inconsistencies in data interpretation.

By preprocessing our dataset in this manner, we enhance our ability to perform
comprehensive and accurate analyses, thereby gaining deeper insights into the
demographic and locational factors that in�uence COVID-19 survival rates.
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3. Optimal Distribution Selection for COVID-19

Survival Analysis

3.1. Overview of Selected Lifetime Distributions

Di�erent distributions have been proposed by statisticians over the years. Here,
we select 12 well-founded distributions. We propose to determine the distribution
that best represents COVID-19 survival data. Names of the distributions, the
corresponding Probability Density Function (PDF), and the range and type of the
parameters are given in Table 6 in the Appendix.

It should be noted that the estimation procedure for Gompertz distribution
(GD) (Gompertz, 1825) has yielded negative values of the scale parameter β (see
details in Subsection 3.4). Therefore, their defective versions Modi�ed Gompertz
Distribution (MGD) (Haybittle, 1959) is introduced in Table 6 instead of the
proper distributions GD.

The defective version of the Gompertz distribution was originally introduced in
1959 by Haybittle (1959) who has input some slight modi�cations to the Gompertz
distribution so that it models a cure rate in the data. The modi�cation consists
in changing the range of the scale parameter from ]0,+∞[ to ]−∞, 0[. That is to
say, if β is the scale parameter, then for the proper Gompertz distribution, β can
only have strictly positive values, and for the defective Gompertz distribution, β
can only have strictly negative values. This modi�cation of the range of β was
made to allow for a cure rate to be considered. We note that the cure rate is the
limit of the survival function of the estimated parameters when t → ∞.

MGD was also brought out afterward by Cantor & Shuster (1992). Gieser et al.
(1998) has added covariate information to the Modi�ed Gompertz Distribution and
used it as a regression model to �t pediatric cancer data.

The probability density function of the MGD is:

f(t;α, β) = αe−βte
α
β (e−βt−1)

with shape parameter α strictly positive and scale parameter β ∈ R∗. The hazart
rate function of the MGD is given by:

h(t;α, β) = αe−βt.

The survival S(t;α, β) of MGD and its corresponding cure rate is given respec-
tively by:

S(t;α, β) = e
α
β (e−βt−1),

θ = lim
t→∞

S(t) = e−
α
β , (1)

3.2. Statistical Inference Methodology

The maximum likelihood approach is a prevalent statistical method used to
infer the probability distribution parameters for given data. The estimation pro-
cedure of the model parameters by the maximum likelihood technique requires:
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First, the expression of the likelihood function from the model taking into account
the assumptions. Second, applying the logarithm to the likelihood function. Then,
determine the parameter values that maximize the log-likelihood function.

In survival analysis, observations are usually censored. The contribution of
complete observation to the likelihood function is with the probability density
function. Instead, when the observation is censored, the survival function is used
to represent the patient who did not experience the event of interest, which is
death in this study. In other words, if the patient is dead (during the time of data
collection) then the censoring indicator δi = 1 (i.e. the patient's contribution to
the likelihood is the PDF). Otherwise, the censoring indicator δi = 0 (i.e. the
patient's contribution to the likelihood is the survival function S(t)). Each datum
consists of a duration or survival data (in days) (ti, δi) where i is an integer in
[1, n], n is the number of patients in the study, ti the independently observed
duration from symptom onset to the death date of the ith subject, δi a binary
value indicating censorship. Survival of the ith patient is censored at time Ti. We
shall consider that the censoring time is �xed to be the last day of data collection.
If Θ is the vector of unknown parameters of the model, the likelihood function is
given by:

L(ti; Θ) =

n∏
i=1

f(ti; Θ)δiS(ti; Θ)1−δi (2)

where f(t) is the PDF and S(t) is the survival function. We apply the logarithm
to Equation 2 to get the log-likelihood function:

l = ln(α)

n∑
i=1

δi − β

n∑
i=1

δiti +
α

β

n∑
i=1

δi(e
−βti − 1)

+

n∑
i=1

(1− δi)
α

β

(
e−βti − 1

)
.

