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Abstract

This article investigates and compares three approaches to link prediction
in colaboration networks, namely, an ERGM (Exponential Random Graph
Model; Robins et al. 2007), a GCN (Graph Convolutional Network; Kipf &
Welling 2017), and a Word2Vec+MLP model (Word2Vec model combined
with a multilayer neural network; Mikolov, Chen, Corrado & Dean 2013 and
Goodfellow et al. 2016). The ERGM, grounded in statistical methods, is em-
ployed to capture general structural patterns within the network, while the
GCN andWord2Vec+MLP models leverage deep learning techniques to learn
adaptive structural representations of nodes and their relationships. The pre-
dictive performance of the models is assessed through extensive simulation
exercises using cross-validation, with metrics based on the receiver operat-
ing characteristic curve. The results clearly show the superiority of machine
learning approaches in link prediction, particularly in large networks, where
traditional models such as ERGM exhibit limitations in scalability and the
ability to capture inherent complexities. These �ndings highlight the poten-
tial bene�ts of integrating statistical modeling techniques with deep learning
methods to analyze complex networks, providing a more robust and e�ective
framework for future research in this �eld.
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Resumen

Este artículo investiga y compara tres enfoques para la predicción de
enlaces en redes de colaboración: un ERGM (Exponential Random Graph

Model ; Robins et al., 2007), una GCN (Graph Convolutional Network ; Kipf
& Welling, 2017) y un modelo Word2Vec+MLP (modelo Word2Vec com-
binado con una red neuronal multicapa; Mikolov, Chen, Corrado & Dean
(2013), y Goodfellow et al. (2016)). El ERGM, basado en métodos estadís-
ticos, se emplea para capturar patrones estructurales generales dentro de la
red, mientras que los modelos GCN y Word2Vec+MLP utilizan técnicas de
aprendizaje profundo para aprender representaciones estructurales adapta-
tivas de los nodos y sus relaciones. El desempeño predictivo de los modelos
se evalúa mediante extensos ejercicios de simulación con validación cruzada,
utilizando métricas basadas en la curva característica operativa del receptor
(ROC). Los resultados muestran claramente la superioridad de los enfoques
de aprendizaje automático en la predicción de enlaces, particularmente en
redes grandes, donde los modelos tradicionales como el ERGM presentan
limitaciones en escalabilidad y en la capacidad de capturar complejidades
inherentes. Estos hallazgos resaltan los posibles bene�cios de integrar téc-
nicas de modelado estadístico con métodos de aprendizaje profundo para
analizar redes complejas, proporcionando un marco más robusto y efectivo
para futuras investigaciones en este campo.

Palabras clave: Redes de colaboración; Modelo exponencial de grafos aleato-
rios; Red de convolución sobre grafos; Word2Vec; Análisis de redes sociales.

1. Introduction

Social networks have captured the attention of researchers since the last cen-
tury. Studying networks is essential, as we live in a connected world where un-
derstanding connections provides deeper insights into numerous phenomena (Ko-
laczyk & Csárdi, 2020). A speci�c area of interest within this �eld is collaboration
networks. While some authors focus on studying these networks as relationships
formed between actors who interact locally, resulting in biased and random com-
ponents (Skvoretz, 1990), we consider a collaboration network as a fully structured
complex system in which two scientists are connected if they have coauthored an
article. This de�nition is reasonable, as most people who have written an article to-
gether have shared ideas over a certain period (Newman, 2001). Some researchers
have analyzed collaboration graphs for scientists across various �elds, using data
from sources such as MEDLINE, the Los Alamos e-Print Archive, SPIRES, and
NCSTRL (Newman, 2001), focusing primarily on descriptive studies and certain
clustering processes.

In the context of collaboration networks, a primary objective is to predict
new links within the network. Exponential Random Graph Models (ERGM; e.g.,
Snijders 2002, Robins et al. 2007 and Lusher et al. 2013) are commonly used for
this purpose, although some applications have focused on economic collaboration
networks, given that economic development has been driven by competitiveness
(Lee et al., 2012). The use of these models is justi�ed by their recognition as the
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most powerful, �exible, and widely applied approach for constructing and testing
statistical network models (Luke, 2015). However, machine learning models have
advanced signi�cantly, and their applications to networks have been extensively
explored in recent years. This trend has led to two distinct perspectives: Models
that prioritize the network's structure and models that represent networks as a set
of vectors (e.g., Hamilton et al. 2017b and Zhang et al. 2020).

On the one hand, Graph Convolutional Network (GCN) models stand out
(e.g., Kipf & Welling 2017, Hamilton et al. 2017a, and Wu et al. 2021). This ap-
proach extends the convolution operation to graphs, enabling the network to learn
node representations by considering both node features and graph structure (Yao
et al., 2019). Through convolutional layers, nodes aggregate information from their
neighbors, allowing the model to capture local relationships and structural pat-
terns within the graph. This capability makes GCNs particularly useful for tasks
such as node classi�cation (Kipf & Welling, 2017), link prediction, and clustering
(Chiang et al., 2019), as they can infer and generalize the complex relationships
inherent in relational data.

On the other hand, embedding algorithms are essential. The primary goal of
graph embedding methods is to encode nodes within a latent vector space, e�ec-
tively capturing each node's properties in a lower-dimensional vector form (Xu,
2021). This representation aims to preserve the overall structure of the graph, posi-
tioning related nodes with similar characteristics as �close� vectors. This approach
is essentially similar to Ho�'s latent space models (e.g., Ho� et al. 2002, Ho� 2007,
and Sosa & Buitrago 2021). Typically, continuous-space language models are em-
ployed for this purpose, which focus on representing words as vectors (Mikolov,
Yih & Zweig, 2013). Given the analogy between graphs and word sequences, these
models can be adapted to network contexts by systematically traversing each edge
and vertex in the graph (Skiena, 2008) and by categorizing the importance of
nodes within the network (Skiena, 2017). This approach results in a set of vectors,
enabling the application of all common properties and operations of a traditional
vector space.

Despite growing interest in link prediction models, most studies have focused
on evaluating statistical and machine learning approaches separately, with few di-
rect comparisons between them. For instance, ERGMs have been widely applied
to social and collaboration networks to analyze structural dependencies and infer
link formation mechanisms (Snijders 2002; Robins et al. 2007; Lusher et al. 2013).
These models provide interpretability but face scalability challenges in large net-
works. In contrast, GCNs have demonstrated strong predictive performance in
network-related tasks, particularly in node classi�cation and link prediction (Kipf
& Welling 2017; Yao et al. 2019). While several studies have applied GCNs to
collaboration networks (Chiang et al. 2019; Wu et al. 2021), they primarily fo-
cus on performance optimization rather than methodological comparisons with
traditional statistical models.

