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Abstract

This article proposes a bivariate Simplex distribution for modeling con-
tinuous outcomes constrained to the interval (0, 1), which can represent pro-
portions, rates, or indices. We derive analytical expressions to calculate the
dependence between the variables and examine its relationship with the asso-
ciation parameter. Parameters are estimated using the maximum likelihood
method, and their performance is assessed through Monte Carlo simulations.
The simulations explore various aspects of the bivariate distribution, includ-
ing different surfaces and contour graphs. To demonstrate the methodology
and properties of the proposed model, we present two empirical applications
in the areas of Psychometry and Jurimetry. Supplementary material can be
accessed via the following link: https://github.com/carrascojalmar/BS
D.git includes user-friendly code and simulation results.

Keywords: Copula; Jurimetric; Monte Carlo; Psychometry; Simplex distri-
bution.

Resumen

Este articulo propone una distribucién Simplex bivariada para modelar
resultados continuos restringidos al intervalo (0,1), que puede representar
proporciones, tasas o indices. Se derivan expresiones analiticas para calcular
la dependencia entre las variables y examinar su relacién con el parametro
de asociacion. Los parametros se estiman mediante el método de maxima
verosimilitud y su rendimiento se evalia mediante simulaciones de Monte
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Carlo. Las simulaciones exploran diversos aspectos de la distribucién bivari-
ada, incluyendo diferentes superficies y graficos de contorno. Para demostrar
la metodologia y las propiedades del modelo propuesto, se presentan dos apli-
caciones empiricas en las areas de psicometria y jurimetria. Material com-
plementario disponible en: https://github.com/carrascojalmar/BSD.git
incluye cédigo intuitivo y resultados de simulacion.

Palabras clave: Copula; Distribucion simplex; Jurimétrica; Monte Carlo;
Psicometria.

1. Introduction

Relevant scientific studies have provided data describing intrinsic phenomena
regarding rates, fractions, proportions, or indices. For instance, the distribution
supported on the interval (0,1) plays a crucial role in research and application
in finance (Gomez-Déniz et al., 2014) and (Biswas et al., 2021), public health
(Mazucheli et al., 2019) and (Biswas & Chakraborty, 2019) and demographics
(Andreopoulos et al., 2019). In this context, the Beta and Simplex distributions are
particularly prominent, with their density functions capable of assuming different
shapes depending on parameter values.

Bivariate distributions are essential in practice because they allow simultane-
ous analysis and decision-making regarding two related or dependent variables.
Methods for constructing joint distributions for random variables can be found in
Lai & Balakrishnan (2009) and Kotz et al. (2019). Specifically, for the Beta dis-
tribution, Barros (2015) proposed parameter estimation methods for the bivariate
Beta distribution introduced by Nadarajah & Kotz (2005). Further studies Arnold
& Ng (2011), who explored the bivariate Beta distributions for correlated data,
and Gupta & Wong (1985), who examined two bivariate Beta distributions derived
from the Morgenstern curves and the bivariate Dirichlet distribution, respectively.
Other notable contributions include Sarabia & Castillo (2006), who studied vari-
ous bivariate extensions under a Bayesian framework, and Olkin & Liu (2003) who
demonstrated a positively dependent bivariate Beta distribution via the likelihood
ratio. The extension of the Beta distribution to the multivariate case (0,1)® was
investigated by Jones (2002), while Machado Moschen & Carvalho (2023) analyzed
the Beta distribution proposed by Olkin & Trikalinos (2015) using both classic and
Bayesian approach.

Despite these advances, the bivariate Simplex distribution remains relatively
unexplored for modeling the distribution of two proportions, such as the propor-
tion of budget allocated to different sectors. Bivariate distributions are often con-
structed using copula functions, which allow the analysis of dependence structures
between two random variables independently of their marginal distributions. This
approach offers flexibility in combining different types of marginal distributions.
Therefore, this article proposes deriving the bivariate Simplex distribution via
copulas' as an alternative method for analyzing bivariate data constrained to the

LA copula describes a joint distribution function in terms of its marginals and is widely used in
empirical analysis across various fields, including survival analysis, actuarial sciences, marketing,
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standard unit interval. This contribution is significant for the Simplex distribution
framework.