(3)

We derive the obtained function with respect to each of the model parameters
inΘ. We obtain 2 non-linear equations, which is equal to the number of parameters
in the model:

∂l

∂α
=

1

α

n∑
i=1

δi +
1

β

n∑
i=1

δi(e
−βti − 1) +

1

β

n∑
i=1

(1− δi)
(
e−βti − 1

)
.

∂l

∂β
= −

n∑
i=1

δiti −
α

β2

n∑
i=1

δi(e
−βti − 1)− α

β

n∑
i=1

δitie
−βti

− α

β2

n∑
i=1

(1− δi)
(
e−βti − 1

)
− α

β

n∑
i=1

(1− δi)tie
−βti .

To �nd maximum likelihood estimates, we set the non-linear equations to zero
and numerically solve the system of equations using the Newton-Raphson method.
The above-described procedure is e�ectuated to each one of the models introduced
earlier.
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3.3. Model Selection Criteria and Comparative Evaluation

The relative quality of the �tted model is checked through model selection
measures. Five commonly used information criteria as utilized in this paper to
compare between �tted models: The AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion), CAIC (Consistent Akaike Information Crite-
rion), AICc (corrected AIC), and HQIC (Hannan�Quinn information criterion).
These information criteria are not a measure of quality by themselves but they are
a tool allowing the comparison between �tted models (Bozdogan, 1987). They are
de�ned as follows:

AIC = 2j − 2 ln(L)

BIC = j ln(n)− 2 ln(L)

CAIC = −2 ln(L) + j(ln(L) + 1)

AICc = AIC + 2(j+1)(j+2)
n−j−2

HQIC = −2L+ 2j ln(ln(L))

where j is the length of Θ or the number of parameters in the model, n is the
size of the given data sample and L is the maximized likelihood of the parameter
vector Θ.

3.4. Empirical Results and Interpretation

The maximum likelihood estimation results for each of the selected models,
the corresponding standard errors, and 95% con�dence intervals are presented in
Table 1. It should be mentioned that since the shape parameter α only allows
positive values, negative values of the lower bound of the 95% con�dence interval
are replaced by zero.

Table 2 gives the log-likelihood function of the estimated parameters as well as
the information criteria values. The preferred model is the one with the smallest
information criteria. The AIC, BIC, CAIC, AICc, and HQIC values show that
MGD markedly outperformed the other models.

Figure 1 illustrates the Kaplan-Meier estimator for the survival function from
the COVID-19 dataset, as well as the survival curves of the defective MGD and
MGGD models, respectively. For this type of model, this step allows us to es-
timate the cure rate in the data, as it is the value towards which the estimated
survival function converges. The cure rate estimated by the Modi�ed Gompertz
distribution, using Equation 1, is 0.9222.

This estimation is in harmony with the recent literature (Cao et al., 2020).
Yet, other factors may also in�uence the cure rate.
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Table 1: Maximum Likelihood Estimates (MLE), the corresponding Standard Error
(SE), 95% CI's Lower Bound (LB) and Upper Bound (UB) for each
distribution.