Similarly, Word2Vec-based embeddings have gained traction in network sci-
ence due to their ability to learn latent node representations from structural pat-
terns. These methods have been e�ectively used for link prediction in various do-
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mains, including citation networks and social graphs (Perozzi et al. 2014; Grover
& Leskovec 2016). Some studies have explored their applicability to academic
collaboration networks, demonstrating their capability to capture meaningful co-
authorship structures (Xu, 2021). However, existing research tends to assess these
methods in isolation rather than comparing them directly with ERGMs or GCNs.

Despite signi�cant advancements in link prediction, existing methodologies
tend to fall into two distinct paradigms: statistical models and deep learning-
based approaches. On the one hand, statistical methods, such as ERGMs, are
widely recognized for their ability to capture structural dependencies within net-
works, making them valuable for hypothesis-driven network analysis. However,
these models face considerable computational challenges, particularly in large and
dense networks, where estimation becomes intractable. On the other hand, ma-
chine learning and deep learning techniques, including Graph Neural Networks
(GNNs) and embedding-based methods, have demonstrated superior predictive
accuracy and scalability, leveraging data-driven representations to infer missing
links. However, these methods often lack interpretability, making it di�cult to
discern the underlying mechanisms governing link formation.

This study aims to bridge this methodological gap by systematically comparing
ERGMs, GNNs, and embedding-based approaches in the context of academic col-
laboration networks. Our analysis evaluates the trade-o�s between interpretability,
predictive performance, and computational e�ciency, providing empirical insights
into the suitability of each approach across di�erent network structures. By of-
fering a uni�ed perspective on these methods, we contribute to a more nuanced
understanding of link prediction, enabling researchers and practitioners to make
informed methodological choices based on network characteristics and research
objectives.

Thus, despite the popularity of the modeling approaches provided above, to
the best of our knowledge, a comprehensive comparison of these tools for link
prediction remains unavailable. Therefore, this study systematically compares the
predictive performance of ERGMs, GNNs, and embedding models across �ve aca-
demic collaboration networks. The objective is to determine which approach o�ers
the highest accuracy and computational e�ciency and to provide clear recommen-
dations for their application across various contexts. Although the analysis focuses
on the speci�c case of the Astro-Ph (Astrophysics) network, as it is the largest and
densest among the �ve networks, the �ndings are shown to be consistent across
the other cases as well.

This study is crucial, as understanding the speci�c strengths and limitations of
each modeling method is imperative for advancing network analysis and develop-
ing more e�ective techniques for predicting relationships in collaboration networks
and other relational datasets with similar structures. The scope of this project en-
compasses a detailed review and careful implementation of these models (which is
not a straightforward task!) followed by a comparison using specialized predictive
metrics, and the generation of recommendations based on the results, with a focus
on academic collaboration networks.
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The remainder of the article is organized as follows. Section 2 provides a
detailed overview of the fundamental aspects of the models under study. Section 3
o�ers a comprehensive comparison of the models using �ve well-known academic
collaboration networks. Finally, Section 4 presents the �ndings along with several
recommendations for future research.

2. Modeling

In this section, we present the most relevant details regarding the models to
be evaluated for predictive purposes, namely, Exponential Random Graph Models
(ERGMs), Graph Neural Networks (GNNs), and embedding models, including
their corresponding theoretical and computational details.

Here's the translation and revision of your section into academic English, with
enhanced clarity and structure:

2.1. Exponential Random Graph Model

The Exponential Random Graph Model (ERGM) is a statistical framework
used to represent and analyze complex networks, allowing for the capture of de-
pendencies between links and the characteristics of the nodes that compose the
network. Unlike simpler models, such as the Erd®s-Rényi model (Erd®s & Rényi,
1960) and the generalized random graph model (Newman et al., 2001), ERGMs
allow for the inclusion of structural dependencies, such as tendencies toward tri-
angle formation or the preference for certain nodes to be more highly connected
(Lusher et al., 2013). Fundamentally, ERGMs model the probability of observ-
ing speci�c link formations in a network based on a set of parameters associated
with both nodal and network statistics. One clear advantage of this approach is
the interpretability of its parameters, which aids in understanding the underlying
factors in�uencing link formation in a particular network. However, in large net-
works, the computational cost of estimating ERGM parameters can be substantial,
which complicates the process and often leads to the use of alternative algorithms
(Handcock et al., 2008).

An ERGM is formally de�ned as

p (y | θ) = 1

κ
exp {θTg(y)} ,

where y = [yi,j ] represents the realization of a random adjacency matrix Y, g(y)
is a K-dimensional vector of network statistics (endogenous variables) and vertex
characteristics (exogenous variables), θ is a K-dimensional vector of unknown
parameters, and κ ≡ κ(θ) is the normalizing constant ensuring that p (· | θ) is a
proper probability distribution.

ERGM functionality involves specifying relevant network statistics and esti-
mating the corresponding parameters, which indicate the relative signi�cance of
each statistic within the network's relational structure. Due to the complexity
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of normalizing probabilities across all possible networks, parameter estimation
is typically performed using Markov Chain Monte Carlo (MCMC) methods (see
Gamerman & Lopes 2006 and Robins et al. 2007), which can be slow depending on
the network size. ERGMs are particularly valuable when networks are assumed to
form not only through random connections but also through signi�cant structural
patterns that can be captured and analyzed using both endogenous and exogenous
variables.

ERGMs rely on a set of fundamental assumptions about network formation,
particularly regarding sparsity and size. A key assumption is that network ties are
not formed independently but rather exhibit dependencies that ERGMs attempt
to model through network statistics, such as edges, triangles, and other structural
con�gurations. However, the feasibility of ERGM estimation is strongly a�ected
by network sparsity and size. Sparse networks, where the number of links is signif-
icantly lower than the number of possible connections, often lead to better model
convergence, as the likelihood surface remains more tractable. In contrast, dense
networks tend to pose severe challenges for ERGM estimation, as the inclusion
of additional dependencies (e.g., higher-order interactions) leads to complex de-
generacy issues, where the model assigns excessive probability mass to unrealistic
network con�gurations.