The article is structured as follows: Section 2 reviews the properties and in-
ferential processes associated with the Simplex distribution. Section 3 introduces
the bivariate Simplex distribution via copulas, develops analytical expressions for
calculating dependence between variables, and provides estimators using the max-
imum likelihood method. A Monte Carlo simulation study is conducted to inves-
tigate the asymptotic behavior of these estimators. Section 5 applies the proposed
methodology to two real datasets from the fields of Psychometry and Jurimetry to
assess its empirical performance. Finally, Section 6 summarizes the conclusions.

2. Preliminaries

The Simplex distribution was proposed by Barndorff-Nielsen & Jgrgensen (1991);
later introduced into a class of dispersion models by Jorgensen (1997), which ex-
tended the generalized linear models (GLMs) (Nelder & Wedderburn, 1972). The
Simplex distribution is very convenient and flexible regarding data restricted to
the continuous unit interval (0,1), which can be interpreted as proportions, rates,
or indices. Let y be a random variable that follows a Simplex distribution, with
parameters p € (0,1) and 0? > 0. The probability density function (pdf) of this
distribution is given by

Pl m0%) = {270 ly(1 = )P} exp { — ()} 1)

where 0 < y < 1 and d(y; p) = (y — p)?/y(1 — y)u?(1 — p)? is the unit deviation.
The expected value and variance of Y are given by E(Y) = u and

Var(Y) = (1 - ) - @exp (s ™5 2

where I'(a,b) = [, 2% 'e~®dx is the incomplete gamma function. In addition,
the variance function is given by V(1) = p3(1 — p)3.

The Simplex distribution can take several shapes depending on the parameter
values (u, 02), as shown in Figure 1. If y is a random variable that follows the
Simplex distribution with mean p and dispersion parameter o2, it frequently is
denoted by y ~ S(u,0?). It was shown that (i) E[d (y; u)] = 0, (ii) Var[d(y; u)] =
2(0%)?, (iti) Eld(y; p)] = 0®, (iv) El(y — p)d(y; p)] = 0, (v) E[(y — p)d*(y; p)] = 0,
(vi) E[(y — p)d" (y; )] = —202 and (vii) $E[(d"(y; p)] = H(Sl‘fu) + ug(lau)s, where
d'(y;p) = 0d(y; p) /O e d"(y; n) = 02d(y; p)/Op?; for more details see Song &
Tan (2000).

medical statistics, and econometrics.
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F1aure 1: Density graph of the Simplex Distribution for different parameter values.

Let y1,92,...,yn be a random sample, such that y; follows the Simplex distri-
bution, given in (1) for all i = 1,...,n. The likelihood function for the independent
observations is defined as L(0;y) = [[;—, f(y:;0), where 6 = (u,0%)". The loga-
rithm of the likelihood function is expressed in the form ¢(6;y) = >, €:(6;y;),
where ¢;(0,y;) = —log(27)/2 —log(c?)/2 — 3log[y: (1 — v:)]/2 — d(yi; 1) /202. The
maximum likelihood estimators for 4 and o2 are found by simultaneously solving
the estimation equations, i.e., 94(0;y)/0u = 0 e 94(0;y)/dc? = 0, where

HO;y) 1T 20y =) [, 1
8,[1, __? P <_ — [d(ylnu)—’—luQ(l_lu)Z})’

ooz 202

0L(8;y) n N~ A
2 S
It is easy to find that 3% = > | d(y;, u)/n. The second derivatives of £(6;y) re-
lated to the parameter vector are given by 9*¢(6;y)/0p* = > | —d" (yi, ) /202,
920(0;y)/0(0%)* = n/20* = 31 d(yi, p)/(0°)® and 8*0(0;y)/0udo® = — 371,
d'(yi, 1)/ (0%)? where d”(y;, ) = 0%d(y;, n)/Ou?. Using properties (i), (i), and
(vii) above, the Fisher’s information matrix is given by

K K,
KO = Kuo) = (o o),
o?p o0

where K,,,, = —E[020(0;y)/0p?] = 3n/u(1—p)+n/o?p3(1—p)?, K2 = Ky2) =
—E[0%4(0;y)/0pdc?] = 0 and K,2,2 = —E[0%4(0;y)/0(c?)?] = —n/20* respec-
tively. Under general regularity conditions, the maximum likelihood estimators
are consistent, and the asymptotic distribution of 1/n(6 — 0) is normal with mean
zero and covariance matrix K ~1().