Distribution Parameter MLE SE LB UB

Weibull
α̂ 1388.4400 659.159 547.55 3520.7

β̂ 0.7448 0.0886 0.5899 0.9406

Exponential α̂ 540.2380 68.0636 428.2145 703.0437

Burr

α̂ 6.4544 3.1913 2.4490 17.0107

β̂ 1.3652 0.2844 0.9074 2.0538

γ̂ 0.0271 0.0115 0.0117 0.0627

Gamma
α̂ 0.7388 0.0914 0.5797 0.9416

β̂ 1667.3700 909.2830 572.5798 4.8554 103

Extreme value
α̂ 112.1063 8.8073 94.8442 129.3684

β̂ 26.9675 3.0084 21.6711 33.5582

Log-logistic
α̂ 7.1059 0.4627 6.1989 8.0129

β̂ 1.3134 0.1553 1.0417 1.6562

Logistic
α̂ 108.4490 8.5430 91.7048 125.1929

β̂ 26.1034 2.8974 20.9997 32.4474

Log-normal
α̂ 8.1139 0.5688 6.9990 9.2289

β̂ 2.9829 0.3255 2.4085 3.6942

Nakagami
α̂ 0.6345 0.0437 0.2881 0.4612

β̂ 1.2604 106 1.1216 106 2.2032 105 7.2111 105

Normal
α̂ 119.753 9.9627 100.2268 139.2799

β̂ 53.9710 5.7397 43.8163 66.4790

MGD
α̂ 0.0038 0.0007 0.0024 0.0053

β̂ -0.0469 0.0121 -0.0706 -0.0232

Table 2: Negative log-likelihood value L and information criteria for each distribution.

Distribution L AIC BIC CAIC AICc HQIC

Weibull -455.9490 915.8980 925.8748 927.8748 912.9091 919.6750

Exponential -459.3970 920.7940 925.7824 926.7824 918.7977 922.6825

Burr -451.3390 908.6780 923.6432 926.6432 904.7001 914.3435

Gamma -456.1220 916.2440 926.2208 928.2208 913.2551 920.0210

Extreme value -503.7201 1011.4400 1021.4168 1023.4168 1008.4511 1015.2170

Log-logistic -455.6590 915.3180 925.2948 927.2948 912.3291 919.0950

Logistic -502.963 1009.9260 1019.9028 1021.9028 1006.9371 1013.7030

Log-normal -453.5080 911.0160 920.9928 922.9928 908.0271 914.7930

Nakagami -456.24 916.4568 926.4568 928.4568 913.4911 920.2570

Normal -497.584 999.1680 1009.1448 1011.1448 996.1791 1002.9450

MGD -450.2200 902.4400 914.4168 916.4168 901.4511 908.2170

4. Impact of Demographic and Cross-Location

Covariates on COVID-19 Survival

To visualize the e�ect of some demographic as well as cross-location covariates
on COVID-19 patients' overall survival, parametric, semi-parametric, and non-
parametric estimation approaches have been conducted.

The regression model was evaluated using multiple statistical diagnostics to
assess its �t, robustness, and adherence to the assumptions of linear regression.
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Figure 1: Kaplan-Meier, 95% con�dence interval and parametric estimation of the sur-
vival function of the MGD.

Skewness measures the asymmetry of the probability distribution of a real-valued
random variable. For residuals in a regression model, skewness evaluates the sym-
metry of the errors around the mean. Mathematically, it is calculated as the third
standardized moment:

Skewness =
1

n

n∑
i=1

(
xi − x̄

σ

)3

,

where xi are the residuals, x̄ is their mean, and σ is their standard deviation.
A skewness value of zero indicates perfect symmetry, while positive skewness in-
dicates a right tail and negative skewness a left tail. In regression diagnostics,
signi�cant skewness in residuals suggests that the model's errors are not symmetri-
cally distributed, which can violate the normality assumption and a�ect inference.
Kurtosis measures the �tailedness� of a distribution, speci�cally the propensity for
outliers. It is the fourth standardized moment of a distribution:

Kurtosis =
1

n

n∑
i=1

(
xi − x̄

σ

)4

.

We have also employed the Jarque-Bera (JB) test which is a goodness-of-�t
test for normality, evaluating whether the sample data have skewness and kurtosis
matching a normal distribution. The test statistic is given by:

JB =
n

6

(
Skewness2 +

(Kurtosis− 3)2

4

)
,

where n is the sample size. The JB test is asymptotically chi-square distributed
with 2 degrees of freedom. We have also calculated the R-squared, or the coe�cient
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of determination, measures the proportion of variance in the dependent variable
that is predictable from the independent variables. It is calculated as:

R2 = 1− SSres
SStot

,

where SSres is the residual sum of squares, and SStot is the total sum of squares. R-
squared ranges from 0 to 1, where a higher value indicates that more of the variance
in the dependent variable is explained by the model. However, R-squared alone
does not assess the model's accuracy; a high R-squared does not imply causation
or guarantee a well-�tted model. Therefore we have also calculated the Adjusted
R-squared which is a modi�ed version of R-squared that accounts for the number
of predictors in the model. It is de�ned as:

Adjusted R2 = 1−
(
(1−R2)(n− 1)

n− k − 1

)
,

where n is the sample size, and k is the number of predictors. The F-statistic tests
the null hypothesis that all regression coe�cients are zero, comparing the model
to one with no predictors. The F-statistic is calculated as:

F =
Explained variance

Unexplained variance
,

These diagnostics are utilized to collectively provide insights into the model's
�t and robustness. The Modi�ed Gompertz Distribution (MGD) that presented
the best-�tted model, according to results in Table 2 is used to estimate the cure
rate for each demographic strati�cation: Age (≤ 60, > 60 ) and gender, as well as
cross-location information.

4.1. Semi-Parametric Approach

We conduct a multivariate demographic and locational regression analysis to
examine the relationships between various factors and the dependent variable.
Tables 3 and 4 summarize the regression results, presenting coe�cients, standard
errors, t-values, p-values, and con�dence intervals for each predictor variable. Ad-
ditionally, measures of skewness, kurtosis, and model �t (R-squared and adjusted
R-squared) are provided to assess the overall goodness-of-�t and statistical signif-
icance of the model.

The regression resutls show that age above 60 years old and gender were asso-
ciated with the overall survival of coronavirus patients. The negative coe�cients
for the variable gender (−0.8662 and −0.9113) indicate that females have a higher
survival rate than males. The positive coe�cients (2.0656 and 2.0857) for the
variable age indicate that the more the patient is old the higher the risk of death
is (and thus the lower the cure rate is). In essence for the demographic character-
istics, the Cox proportional hazard regression model showed a signi�cantly higher
risk of death in elderly patients and less signi�cantly, male patients.
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Table 3: Results of multivariate demographic and locational regression.

Coef. Std. err. t P > |t| [0.025 0.975]

const 34.8218 0.738 47.153 0.000 33.371 36.272

age 2.0656 0.3004 6.8768 6.1198× 10−12 1.478 2.654

gender -0.8662 0.3069 -2.8229 0.0048 -1.468 -0.265

SES -2.2709 1.032 -0.953 0.341 -6.946 2.407

Urban/Rural -0.4737 0.973 -0.487 0.627 -2.385 1.438

Healthcare Access -2.6398 2.792 -0.946 0.345 -8.123 2.844

Skew -0.110 Prob (JB) 0.634

Kurtosis 2.513 Prob (F-statistic) 7.49× 10−22

R-squared 0.144 Adj. R-squared 0.138

Now focusing on the speci�cs of each table. Table 3 displays the results of
the linear regression, taking into account multivariate demographic and locational
coe�cients. Although in this study we aim to explore and highlight the contribu-
tions of less signi�cant features, the obtained p-value (F-statisic) is extremely low,
indicating that the model is statistically signi�cant and that at least one of the
predictors is signi�cantly related to the dependent variable.

This obtained R-squared value indicates that approximately 14.4% of the variance
in the dependent variable (Survival Days) is explained by the independent variables
in the model. This relatively low value suggests that the model explains only a small
portion of the variability in survival days. This is consistent with our earlier discussion
regarding the selection of less significant characteristics for the study.

The weaknesses of the model are apparent in some of the obtained results.
For example, the coe�ecient for the SES feature indicate that for each one-unit
increase in socioeconomic status (SES), Survival Days decrease by approximately
4.1415 days. This e�ect is not statistically signi�cant (p-value = 0.308) and con-
tradicts previous studies. Added to that, being in an urban or rural area has a
coe�cient of -0.8801, which is also not statistically signi�cant (p-value = 0.809).
Healthcare Access coe�cient value shows that for each one-unit increase in health-
care access, Survival Days decrease by approximately 5.0788 days. This e�ect is
not statistically signi�cant (p-value = 0.233).

Furthermore, the model su�ers from non-normality in its residuals, as indicated
by the Jarque-Bera (JB) Test value of 7.515 with a signi�cant p-value (0.0233),
suggesting that the residuals are not normally distributed. Speci�cally, the Skew
value is -0.155, indicating a slight left skew in the residuals, despite the Kurtosis
value of 2.600, which is close to 3, the kurtosis of a normal distribution.