Additionally, the computational burden of ERGM estimation scales dramat-
ically with network size due to the intractability of the normalizing constant,
requiring the use of MCMC methods to approximate the likelihood as discussed
above. This results in signi�cant limitations when applying ERGMs to large-scale
networks, as demonstrated in this work. Despite these constraints, ERGMs remain
advantageous in certain scenarios. They are particularly useful for analyzing small
to moderately sized networks where structural dependencies are of primary inter-
est. For example, in social science applications where understanding the role of
homophily, transitivity, or preferential attachment in shaping network structures
is essential, ERGMs provide interpretable parameter estimates that inform theo-
retical insights. Additionally, when the focus is on hypothesis testing rather than
large-scale predictive modeling, ERGMs o�er a statistically principled framework
for evaluating structural tendencies in networks.

By explicitly modeling network dependencies and incorporating domain-speci�c
knowledge through exogenous covariates, ERGMs remain a valuable tool despite
their computational drawbacks. The interpretability of ERGM parameters allows
researchers to make inferential claims about the underlying mechanisms governing
network formation, distinguishing them from purely predictive approaches such as
machine learning models. Consequently, while deep learning and embedding-based
methods excel in scalability and predictive accuracy, ERGMs retain their relevance
in �elds where theoretical network modeling and hypothesis-driven analysis are the
primary objectives.

Several approaches have been proposed to address scalabiloty challenges. Net-
work decomposition methods, such as block-based modeling and subgraph sam-
pling, reduce computational complexity by �tting ERGMs to smaller network par-
titions while preserving key structural properties. Another alternative is the use
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of pseudolikelihood estimation (Strauss & Ikeda, 1990), which approximates the
likelihood function by conditioning on local node neighborhoods, signi�cantly im-
proving computational e�ciency. Additionally, variational inference techniques
(Salter-Townshend & Murphy, 2013) have been explored as an alternative to
MCMC, o�ering faster convergence with controlled approximation error.

2.2. Graph Convolutional Network

Graph Convolutional Networks (GCNs) are neural networks (Goodfellow et al.,
2016) speci�cally designed to process graph-structured data directly, without trans-
forming the graph. Unlike traditional convolutional networks, which operate on
grid-based data like images, GCNs extend the convolution operation to graphs,
capturing relationships between nodes and edges. This enables e�ective learning
for tasks like node classi�cation and link prediction in complex graph-structured
data.

Graph convolution allows each node to aggregate and process information from
not only its own features but also from those of its neighboring nodes, as illus-
trated in Figure 1. This capability is essential for capturing local relationships
and structural patterns in the graph. In this context, the convolution operation is
de�ned by (Kipf & Welling, 2017) as:

H(l+1) = σ
(
D̃−1/2 Ã D̃−1/2 H(l) W(l)

)
,

where H(l) is the feature matrix in layer l, Ã = Ã + I is the adjacency matrix
with added self-connections (I is the identity matrix), D̃ is the diagonal degree
matrix of Ã, W(l) is the weight matrix in layer l, and σ is an activation function,
such as ReLU, which provides non-linearity, helping the model capture complex
relationships across nodes.

Input

...

ReLU

...

ReLU

...

Hidden Layer Hidden Layer

Output

Figure 1: GCN Model: Adapted from Kipf & Welling (2017) and Xu (2021).

Graph-level outputs can be modeled by introducing pooling operations that ag-
gregate node information across the graph structure (Duvenaud et al., 2015). By
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calculating these representations as weighted combinations of the features of neigh-
boring nodes, pooling operations help capture information from multiple scales
within the graph, allowing the model to abstract details progressively. This en-
ables the network to learn complex structures in a hierarchical and layered man-
ner (Kipf & Welling, 2017), supporting tasks that require an understanding of the
graph as a whole, such as graph classi�cation or property prediction.

GCNs are often considered �black-box� models due to their deep learning na-
ture. However, their interpretability can be improved by analyzing the learned
node embeddings and understanding how di�erent layers aggregate neighborhood
information. GCNs function by iteratively updating node representations based
on local connectivity patterns, which means that nodes with similar structural
roles in the network tend to have similar embeddings. One way to interpret GCN
outputs is through feature importance analysis, where trained models can reveal
which node attributes or network connections contribute most to link formation.
Additionally, attention mechanisms, when incorporated into GCN architectures,
provide insights into the relative importance of neighboring nodes in learning rep-
resentations.

Beyond direct feature analysis, dimensionality reduction techniques such as
t-distributed Stochastic Neighbor Embedding (t-SNE) or Principal Component
Analysis (PCA) can be used to visualize the learned node embeddings. When
applied to the Astro-Ph collaboration network, these techniques reveal that nodes
representing authors from the same research community tend to cluster together,
demonstrating that GCN embeddings capture meaningful community structures.

2.3. Word2Vec

Word2Vec is a deep learning model widely employed in natural language pro-
cessing (NLP; e.g., Amarasinghe et al. 2024) to learn continuous vector represen-
tations of words within a high-dimensional space. As its name suggests (�Word to
Vector�), the model uses neural networks to transform words into vectors, position-
ing words with similar contexts close to each other in the vector space (Mikolov,
Yih & Zweig, 2013). One commonly used method is the skip-gram approach (Silge
& Robinson, 2017), which aims to predict the context surrounding a given word
(Xu, 2021). The skip-gram model's loss function is de�ned as follows:

LSkip-gram = −
T∑

t=1

∑
−c≤j≤c

log p(wt+j | wt) ,

where wt is the target word at time t, c is the context window size, and p(wO | wI)
is the probability of observing the word wO given the context word wI , modeled
through a neural network.

This model has been widely applied in natural language processing (NLP)
but it is also adaptable to social network analysis due to its ability to transform
high-dimensional, non-Euclidean spaces into lower-dimensional vector spaces (Xu,
2021). In this context, sentences are represented by random walks on the target
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graph, following existing edges, as illustrated in Figure 2. This process is repeated
a set number of times to generate a sequence of nodes, resembling a sentence in
NLP. Random walks capture both local structure (directly connected nodes) and
broader patterns (nodes connected through multiple steps), making them e�cient
for handling large graphs.

Original Graph
G (V,E)

Sampled Random
Walk

Encoder

generate embed output
Latent Vector Space

Input
Layer Hidden

Layer

Output 

Random Walk:

Skip-gram:

Walk Length

Figure 2: Embedding model: Adapted from Xu (2021).