3. Bivariate Simplex Distribution

In this section, we derive the bivariate Simplex distribution via copulas because
bivariate distributions based on copulas are powerful tools for modeling complex
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dependence structures between two variables. By separating the marginal distri-
butions from the dependency, copulas offer more flexibility and accuracy, especially
in fields where non-linear relationships and tail dependencies are essential. Ana-
lytical expressions are derived for the expected dependence between variables.

The copula was introduced by Sklar (1959), although similar ideas and results
can be found in Hoeffding (1940). The copula function is one of several ways of
generating multivariate distributions. A copula is defined as a joint distribution
function of the form

C(Ul,ug,.-.,Uk) = P(Ul S Ul,UQ S u27"'7U]€ S Uk), (2)

where 0 < u; < 1, U; ~ U(0,1), for every j = 1,2,...,k. Suppose H(-) is
a k-dimensional cumulative distribution function with marginals Fi(-),..., Fi(:).
Then, according to Sklar (1959), there is a k-dimensional copula C such that,
for every (yi,...,yx) € (—00,00)%, H(y1,...,yr) = C(Fi(y1),..., Fi(yr)). In
this sense, C' is unique if Fi,..., Fy are all continuous. The above result guar-
antees that we can find the joint distribution of k¥ random variables yi,...,yx,
i.e., given a set of continuous random variables with marginal distribution func-
tions Fy (y1), . . ., Fx(yx) and a distribution function H (y1, . . ., yx); the joint density
function is given by

" H(y, .. yr) _ 9"C(Fi(y1), -, Fiolyx)) OF1(y1)

h(y17"'7yk) =

Y1 ...0yx OF1(y1)...0F(yr,) oy
k
o = )P [0,
k . .
where ¢(Fy(y1), ..., Fr(yx)) = 8;;5;5%1)78}56%)) and f;(y;) = 8};5/1) In

particular, if y; and y, are two random variables with a joint distribution func-
tion F'(y1,y2) and continuous marginal distribution functions Fi(y;) and Fz(y2),
respectively, then there exists a single copula C : [0,1]?> — [0, 1] such that for all
(y1,92) € R? and F(y1,y2) = C(Fi(y1), Fa(y2)), expressing a bivariate density
function with marginals F} and F5.

The FGM copula (Farlie-Gumbel-Morgenstern copula) is a relatively simple
and classical copula used to model the dependence between two random variables.
While it is not as flexible as other copulas, it provides a basic structure to capture
weak positive or negative dependence. The FGM copula is defined as

C(Fi(y1), F2(y2); A) = Fi(y1) Fa(y2) + AP (y) Fa(y2) (1 — Fi(y1)) (1 — Fa(yz)),

where A € [—1,1] is the dependence parameter. If A = 0, the copula reduces
to the independence copula, meaning C(Fy(y1), Fa(y2)) = F1(y1) X F2(y2), which
indicates that the two random variables are independent; for A > 0 (Positive
dependence), meaning the two variables tend to increase together (though weakly);
for A < 0 (Negative dependence), meaning that when one variable increases, the
other tends to decrease (weak negative dependence).
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The Farlie-Gumbel-Morgenstern (FGM) copula is a valuable tool in the realm
of dependence modeling due to its simplicity and interpretability. Its structure
offers an intuitive way to capture weak dependence between variables, making it
particularly useful in scenarios where more complex copulas may be unnecessary,
or overfitting may be a concern. The FGM copula is symmetric, which allows it to
treat both variables equally, and its dependence parameter A is easy to interpret,
making it accessible for analysts and practitioners alike. While it does not capture
extreme tail dependence, this feature can be advantageous in applications where
only moderate associations are needed, such as in educational settings, initial
exploratory analyses, or simple bivariate models. The FGM copula’s tractability
and low computational demands make it a practical choice when the goal is to
understand basic dependence structures without the overhead of more complex
copulas, allowing it to strike a balance between simplicity and effectiveness.

Thus, in this particular paper, we assume that the variables y; and yo follow
univariate Simplex distributions, and the density function f(y1,y2), is as follows:

F(y1.238) = {27020 (1 — )"}~ 2 exp {Q;%d@l;m)} x

(2021 — )P} 2 exp {—;%d@g;m)} x

{14+ A1 =2F1(y)][1 = 2F>(y2)]}, (3)

where Fi(y1) and F(y2) are the distribution functions of y; and yo, respectively,
and 0 = (uy, g2, 02,03, \) T is the vector of unknown parameters, were j, u2 and
01, 09 represent the location and dispersion parameters, respectively and A is the
dependency parameter. We denote y ~ S?(u, 0%, \) the random variable vector
y = (y1,y2) " which follows the bivariate Simplex distribution with g = (p1, u2) "
and o = (01,02)" parameters.