Another issue with the model is that the condition number is higher than 10,
indicating moderate multicollinearity (see Figure 2). In conclusion, the diagnos-
tics suggest issues with normality and multicollinearity. This suggests that further
model re�nement and exploration of additional variables or transformations may
be necessary to improve the model. Therefore, we have opted for Principal Com-
ponent Analysis (PCA) to attempt to address these issues.
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Figure 2: Correlation matrix of the model features.

The results after applying Principle Component Analysis are shown in Table
4.

Table 4: Results after applying Principal Component Analysis.

Coef. Std. err. t P > |t| [0.025 0.975]

const 35.2900 0.659 53.531 0.000 33.996 36.584

PC1 3.1486 0.310 10.152 0.000 2.540 3.757

age 2.0857 0.3006 6.9406 3.9775× 10−12 1.496 2.676

gender -0.9113 0.3070 -2.9717 0.0030 -1.516 -0.307

Skew -0.110 Prob (JB) 0.00808

Kurtosis 2.471 Prob (F-statistic) 7.49× 10−22

R-squared 0.144 Adj. R-squared 0.139

The R-squared remains the same in the previous model. So the model signifi-
cance wasn't reduced after the PCA step. The p-value associated with the F-statistic
remains extremely low, indicating that the model is statistically significant.

The �rst principal component (PC1) is highly signi�cant with a p-value less
than 0.001, suggesting it is a strong predictor in the model. The coe�cients for
age and gender didn't change much. A p-value of 0.00808 for the JB test indicates
that we reject the null hypothesis of normality at typical signi�cance levels (0.05),
suggesting that the data signi�cantly departs from a normal distribution. Addi-
tionally, the condition number of 3.61 is signi�cantly lower than in the previous
model, indicating that multicollinearity has been reduced.

The improvement in the model through PCA suggests that the multicollinear-
ity issue has been addressed. The F-statistic and associated p-value indicate that
the overall model �t has improved. The inclusion of a principal component (PC1)
in the model provides statistically signi�cant predictors, unlike the original auto-
correlated variables.

Overall, the results suggest an improvement in the model through PCA, making
the regression coe�cients more stable and reliable.
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4.2. Non-Parametric and Parametric Approaches

Further exploration of the model is conducted in this �nal section. In Figures
3 and 4, non-parametric Kaplan�Meier and parametric survival curves of overall
survival function according to the gender and the age of the coronavirus patients.
The parametric curves are based on the Modi�ed Gompertz Distribution, with
parameters estimated by the maximum likelihood approach. As the �gures show,
the survival curves reached a stable plateau at the right tail. Interestingly, it is
recommended then to use cure rate models because they lead to more accurate
results (Kim et al., 2013). The plateau of the Kaplan-Meier curve is lower for the
male population and the elderly population of COVID-19 data and, hence, the
associated estimated cure rate.

Maximum likelihood estimation of MGD parameters that allowed the estimated
survival curves for each considered strati�cation are depicted in Figures 3 and 4
are given in Table 5. The corresponding standard errors and 95% con�dence inter-
vals are also shown in the same table. The cure rate Θest for each subpopulation
is estimated based on the Modi�ed Gompertz distribution, using Equation 1. Em-
pirical cure rate Θemp is naively calculated as the proportion of patients who are
still alive, or the right-censoring level in the sub dataset, which is also the survival
rate plateau. The estimated and empirical cure rates have close values.

Kaplan-Meier and the parametric survival analysis demonstrated that female
patients and those who are younger than 60 years old have a signi�cantly higher
chance of survival.
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Figure 3: Example of non-parametric Kaplan�Meier and parametric curves of overall
survival function according to gender.
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Figure 4: Example of non-parametric Kaplan�Meier and parametric curves of overall
survival function according to age.

Table 5: MLE of MGD parameters, the corresponding SE and 95 % CI, empirical and
estimated cure rates for each of the considered strati�cations.