In embedding models for graphs, positive and negative edges play a crucial
role in training. Positive edges represent actual, observed connections between
nodes, while negative edges signify pairs of nodes without connections. Negative
sampling is important because it balances the dataset, preventing the model from
overemphasizing positive connections (Xu, 2021). Since graphs usually contain far
more possible node pairs than actual edges, random sampling of negative edges is
used to reduce computational demands. This balance in edge types enables the
model to learn meaningful distinctions between connected and unconnected nodes,
which enhances its predictive power.

The embeddings produced by these models are vectors that encapsulate the
relationships between nodes based on their connections. These vectors can then
serve as input to other machine learning models�such as a multilayer perceptron
(MLP; e.g., Rumelhart & McClelland 1986) or other traditional models�enabling
predictions or classi�cations. The process allows for applying neural network-
based models to graph data, leveraging learned structural patterns and providing
insights into the relational data embedded in the graph.

Word2Vec-based methods generate low-dimensional vector representations of
nodes by leveraging random walks that traverse the network structure. Despite
being learned in an unsupervised manner, these embeddings encode important
relational patterns, such as homophily (the tendency of similar nodes to connect)
and structural equivalence (nodes with similar roles in the network having similar
representations). Researchers can interpret these embeddings by analyzing node
similarity scores�nodes with high cosine similarity in the embedding space are
likely to be closely related in the original network.

Moreover, visualization techniques like t-SNE allow researchers to observe
whether the learned embeddings naturally cluster nodes into meaningful groups,
re�ecting network communities. In our analysis, the embeddings generated by
Word2Vec e�ectively capture co-authorship structures, with authors frequently
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collaborating in the same research sub�elds appearing closer together in the latent
space. This suggests that Word2Vec embeddings retain essential network prop-
erties, making them useful not only for link prediction but also for exploratory
network analysis.

These interpretability techniques demonstrate that while deep learning models
may initially appear less transparent than statistical approaches, careful analysis
of learned embeddings can provide valuable insights into the underlying structure
and dynamics of collaboration networks.

2.4. Model Comparison

To facilitate a clear comparison between the models analyzed in this study,
Table 1 summarizes their key characteristics, including their primary purpose,
task suitability, interpretability, scalability, and whether they incorporate node or
edge attributes.

Table 1: Comparative summary of link prediction models.

Model Purpose Task type
Interpretabi-

lity
Scalability Attributes

ERGM

Statistical
modeling of
network struc-
tures

Link formation
analysis, hy-
pothesis testing

High (explicit
parameter esti-
mates)

Low (computa-
tionally expen-
sive for large
networks)

Yes (can in-
corporate
exogenous co-
variates)

GCN

Learning node
representations
from graph
structures

Link predic-
tion, node
classi�cation

Moderate (de-
pends on archi-
tecture, can in-
clude attention
mechanisms)

High (e�cient
with mini-
batching)

Yes (inte-
grates node
attributes)

Word2Vec

Learning low-
dimensional
embeddings
based on ran-
dom walks

Link predic-
tion, clustering

Low (embed-
dings capture
structure but
lack direct in-
terpretability)

High (scalable
for large net-
works)

No (relies
purely on
graph topol-
ogy)

ERGMs are particularly useful for understanding structural dependencies in
small to moderate-sized networks, providing interpretable parameter estimates
that describe the likelihood of link formation based on endogenous and exoge-
nous network features. However, their computational complexity limits their
applicability to large networks. In contrast, GCNs leverage node features and
structural information to learn adaptive representations, making them well-suited
for large-scale link prediction tasks. While their interpretability depends on the
architecture, techniques such as attention mechanisms can provide insights into
node relationships. Word2Vec-based embeddings, although less interpretable, of-
fer an e�cient and scalable approach to capturing latent structural patterns in
networks. These distinctions highlight the trade-o�s between statistical and ma-
chine learning-based approaches, reinforcing the need for a comparative evaluation
across real-world collaboration networks.
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2.5. Computational Complexity

Beyond empirical runtime analysis, understanding the theoretical computational
complexity of each model provides further insight into their scalability across different
network sizes. ERGMs are known for their high computational cost, primarily due
to the intractability of the normalizing constant required for exact inference. In the
worst-case scenario, the complexity of computing the likelihood of an ERGM scales
exponentially with the number of nodes. Since exact estimation is infeasible for large
networks, MCMC methods are commonly employed, which reduce the computational
burden to approximately O(n3). However, this still presents significant scalability
challenges, as the computational time increases rapidly with the number of nodes,
making ERGMs impractical for large-scale networks.

GCNs, in contrast, are designed to e�ciently process graph-structured data
through iterative aggregation of node features from neighboring nodes. The com-
putational complexity of GCNs depends on the number of nodes and edges in
the graph. When using full-batch training, the complexity is O(n2), which can
become computationally demanding for large networks. However, in practical
implementations, GCNs often utilize mini-batch training and sparse matrix oper-
ations, reducing the complexity to approximately O(n), making them signi�cantly
more scalable than ERGMs. Additionally, GCNs bene�t from parallelization on
GPUs, further improving their e�ciency when applied to large graphs.

Word2Vec-based embeddings, combined with a MLP for link prediction, o�er
another computationally e�cient approach. The complexity of learning node em-
beddings via Word2Vec primarily depends on the number of sampled random walks
and their lengths. The training process typically scales as O(n logn), where the
logarithmic term arises from the negative sampling technique used for optimiza-
tion. This makes Word2Vec-based approaches highly scalable while still capturing
meaningful structural patterns within the network.

This theoretical complexity analysis aligns with our empirical �ndings, where
ERGMs exhibited the longest execution times due to their reliance on MCMC-
based inference, GCNs demonstrated the fastest runtimes when employing mini-
batch training, and Word2Vec-based embeddings provided a balance between
computational e�ciency and predictive accuracy. These results highlight the im-
portance of considering both theoretical scalability and practical implementation
strategies when selecting a link prediction method for large-scale networks.

3. Illustration

In this section, we analyze collaboration networks from Arxiv by comparing
three link prediction models: ERGM, GCN, and Word2Vec. Our �ndings indicate
that ERGM faces limitations with large networks, whereas the GCN model is the
fastest, and the Word2Vec model o�ers the highest accuracy. These results pro-
vide empirical evidence that deep learning models are more e�ective for handling
complex networks.
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3.1. Data

To illustrate the methodologies presented in the previous section, we examine
�ve collaboration networks representing scienti�c partnerships between authors of
articles submitted to corresponding categories on the Arxiv platform:

� Astro-Ph: Astrophysics, with 198,110 edges and 18,772 nodes.