3.1. Maximum Likelihood Estimation

Let y = (y;,Y5,...,Y,) represent a vector, where y, = (yi1,%i2)" follow
the bivariate Simplex distribution given in (3) , for ¢ = 1,...,n. The likelihood
function of all pairs of observations is defined as L(0,y) = [[;—, f(y;;0), where
0 = (ju1, pi2,02,02,\) 7 and the logarithm of the likelihood function is given by

0(0;y) => 7, L:i(0;y,;), where
1, 3 1
0i(6;y;) = —log(2m) — 3 log(o7) — §1Og[yil(1 —Yi1)] — Fd(yilhul)
01
1 3 1
—3 log(o3) — 3 log[yia(1 — yi2)] — Qd(yn;uz)
+log{1 + A[1 = 2F1 (yi1)][1 — 2F5(yi2)]}- (4)

By partially deriving the logarithm of the likelihood function with respect to the
vector of parameters, the elements of the score vector U(0) = (U,,,U,,, Us2,Ussz,
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U A)T, are obtained from the expressions:

0l(6;y) “d( ym,ul [ yir (1 — yzl)]
Uy, = = i — ) + 2
! Opy ; 0 ) (y ! ul) Yi1r — M1
2)\{2F2(y¢2) —1}F1,,
L4+ M2F (yir) — 1H{2F(yi2) — 1}
ACEN) S d(ymﬂz [ Yin(1 — yi2)]
Uy, = = o — pig) + 2 IR
! B1ia ;g 1a(1 — 112) (o = piz) + = "

2A2F (yi1) — 1} Py,
1+ M2F5(yiz) — 1} 2Fy (ya) — 1}

L o6;y) = 1 [d(yim) 2M2F(yi2) — 1}F1g§
Uoz = o3 N ; 202 { o2 } L+ M2F1(yir) — 1H{2F(yi2) — 1}
L o6;y) = 1 [d(yioipo) 2M2F1 (yin) — 1}F2g§
Uog = do3 B ; 203 [ oz } 14+ M2F>(yi2) — 1H{2F 1 (i) — 1}
Uy — o0l6y) zn: {2F1 (yir1) — 1H{2F(yi2) — 1}
AT oA 21 A2R () — 1H2F(yie) — 1}

where F1M1 = 8F1 yl)/aul, FQNZ = 8F2(y2)/8u2, F102 = (9F1(y1)/80'1, e Fggz =
OF5(y2)/003. Similarly to the univariate case, it is possible to find the observed

information matrix, J(8) = 9(0;y)/d000 ", whose partial derivatives are given
by

%00 = 3yir (1 — yi1) 2
J = — +
pra (0) 3#1 ; o ui l—ul) [u?(l —m)? m(l =)
"L ON2F; (yi0) — 1
3d(yirs ) [(yﬂ — 1)+ 2ya (1 - yn)]] + Z { 22(y 2) ) X
i=1 Yi1Yi2

{Flp,lenyi‘z - 2)‘{F2(y12) - 1}F1H1:| )

9%0(0 n d(yzl,,ul [ yi1 (1 — 1)
(110 l - + 7/} +
1102 (0) amagl ; otpa(l— p) i Yi1 — [
2M2F5(y2) — 1 : :
{ 22( 2) } [Fl,um'QGyuyq‘,z - 2)‘F1M1F1‘7%{2F2(yi2) o 1}:|7
Yi1Yi2
920(0) <~ 4NF1,, By
J 0) — _ H1 Ii27
M1H2( ) 3u1<9u2 ; ZQJilyiQ
020(0) = ANF1, P,z
J/_Llag (0) = 2 = Z 2H1 : ’
a/’4160-2 i=1 Yi1Yi2
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9°4(0) 2{2F,(yiz) — 1} Fy
0 K1
Jﬂl)\( ) a’u’la)\ ; gluyiz 7
824(0) n 1 Syzg(l — yzg) 2
T s (0) = =y - - +
pana (6) B ; o3pz(1 — p2)? [ p5(1—p2)?  pa(1 — po)