Age Gender

≤ 60 > 60 Female Male

α̂ 0.0018 0.0099 0.0018 0.0055

SEα̂ 0.0007 0.0024 0.0008 0.0013

95%CIα̂ [0.0004, 0.0031] [0.0053, 0.0143] [0.0003, 0.0034] [0.0030, 0.0080]

β̂ -0.0583 -0.0300 -0.0301 -0.0480

SEβ̂ 0.0253 0.0136 0.0229 0.0141

95%CIβ̂ [−0.1079,−0.0088] [−0.0568,−0.0033] [−0.0751, 0.0148] [−0.0755,−0.0204]

Θemp 0.9751 0.8216 0.9634 0.9154

Θest 0.9696 0.7189 0.9420 0.8917

5. Conclusion

This study has comprehensively examined various survival and cure rate models
for COVID-19, employing a combination of parametric, semi-parametric, and non-
parametric techniques. Our analysis, anchored in defective modeling and utilizing
data from diverse geographic locations, underscores the signi�cant variation in
survival and cure rates across di�erent regions. By integrating data from multiple
sources, we enhanced the robustness and applicability of our �ndings, providing a
cross-location comparative perspective.

The defective Modi�ed Gompertz Distribution emerged as the superior model
for our data, demonstrating its e�ectiveness in �tting the survival rates of COVID-
19 patients while accommodating variations due to demographic factors such as
age and gender. The inclusion of cross-location data allowed for a richer analysis
and helped identify regional di�erences that might in�uence survival outcomes and
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public health strategies. Applying Principal Component Analysis was bene�cial
in this context as it helped address multicollinearity, reduced dimensionality, and
improved the stability and reliability of the regression coe�cients by transforming
the original variables into a set of uncorrelated principal components.

These insights pave the way for future research to further dissect the impact of
demographic, environmental, and healthcare access variables on COVID-19 out-
comes. Additionally, the methodologies applied in this study can be adapted to
other epidemiological datasets, potentially o�ering a valuable tool for pandemic
response and preparedness e�orts worldwide.

6. Overview of the Distributions Used

Table 6 provides the names of the distributions, their corresponding Probability
Density Functions (PDFs), and the range and type of their parameters. Figure 6
presents the plot of the Kaplan-Meier non-parametric estimator curve as well as
the survival curves of all the �tted parametric models. The closer the parametric
model is to the Kaplan-Meier curve, the better the �t.

Table 6: Probability density functions of the studied distributions.

Distribution PDF Parameters

Weibull f(t) = α
β
( t
β
)
α−1

e
−( t

β
)α

α > 0: shape, β > 0: scale

Exponential f(t) = αe−αt α > 0: rate

Burr f(t) = αβ
γ

( t
γ
)α−1(1 + ( t

γ
)α)−β−1 α > 0: scale, β, γ > 0: shape

Gamma f(t) = βαtα−1e−βt

(α−1)!
α > 0: shape, β > 0: rate

Extreme value f(t) = 1
β
e

t−α
β e−e

t−α
β

α > 0: location, β > 0: scale

Log-logistic f(t) =
( β
α
)( t

α
)β−1

(1+( t
α
)β)2

β > 0: shape, α > 0: scale

Logistic f(t) = e
−( t−α

β
)

β(1+e
− t−α

β )2
α > 0: location, β > 0: scale

Log-normal f(t) = 1
t

1
β
√
2π

e
− 1

2β2 (ln t−α)2

α ∈ R: location, β > 0: scale

Nakagami f(t) = 2αα

(α−1)!βα t2α−1e
−α

β
t2

α ≥ 1
2
: shape, β > 0: scale

Normal f(t) = 1
β
√
2π

e
− 1

2
( 1
β
(t−α))2

α ∈ R: location, β > 0: scale

MGD f(t) = αeβte
−α

β
(eβt−1)

α > 0: shape, β < 0: scale
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Figure 5: Kaplan-Meier and parametric estimation of the survival function of some
proper distributions for COVID-19 data (Part 1).
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Figure 6: Kaplan-Meier and parametric estimation of the survival function of some
proper distributions for COVID-19 data (Part 2).
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