� Cond-Mat: Condensed Matter, with 93,497 edges and 23,113 nodes.

� Gr-Qc: General Relativity, with 14,496 edges and 5,242 nodes.

� Hep-Ph: High-Energy Physics, with 118,521 edges and 12,008 nodes.

� Hep-Th: Theoretical High-Energy Physics, with 25,998 edges and 9,877
nodes.

These networks are undirected and unweighted (binary), indicating only whether
two authors collaborated, without specifying the strength of collaboration. Since
author characteristics are not included in the dataset, the analysis focuses primar-
ily on relational data. This article centers its analysis on the Astro-Ph network,
as it has the most connections. However, results are generally consistent across
the other networks, as demonstrated later.

3.2. Exploratory Analysis of the Astro-Ph Network

In this section, we examine the structure of the Astro-Ph network. The network
contains a few authors with a high number of connections, acting as central hubs.
Naturally, this characteristic is uncommon: Only 59 individuals have more than
400 connections, representing just 0.31% of all nodes. The average number of
connections per author is approximately 18, and the maximum separation between
two authors is 14 edges. The network's density of only 0.0022 indicates limited
connectivity, which, in turn, suggests the presence of numerous cliques. The largest
clique consists of 57 members, indicating the formation of distinct author groups,
likely due to researchers' preference for collaborating with colleagues from the
same institution rather than with external partners. Finally, we observe that the
network has 290 components, with the giant component including 95.37% of the
individuals.

Given the network's size, visualizing the complete graph is impractical, so we
display a subgraph of the 50 individuals with the highest degree, as shown in Figure
3. First, we observe that a large portion of authors tends to collaborate with only a
single co-author. Thus, researchers who work with multiple partners often choose
collaborators within their immediate circle. This supports the conclusion that
the collaborative network favors the formation of cliques. While many researchers
collaborate with only one partner, those with more co-authors tend to work in
more closed groups.
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Figure 3: Chord diagram of a subset of authors in the Astro-Ph network.

3.3. Results

First, the ERGM model is �tted to the large Astro-Ph network using the
most basic con�guration, which considers only links between nodes. This simple
approach enables the model to handle a large network, but at the expense of per-
formance, as it does not account for other important network features, such as
triangles or other complex structures. When more structural features are included
in the model formulation, the �tting algorithms fail to converge, even with dis-
tributed parallel computing over 20 cores, highlighting a clear limitation of this
type of model.

The ERGM coe�cient for the existence of links between nodes in the full Astro-
Ph network is -6.7895, which is highly statistically signi�cant. In natural scale,
this coe�cient indicates a 0.4998 probability of interaction between two authors.
For the restricted network, this coe�cient is positive and signi�cant, suggesting a
high likelihood of node connections while holding other factors constant. In this
case, we also consider the coe�cient associated with triangle formation, estimated
at 9.9544, which indicates a high likelihood of links completing triads. Similarly,
the coe�cient for four-node star con�gurations is both positive and signi�cant.

These �ndings underscore one of the key strengths of ERGMs: their capacity
for providing interpretable results. However, given the dimensions of the networks
that we consider here, ERGM execution times are exceedingly high. For the largest
network, approximately nine hours are needed to �t the model and make link
predictions. Although ERGMs generally o�er a good �t, their low computational
e�ciency re�ects that they are not well-suited for handling high-dimensional data.
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To train the two remaining models, we de�ne a balanced set of positive and
negative edges, as the number of negative edges is much higher due to the net-
work's low density. The second model implemented is a Graph Convolutional
Network (GCN) model with two convolution layers. The �rst layer projects the
input node features into a 64-dimensional latent space, applying the ReLU acti-
vation function to introduce non-linearity. The second layer also projects these
representations into a 64-dimensional space, and �nally, the output layer produces
the model's predictions, optimized using the Adam optimizer with a learning rate
of 0.01. The binary link prediction loss is calculated using a combination of log-
arithmic losses for positive and negative edges. The model input consists of the
edge indices, allowing the convolution to operate over the graph structure and
capture topological information in the learned representations.

Finally, we �t the Word2Vec model using a DeepWalk-based approach to gen-
erate 100 random walks on the graph, each with a length of 30 nodes. The model is
con�gured with a vector size of 32 dimensions, a contextual window of 10 nodes, a
minimum count of 1, and a skip-gram approach, utilizing 4 workers to parallelize
the process. The resulting node embeddings are then used as input for a mul-
tilayer perceptron (MLP). Figure 4 visualizes the Word2Vec model's results by
projecting the original 12-dimensional embeddings into a two-dimensional space
using t-distributed Stochastic Neighbor Embedding (t-SNE; e.g., van der Maaten
& Hinton 2008). In this projection, nodes from the same community in the original
graph tend to cluster together, indicating that the embeddings e�ectively capture
community structure despite the reduction from the original 12 dimensions.

Node Embeddings Visualization using t-SNE

t-SNE Component 1

t-
SN

E 
Co

m
po

ne
nt

 2

Communities

Figure 4: Visualization of embeddings and their corresponding clusters (using infomap)
using t-SNE for the Astro-Ph network.

Continuing with this process, the MLP model takes the embeddings generated
by Word2Vec as input. This MLP has a two-layer architecture: The �rst layer
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contains 64 units and uses the ReLU activation function to introduce non-linearity,
while the second layer projects to the appropriate output dimension. The model
is optimized using the Adam optimizer with a learning rate of 0.01. As before, the
binary link prediction loss is calculated using a combination of logarithmic losses
for positive and negative edges.

To compare the models' performance, we use the area under the receiver oper-
ating characteristic (ROC) curve (AUC; e.g., Fawcett, 2006) as a metric to quantify
each model's ability to distinguish between classes, with values closer to 1 indicat-
ing higher performance. Additionally, we use a confusion matrix (e.g., Sokolova &
Lapalme, 2009) to observe the model's correct and incorrect predictions, catego-
rized as true positives, false positives, true negatives, and false negatives, providing
a detailed understanding of classi�cation performance.

The results for the models using the Astro-Ph network are shown in Figure
5. For the ERGM, the AUC is 0.9797, indicating a high level of performance.
The confusion matrix also shows that 96% of positive class samples were correctly
classi�ed, while 4% were incorrectly classi�ed as negatives. Furthermore, this
model had no false positives, which is advantageous for classi�cation, and 100%
of negative class samples were correctly classi�ed. The high accuracy in negative
class classi�cation (100%), along with a high AUC and a signi�cant percentage
of false positives, suggests that the model generalizes well despite its substantial
computational cost.