"N 2F (yi) — 1
3d(yio; p2) [(yiz — 1) + 2ui2(1 — Z/zz)ﬂ + Z { 12(y D=1 x
i=1 Yi1Yi2

|:F2,U,2Gyilyi2 - 2/\{F1(y11) - 1}F2H2:| )
020(0) n 4)\F2u2F102
J“Q"%w) :('“)Mzaof B Z 2 x

i=1 YilYi2

9200) I~ dyi (v,
R hami [ R R mere |

Q2003 o3l — p2) Yiz — 2
2M2Fy (y;1) — 1} 1 . .
{ 1(y 1) } |:F2M UQGyr'ly'Q — 2)\F2H F20‘2{2F1(yi1) — 1}:|7
Giﬂyﬂ 205 i i 2 2
0%0(0) 2{2F (yi1) — 1} F»
0) = - K2
J/—L2>\< ) 8u28A ; ?}ilyn 9
2 .2 0 - - - A .
ﬂlol( ) 8(0'%)2 ; 2(741’l U? * GyilyiQ .
.. 2)\{2F2(y12) - 1}F10f
Fi,2 — 5 )
Yi1Yi2
d%((8) " ANFY 2 F o
J 252 0 = = ! 2
72030) =5,7552 ; G
02(0) = 2{2F2(yi2) — 1} Fi 2
2,(0) = = :
Tor(0) =525 = 2 e
~9*0(0) —~ 1 d(yizs p2)  2M2F1 (i) — 1}
Jgggg( ) 78(0’%)2 a ; T‘% - Ug * Gyiryio *
. 2)\{2F1 (%1) — 1}F20§
Fgaz — 5 ,
YilYi2
920(0) = 2{2Fa(yi2) — 1} Fo
JO'Q)\(G) 5023/\ ; 73f11;f2 ’
_OM(0) <~ [{2Fi(yin) — 1H{2Fa(yi2) — 1}
J)\)\( - 6)\2 Z |: Gy ” :| ’
i=1 i1Yi2

Revista Colombiana de Estadistica - Theoretical Statistics 49 (2026) 131-159



Bivariate Simplex Distribution 139

where Fl,ul = 8F1M/8u1, FQ#Q = aFQ#Q/a/J,Q, Flg% = 8F10%/80%, FQUS = aFQUS
/6037 Fl,ulof = aFl(yil)/a:ulao'%a FQuzag = 8F2(yi2)/6u280-% € Gyilyiz =1+
M2F1 (yi1) — 1}{2F%(yi2) — 1}. Under certain regularity conditions, the maximum
likelihood estimator 6 of @ approximates a Normal distribution with zero mean
and variance and covariance matrix J~1(8); allowing confidence intervals to be
found, hypotheses to be tested and predictions to be made. Ensuring parameter
identifiability is essential for reliable inference and meaningful interpretation of
model components, particularly in copula-based constructions where dependence
and marginal parameters are estimated simultaneously. Regarding identifiability,
the proposed bivariate Simplex model satisfies the usual conditions for copula-
based models with continuous marginals. The marginal parameters (u1, ji2, 02, 05)
uniquely determine the corresponding Simplex distributions, while the copula pa-
rameter A controls the dependence structure through a monotonic relationship
with concordance measures such as Kendall’s 7 and Spearman’s p. Hence, distinct
values of \ yield distinct joint distributions. Although the FGM copula captures
only weak dependence, our simulation study indicates that the maximum likeli-
hood estimator of A remains stable and asymptotically unbiased as the sample size
increases, supporting the practical identifiability and robustness of this parameter.

3.2. Moments

In this sub-section, we derive the joint expectation E(y;y2) stated in the the-
orem below. For algebraic convenience, we will denote y; = x and y, = y. The
proof involves several transformations and the use of special functions (Bessel and
Struve), which we state explicitly for clarity.

Theorem 1. Let (x,y)" be a random vector following the bivariate Simplex dis-
tribution, where (fiz, [y, o2, 05, AT is the vector of parameters. The joint moment
of x and y is given by

r2rl 1 1 r2r (1 1
L - A - Mz .- - A? - 9
2 (axfz - ag * 7c> . ] [ 2\ ay&y * ay A

where, for m € {z,y}, Am =1— 2<K0(2am)L_1(2am) + Kl(Qam)Lo(Zam)),

Elzy] = prapty + A

m 4 1)2 1 1
am:w, Py = ———, &= — — 1,
Umgm OmV 21 Hm

and where K, (-) denotes the modified Bessel function of the second kind and L, (-)
denotes the modified Struve function.
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Proof. We want to calculate E[zy] = fol fol xy f(x,y) dx dy, where f(x,y) is given
in Equation (3). After substituting (3) and rearranging terms, we obtain