On the other hand, the GCN model achieves an AUC of 0.9590, which is quite
good and competitive compared to the previous model. The confusion matrix
reveals that 91% of negative class samples were correctly classi�ed, while 9% were
incorrectly classi�ed as positives. These results indicate that the model performs
well for negative edges (edges that do not exist in the network). For the positive
class, 90% were correctly classi�ed, while 10% were false negatives. These �ndings
suggest that the model is e�ective in identifying positive edges (edges that do exist
in the network). The AUC and confusion matrix show that the model performs
well in distinguishing existing and non-existing connections within the network.

The Word2Vec model achieved an AUC of 0.9875, ranking it as the best-
performing model among those evaluated. The confusion matrix shows that 95%
of negative class samples were correctly classi�ed, while 5% were incorrectly classi-
�ed as positives. Additionally, for the positive class, 95% were correctly classi�ed,
with 5% classi�ed as false negatives. These results demonstrate the model's high
e�ectiveness in identifying both positive and negative edges, with a low error rate
in both cases. The AUC and confusion matrix con�rm this model as the top
performer in predictive accuracy.

Finally, when comparing models in terms of computational efficiency, measured by
the time taken to fit the models to the datasets and generate predictions, the ERGM
exhibits the poorest performance. For the Astro-Ph network, the ERGM takes over
nine hours to execute, even with parallel computing methods, while the GCN model
takes less than 8 seconds in total. Meanwhile, the Word2Vec model takes just over
half an hour, placing it between the two. This highlights the capability of modern
machine learning models to handle large volumes of data efficiently.
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ROC Curve - W2V and MLP Model Confusion Matrix - W2V and MLP Model
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Figure 5: ROC curve and confusion matrix for the ERGM (�rst row), GCN model
(second row), and Word2Vec model (third row) models.

The AUC and time taken for each network and model are reported in Table
2. The results show that, in terms of accuracy (AUC), the Word2Vec model
achieves the highest scores, reaching 0.99 in most networks. Meanwhile, GCN
also achieves high AUC values, particularly in the Hep-Ph and Gr-Qc networks,
where its performance is similar to that of the Word2Vec model. In contrast,
ERGM shows greater variability in the AUC values, with high values in some
networks (such as Astro-Ph and Hep-Ph) and lower values in others (such as Gr-
Qc). Regarding execution time, GCN is the fastest model, with signi�cantly lower
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times compared to ERGM and Word2Vec, which are much slower, especially in
larger networks like Astro-Ph and Cond-Mat. Overall, Word2Vec stands out in
terms of accuracy, while GCN is notably more e�cient in execution time. The
codes used to �t the models can be found at https://github.com/damartinezs
i/An-unified-approach-to-link-prediction-in-collaboration-networks.

Table 2: AUC results and time (in seconds) for di�erent networks and models.

AUC Time

ERGM GCN Word2Vec ERGM GCN Word2Vec

Astro-Ph 0.98 0.96 0.98 31,284.0 7.9 2,174.1

Cond-Mat 0.96 0.91 0.99 18,360.0 4.7 2,594.4

Gr-Qc 0.78 0.89 0.99 3,307.8 1.1 472.2

Hep-Ph 0.97 0.95 0.99 11,844.0 2.9 1,257.7

Hep-Th 0.86 0.84 0.99 638.4 1.1 943.1

4. Discussion

The high computational cost associated with �tting more complex ERGMs on
large networks poses a considerable challenge. The inclusion of additional terms
and more complex structures, such as triangles and other dependency patterns,
increases the di�culty of �tting the model, often preventing it from meeting con-
vergence criteria. In this context, taking a relatively small sub-sample of nodes is
not a viable alternative, as it results in the loss of connection patterns present in
the complete network, leading to unreliable predictions. This situation highlights
the limited capacity of ERGMs to handle large-scale networks and underscores
the need to develop and apply alternative strategies for addressing large networks
without compromising model �t quality.

Machine learning models demonstrated outstanding performance in link pre-
diction, underscoring their ability to capture complex patterns in network data.
Unlike traditional approaches such as ERGM, which rely on statistical assump-
tions and are more suitable for smaller networks, deep learning models like GCN
and Word2Vec models are designed to e�ciently scale with large data volumes.
This is due to their capacity to process and learn from both global and local graph
structures through deep layers and vector embeddings, making them powerful and
�exible tools for analyzing large-scale, high-dimensional networks.

While GCN and Word2Vec-based models outperform ERGMs in scalability
and predictive accuracy, they also have key limitations. A major drawback is
interpretability�unlike ERGMs, which provide explicit statistical estimates, deep
learning models generate latent representations that are harder to analyze (Ying
et al., 2019). Although attention mechanisms and feature importance methods
help, they do not fully explain how predictions are made. These models are also
sensitive to hyperparameters and data availability. Their performance depends on
architecture choices, learning rates, and embedding dimensions (You et al., 2020),
making optimization non-trivial. GCNs, in particular, require node features for
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e�ective learning, which limits their applicability when such attributes are missing
or unreliable (Kipf & Welling, 2017).

Additionally, deep learning models struggle with dynamic networks, as they
often require retraining when the network evolves (Rossi et al., 2020). While
dynamic graph neural networks (Pareja et al., 2020) attempt to address this, han-
dling evolving relationships remains an open challenge. Despite these limitations,
GCNs and Word2Vec remain powerful tools for large-scale link prediction. Fu-
ture research could explore hybrid approaches that integrate the interpretability
of ERGMs with the adaptability of deep learning models.

The evaluation of link prediction models often relies on the area under the ROC
curve (AUC), as it provides a robust measure of a model's ability to distinguish
between positive and negative links. However, other performance metrics have
been proposed in the literature to address speci�c challenges in network-based
classi�cation tasks. For instance, precision-recall AUC (PR-AUC) is particularly
useful in highly imbalanced networks, where the number of non-existent links far
exceeds the number of observed links (Davis & Goadrich, 2006). The F1-score has
also been widely employed to balance precision and recall in network-based tasks
(Sokolova & Lapalme, 2009), while mean average precision (MAP) is frequently
used to assess ranking performance in recommendation and retrieval systems (Lu
& Zhou, 2011).

Some studies have highlighted the advantages of using multiple evaluation met-
rics to gain a more nuanced understanding of model performance. For example,
(Yang et al., 2015) examined PR-AUC and MAP in the context of social network
link prediction, showing that di�erent metrics may yield varying conclusions de-
pending on network sparsity and density. Similarly, (Kivelä et al., 2014) discussed
the e�ectiveness of recall-based measures in multilayer network analysis, empha-
sizing their importance in applications where missing links are of primary concern.
These �ndings suggest that while AUC remains a standard metric, alternative mea-
sures can complement the evaluation process, particularly when networks exhibit
signi�cant class imbalance or when ranking-based link prediction is the primary
objective.

Although AUC serves as the primary metric in our study for consistency across
models, future research could explore additional evaluation measures to provide a
more granular assessment of predictive performance in di�erent network settings.
This would allow for a deeper investigation into model strengths and weaknesses
beyond binary classi�cation accuracy.

While this study focuses on academic collaboration networks, the �ndings have
broader implications for other types of complex networks, including citation net-
works and social media networks. The relative performance of ERGMs, GCNs,
and Word2Vec-based embeddings is in�uenced by network characteristics such as
density, node attribute availability, and the nature of link formation, which vary
across di�erent domains.

In citation networks, where nodes represent academic papers and edges denote
citations, the structural patterns di�er signi�cantly from collaboration graphs.
Unlike co-authorship networks, where ties are typically bidirectional and formed
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through mutual collaboration, citation networks exhibit directed and acyclic prop-
erties, meaning that older papers cannot cite newer ones. Despite this structural
di�erence, deep learning models such as GCNs and Word2Vec-based embeddings
remain e�ective, as they can leverage citation proximity and topic similarity to
predict future citations. However, ERGMs face additional challenges due to the
directed nature and hierarchical dependencies inherent in citation networks, re-
quiring model adaptations to handle asymmetric relationships.

In social media networks, where edges represent interactions such as friendships,
follows, or message exchanges, link formation dynamics differ further. Social media
networks often exhibit higher sparsity and dynamic growth, with time-dependent in-
teractions playing a crucial role. While ERGMs can still be applied in small-scale
settings with well-defined network snapshots, they may struggle with the evolving
nature of social media graphs. In contrast, GCNs and Word2Vec-based embeddings
perform well in these environments due to their ability to learn adaptive represen-
tations from evolving network structures. Additionally, node features such as user
behavior, textual content, and engagement metrics can be incorporated into machine
learning models to improve predictive accuracy, something that is less feasible with
purely structural ERGMs. Overall, while the specific effectiveness of each approach
depends on network characteristics, the insights gained from this study provide a
foundational understanding of the trade-offs between interpretability, scalability, and
predictive accuracy across different network types.

Future work could explore hybrid models that integrate the statistical rigor
of ERGMs with the �exibility of deep learning architectures. For instance, latent
variables inferred from ERGMs could serve as input features for GCNs, com-
bining explicit structural modeling with adaptive representation learning to im-
prove both interpretability and scalability. Another promising direction involves
semi-supervised learning, where partially labeled data can enhance link predic-
tion. Many real-world networks, such as social media or citation networks, con-
tain known relationships that could be leveraged using contrastive learning or self-
training GCNs. Incorporating statistical priors from ERGMs into semi-supervised
frameworks could provide a principled approach to integrating structural depen-
dencies with data-driven learning.

Additionally, latent space-based models o�er an alternative for link predic-
tion by embedding nodes into a continuous space where proximity re�ects link
probability. Comparing these models with ERGMs, GCNs, and Word2Vec-based
embeddings could provide further insights into their relative advantages across
di�erent network types. Future research could also focus on scalability improve-
ments for statistical models. While deep learning approaches e�ciently handle
large-scale networks, extending ERGMs to accommodate larger datasets remains
a challenge. Techniques such as variational inference, scalable MCMC, or approx-
imate likelihood estimation could improve computational feasibility for ERGMs in
high-dimensional networks. Finally, applying these models to networks with nodal
attributes would enhance predictive capability by capturing the heterogeneity and
dynamism of complex networks. Extending the current analysis to heterogeneous,
temporal, or multimodal networks could provide a deeper understanding of link
formation mechanisms across various domains.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 115�137



134 Juan Sosa, Diego Martínez & Nicolás Guerrero

Statements and Declarations

The authors declare that they have no known competing �nancial interests or
personal relationships that could have appeared to in�uence the work reported in
this article.

During the preparation of this work the authors used ChatGPT-4-turbo in
order to improve language and readability. After using this tool, the authors
reviewed and edited the content as needed and take full responsibility for the
content of the publication.

[
Received: November 2024 � Accepted: March 2025

]

References

Amarasinghe, S. et al. (2024), Explainable Arti�cial Intelligence: Second World

Conference, xAI 2024, Springer. https://www.springer.com/

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S. & Hsieh, C.-J. (2019), Cluster-
gcn: An e�cient algorithm for training deep and large graph convolutional
networks, in `Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining', KDD '19, Association for Computing
Machinery, New York, NY, USA, p. 257�266.

Davis, J. & Goadrich, M. (2006), The relationship between precision-recall and
roc curves, in `Proceedings of the 23rd International Conference on Machine
Learning', ACM, pp. 233�240.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., Aspuru-Guzik, A. & Adams, R. P. (2015), `Convolutional Networks
on Graphs for Learning Molecular Fingerprints'.

Erd®s, P. & Rényi, A. (1960), `On the evolution of random graphs', Publications
of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17�61.

Fawcett, T. (2006), `An introduction to roc analysis', Pattern Recognition Letters

27(8), 861�874.

Gamerman, D. & Lopes, H. F. (2006), Markov Chain Monte Carlo: Stochastic

Simulation for Bayesian Inference, 2 edn, Chapman and Hall/CRC.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press.
http://www.deeplearningbook.org

Grover, A. & Leskovec, J. (2016), node2vec: Scalable feature learning for net-
works, in `Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining', pp. 855�864.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 115�137



A Uni�ed Approach to Link Prediction in Collaboration Networks 135

Hamilton, W. L., Ying, R. & Leskovec, J. (2017a), Inductive representation learn-
ing on large graphs, in `Advances in Neural Information Processing Systems
(NeurIPS)'.

Hamilton, W. L., Ying, R. & Leskovec, J. (2017b), `Representation learning on
graphs: Methods and applications', IEEE Data Engineering Bulletin 40(3), 52�
74.

Handcock, M., Hunter, D., Butts, C., Goodreau, S. & Morris, M. (2008), `Statnet:
Software tools for the representation, visualization, analysis and simulation of
network data', Journal of statistical software 24, 1548�7660.