1
Elzy] = papiy+ A l2/ xg(x;um,ai)G(x;umai)dx—uml X
0

1
[2/ Yh(y; iy, o) H (Y3 iy, 05 ) dy — uy], (5)
0

where g and h denote the univariate Simplex densities and G, H their correspond-
ing cumulative distribution functions. Therefore, it is sufficient to compute the
univariate integral

1
I= / 2 g(z; 1, 0%) Gl i 0?) de.
0

From expression (1) we obtain:

I = /1 2{2r0?[x(1 — 2)]2} V2 exp (_d(:c,,u)) X

0 202
(/Ow{27ra2[t(1 — )} exp (—d(;c’ff )dt)da;,

where d(t; p) = (t — p)?/t(1 — t)u?(1 — p)?. Letting r = (2n0?)~'/2, the previous
expression can be simplified by

1 xT
1 bl ! d(t, )
_ .2 I d(z, B
I=r /0 x1/2(1 — x)3/2 exp( 952 )/0 BI(1— )32 exp( 52 Ydtdz.

By applying the change of variable t = 17 to the inner integral,

1

Letu:€+1.

we obtain:

* d(t,pm
/O AT eXP(— étaé))dtz

o0

Simplifying and substituting this result into the expression for I, we obtain

1
1
— g2 _ d@.p)
= /0 212(1 — 7)3/2 exp( 207 ) x
* ozt 1 (E—2)(E+1)?
/l—1 3/ exp(— 542 e )dz dzx.

x

Applying again the same change of variable x = %ﬂ to the outer integral yields

;o r2/0°° 1 exp<_LW)x

w3/2 202 w§2
Tzl 1 (E—2)2(E+1)°
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2 2
We observe that, setting 8 = (52’721) and v = %;513 , the exponential term in z

can be written as exp{— (827! +v2)/2} exp{a}, where a = % The same form
holds for the term in w. We thus obtain the following simplified expression:

I = r%exp(2a) Ooiexp(—l(ﬁw—l—|—’yw))><
0 w3/2 2

*z+1 1, -
/ Wexp(—i(ﬁz 1+’yz))dzdw‘

Once again, we perform a change of variables in the inner integral. Let p = z/w.
Note that here w is treated as a constant, so dz = w dp. We then obtain

p
I = eXp (2a) / / 3/2 (w2 w> X

exp( - % (,@LLF + yw + B(wp) ™t + va) ) dp dw.

Now we regroup terms and exchange the order of integration, obtaining

I = reXan/ / 3/2(w2 f:)x

exp(—%((ﬂ%—;)w‘ +(7+7p)w)) dw dp. (6)

We intend to apply Proposition 1 to Equation (6). For this purpose, we note
that the integral above can be written as the sum of two integrals, I = I; + I,
where

o0 1 oo
IIZT%KPQGX/ 5@5/1cfrlam(—%Kﬁ+pr%fl+(7+7mw0dwﬂn
1 0
where v; = —1,
and
b—rem2a/ 1&/, 2T wp—%w+ﬁM) (V+WW»@WL

where v5 = 0.

Now we apply Proposition 1 to I; and I3, substitute these results into expres-
sion (6), and obtain the following simplified integral involving Bessel functions:

1 [>1 p+1 o p+1
— 9.2 - —
I=2r exp(?a){f/1 pK1< e )d +/1 p3/2K0<a pavp )}
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Applying the change of variables ¢ = ,/p, we obtain:
1 /1 241 * 241
=12 eXp(Qa){f/ K (o + )dq+/ Ko a? + )dgy. (@
§J1 ¢ q 1 q
For simplicity, we denote Jy and J; by the following integrals

e 241 <1 241
Jo = / Ky (aq + )dq, and J; = / -K; (aq + )dq.
1 q 1 g q

We recall that expression (7) represents the integral fol xg(x; p, 02)G(x; p, 02) dx
introduced at the beginning of this proof. Therefore, substituting Jy and J; into
the identity (7), we obtain:

I= /0 xg(x; p, 0%)G(z; p, 0)de = r? exp(2a){J1 /€ + Jo}. (8)

Note that the integrals Jy and J; were calculated in Lemma 2 and Corollary 1
respectively:

™
J1 = g &P —2a, (9)
and
ﬂ' ™ ™
Jo=pew(=20)+ 75
Substituting (8) into (5), we obtain the following expression for E[zy]:

(Ko(2a)L_1(2a) + K1(2a)L0(2a))} . (10)

Bloy) = oty + A28 exp 20, (7 /& + J§) = pa] X
(202 exp 20, (7 /& + T3) — 1y . (11)

where, for m € {z,y}, we have

1 1)2 1
I 7 am:(gmz;)7 b = — — 1,
am\/27r ngm /~Lm
o0 241 <1 241
J{)”:/ Kg(amm + >dm, g = Kl(amm + >dm
1 m 1 m m

Finally, substituting the identities (9) and (10) into (11) yields the result.
O

Although the derivation of the proposed model involves special functions (mod-
ified Bessel and Struve functions) and some numerical integration, the computa-
tional cost is quite modest. These functions are efficiently implemented in stan-
dard scientific libraries, and the required integrals are evaluated once per likelihood
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computation. In practice, the estimation procedure scales well with the sample
size: in the Monte Carlo experiments (Section 4) involving 1,000 replications with
n = 1000, the complete simulation study was executed within a few minutes on
a standard computer. This demonstrates that the proposed approach is compu-
tationally tractable and suitable for large-sample or resampling analyses such as
bootstrapping.

4. Simulation Study

In this section, we perform a Monte Carlo simulation study to assess the asymp-
totic behavior of the maximum likelihood estimators for the bivariate Simplex
distribution. The numerical results are derived on R = 1,000 Monte Carlo repli-
cations, with sample sizes n = 50, 100, 150, 200, and 1,000. The random response
vector y = (yy,...,Y,) , where y, = (y1;,92;) ' is generated by using the algo-
rithm described in Johnson (1987). The algorithm involves the following steps: ()
Generate two independent random variables u; and v with uniform distributions,
U(0,1); (i4) Compute: A = A(2u; —1) —1, B=[1 — A(2u; — 1)]? + 40A(2u; — 1)
and uy = 2v/(vVB — A); (iii) Apply the inverse transformation method to obtain
y1 = Fy ' (uy) and yo = F, *(up), where Fi(-) and Fy(-) are the cumulative dis-
tribution function of y; and ys, respectively. The mean, bias, root mean square
error (RMSE), and the 95% confidence interval coverage probability are computed
based on the following expressions:

R N

_ 1 , _ 1 .

b=+ >0, Bias(0;) =0; —0; and RMSE(0;) = = > (05 - 0,02,
=1 =1

where 8 = (01,05, 03,04,05) " = (u1, u2,0%,02,\)". We considered four scenarios,
in which the parameter A takes on values of —1, 0 and 1 to perform the behavior
of 6.

4.1. Scenario 1

In this scenario, the following vectors are taken as the true values of the parame-
ters @; = (0.5,0.5,2,2,1)7, 85 = (0.5,0.5,5,5,1) " and 85 = (0.9,0.9,/11,/11,1)T.
Figure 1 (see supplementary material?) illustrates the surface and contour plots
of the generated samples. The joint moments E(y;y2) for 81, 82 and 83 are 0.36,
0.40 and 1.24, respectively. For 61, the generated samples are concentrated in the
interval (0.25;0.75), indicating a bimodal behavior. Similarly, for 85 and 03, the
samples are concentrated near zero and one simultaneously and near one, respec-
tively. Figure 2 displays the simulation results for this scenario. The parameter
vectors 01, 05, and O3 are represented by the colors red, green, and blue, respec-
tively. Solid and dashed lines in the figure correspond to the parameters associated
with y; and ys, respectively. As expected, the bias and root mean square error

?https://github.com/carrascojalmar/BSD.git
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FIGURE 2: Bias (row 1), RMSE (row 2) and Coverage (row 3) of the parameters ;; and
2 (column 1), o7 and o3 (column 2) and X (column 3) for Scenario 1.

(RMSE) approach zero as the sample size increases, indicating that the maximum
likelihood estimators are asymptotically unbiased. The probability of coverage
for the parameters p; and ps are close to the nominal 95% level across different
parameter vectors @ and sample sizes. However, for parameters o2 and o3, the
coverage probability is underestimated when samples are generated using the 65
parameter. The coverage of the A parameters is overestimated for different sample
sizes. Tables 1-3 (in the supplementary material) show the results of this scenario.