Ho�, P. (2007), `Modeling homophily and stochastic equivalence in symmetric
relational data', Advances in neural information processing systems 20.

Ho�, P. D., Raftery, A. E. & Handcock, M. S. (2002), `Latent space approaches
to social network analysis', Journal of the american Statistical association

97(460), 1090�1098.

Kipf, T. N. & Welling, M. (2017), Semi-supervised classi�cation with graph convo-
lutional networks, in `Proceedings of the International Conference on Learning
Representations (ICLR)'.

Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A.
(2014), `Multilayer networks', Journal of Complex Networks 2(3), 203�271.

Kolaczyk, E. D. & Csárdi, G. (2020), Statistical analysis of network data with R,
Use R!, 2nd ed edn, Springer, Cham.

Lee, Y., Lee, I. W. & Feiock, R. C. (2012), `Interorganizational Collaboration
Networks in Economic Development Policy: An Exponential Random Graph
Model Analysis*', Policy Studies Journal 40(3), 547�573.

Lu, L. & Zhou, T. (2011), `Link prediction in complex networks: A survey', Physica
A: Statistical Mechanics and Its Applications 390(6), 1150�1170.

Luke, D. (2015), A User's Guide to Network Analysis in R, Use R!, Springer
International Publishing, Cham.

Lusher, D., Koskinen, J. & Robins, G. (2013), Exponential Random Graph Models

for Social Networks: Theory, Methods, and Applications, Cambridge University
Press.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013), E�cient estimation of word
representations in vector space, in `Proceedings of the International Conference
on Learning Representations (ICLR)'.

Mikolov, T., Yih, W.-t. & Zweig, G. (2013), `Linguistic regularities in continuous
space word representations', Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies pp. 746�751.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 115�137



136 Juan Sosa, Diego Martínez & Nicolás Guerrero

Newman, M. E. J. (2001), `The structure of scienti�c collaboration networks',
Proceedings of the National Academy of Sciences 98(2), 404�409.

Newman, M. E. J., Strogatz, S. H. & Watts, D. J. (2001), `Random graphs
with arbitrary degree distributions and their applications', Physical Review E

64(2), 026118.

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler,
T., Schardl, T. B. & Leiserson, C. E. (2020), Evolvegcn: Evolving graph convo-
lutional networks for dynamic graphs, in `Proceedings of the AAAI Conference
on Arti�cial Intelligence'.

Perozzi, B., Al-Rfou, R. & Skiena, S. (2014), Deepwalk: Online learning of so-
cial representations, in `Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining', pp. 701�710.

Robins, G., Pattison, P., Kalish, Y. & Lusher, D. (2007), `An introduction to
exponential random graph (p*) models for social networks', Social Networks
29(2), 173�191.

Rossi, E., Kenlay, H., Gorinova, M., Bronstein, M. & Chamberlain, B. (2020),
`Temporal graph networks for deep learning on dynamic graphs', arXiv preprint
arXiv:2006.10637 .

Rumelhart, D. E. & McClelland, J. L. (1986), Parallel Distributed Processing:

Explorations in the Microstructure of Cognition. Volume 1: Foundations, MIT
Press, Cambridge, MA.

Salter-Townshend, M. & Murphy, T. B. (2013), `Variational bayesian inference for
the latent position cluster model for network data', Computational Statistics &
Data Analysis 57(1), 661�671.

Silge, J. & Robinson, D. (2017), Text Mining with R: A Tidy Approach, O'Reilly
Media, Inc., Sebastopol, CA. https://www.oreilly.com/library/view/text-
mining-with/9781491981658/

Skiena, S. S. (2008), The Algorithm Design Manual, Springer London, London.

Skiena, S. S. (2017), The Data Science Design Manual, Texts in Computer Science,
Springer International Publishing, Cham.

Skvoretz, J. (1990), `Biased net theory: Approximations, simulations and obser-
vations', Social Networks 12(3), 217�238.

Snijders, T. A. B. (2002), `Markov chain monte carlo estimation of exponential
random graph models', Journal of Social Structure 3(2), 1�40.

Sokolova, M. & Lapalme, G. (2009), `A systematic analysis of performance mea-
sures for classi�cation tasks', Information Processing & Management 45(4), 427�
437.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 115�137



A Uni�ed Approach to Link Prediction in Collaboration Networks 137

Sosa, J. & Buitrago, L. (2021), `A review of latent space models for social net-
works', Revista Colombiana de Estadística 44(1), 171�200.

Strauss, D. & Ikeda, M. (1990), `Pseudolikelihood estimation for social networks',
Journal of the American Statistical Association 85(409), 204�212.

van der Maaten, L. & Hinton, G. (2008), `Visualizing data using t-sne', Journal
of Machine Learning Research 9(Nov), 2579�2605.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip, S. Y. (2021), `A com-
prehensive survey on graph neural networks', IEEE Transactions on Neural

Networks and Learning Systems 32(1), 4�24.

Xu, M. (2021), `Understanding graph embedding methods and their applications',
SIAM Review 63(4), 825�853.

Yang, Z., Algesheimer, R. & Tessone, C. J. (2015), `Evaluating link prediction
methods', Knowledge-Based Systems 74, 87�96.

Yao, L., Mao, C. & Luo, Y. (2019), Graph convolutional networks for text clas-
si�cation, in `Proceedings of the Thirty-Third AAAI Conference on Arti�cial
Intelligence and Thirty-First Innovative Applications of Arti�cial Intelligence
Conference and Ninth AAAI Symposium on Educational Advances in Arti�cial
Intelligence'.

Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. (2019), Gnnexplainer:
Generating explanations for graph neural networks, in `Advances in Neural In-
formation Processing Systems (NeurIPS)'.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z. & Shen, Y. (2020), Graph con-
trastive learning with augmentations, in `Advances in Neural Information Pro-
cessing Systems (NeurIPS)'.

Zhang, Z., Cui, P. & Zhu, W. (2020), `Deep learning on graphs: A survey', IEEE
Transactions on Knowledge and Data Engineering 34(1), 249�270.

Revista Colombiana de Estadística - Applied Statistics 48 (2025) 115�137


	1 Introduction
	2 Modeling
	2.1 Exponential Random Graph Model
	2.2 Graph Convolutional Network
	2.3 Word2Vec
	2.4 Model Comparison
	2.5 Computational Complexity

	3 Illustration
	3.1 Data
	3.2 Exploratory Analysis of the Astro-Ph Network
	3.3 Results

	4 Discussion