4.2. Scenario 2

In this scenario, the following vectors are taken as the true values of the param-
eters 0, = (0.5,0.5,2,2,-1)7, 05 = (0.5,0.5,5,5,-1) " and 03 = (0.9,0.9, /11,11 ,-
1)T. Figure 2 (see supplementary material) shows the surface and contour plots
of the generated samples. The joint moments E(y;y2) for 81, 82 and 03 in this
scenario are 0.14, 0.10 and 0.38, respectively. For 81, the samples are concentrated
within the interval (0.25;0.75), indicating a bimodal behavior that is the inverse
of the behavior observed in the first scenario. Similarly, for 85 and 83, the samples
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are concentrated near zero and one. Figure 3 presents the simulation results for
this scenario. Again, the colors red, green, and blue for the parameter vectors 01,
05, and 03, respectively. The solid and dashed lines correspond to the parameters
associated with the variables y; and ys, respectively.

0.000:
0.001

0.000;

-0.050

Bias

-0.100
-0.001

50 100 150200 1000 50 100 150200 1000 50 100 150200 1000

0.500:

0.030 0.400

\ 0.200:

0.300:
0.020

RMSE
RMSE
RMSE

0.200: 0.100

0.010
0.100:

0.000 0000F === =========--=---. 0000F === =========-—=---.

50 100 150200 1000 50 100 150200 1000

96.00
99.00

95.00 93.00

98.00

90.00:
97.00

Coverage
Coverage

1 87.00
96.00:

92.00{

84.00 95,00k = == mm e e oo
50 100 150200 1000 50 160 150200 1000 50 100 150200 1000

FIGURE 3: Bias (row 1), RMSE (row 2) and Coverage (row 3) of parameters 1 and p2
(column 1), o7 and o3 (column 2) and A (column 3) for Scenario 2.

In this scenario, as expected, the bias and the root mean square error (RMSE)
approach zero as the sample size increases, indicating that the maximum like-
lihood estimators are asymptotically unbiased. The coverage probability for the
parameters pq and po are close to the nominal 95% level across different parameter
vectors @ and sample sizes. However, for the parameters o7 and o3, the coverage
is underestimated when 65 is assumed. Conversely, the coverage for the parameter
A is overestimated regardless of the parameter vector 8 and the various sample
sizes. The results can also be found in the supplementary material in Tables 4-6.
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4.3. Scenario 3

In this scenario, the following vectors are taken as the true values of the parame-
ters §; = (0.5,0.5,2,2,0)7, 85 = (0.5,0.5,5,5,0) " and 63 = (0.9,0.9,/11,/11,0) .
Figure 3 (see supplementary material) illustrates the surface and contour plots for
the generated samples. The joint moments E(y;y2) for 61, 02 and 03 are 0.26, 0.25
and 0.81, accordingly. For 84, the generated samples are concentrated around 0, 5,
indicating an unimodal behavior. Similarly, for 85 and €3, the samples are concen-
trated near zero and one. Figure 4 presents the simulation results in this scenario.
The parameter vectors 61, 85 and 03 are represented by the red, green, and blue,
respectively. Solid and dashed lines correspond to the parameters associated with
y1 and yo, respectively.
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FIGURE 4: Bias (row 1), RMSE (row 2) and Coverage (row 3) of the parameters ;1 and
2 (column 1), o3 and 3 (column 2) and A (column 3) for the Scenario 3.

In this scenario, the bias and root mean square error (RMSE) decreases to zero
when the sample size increases. The coverage probability for the parameters pq,
2, o3 and o3 are close to the nominal 95% level across different parameters vector
0 and sample sizes. However, for the parameter A\, only 85 achieves coverage close
to the nominal 95% level, while for 6, and 03, the coverage is underestimated.
Again, the results can also be found in Tables 7-9 in the supplementary material.
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4.4. Scenario 4

In this scenario, we performed an additional Monte Carlo sensitivity analysis
to assess the robustness of the proposed model under alternative copula struc-
tures and marginal specifications. The data were generated from the bivariate
Simplex distribution via the FGM copula, representing the true data-generating
process. Using the same simulated sample, we fitted: Bivariate Simplex mod-
els combined with the Clayton, Gaussian, Frank, FGM, and Gumbel copulas
Durante & Sempi (2016), and Bivariate Beta models combined with the same
set of copulas. Appendix B presents the algebraic form of each copula consid-
ered. We considered three sub-scenarios corresponding to different levels of de-
pendence, defined by the parameter vectors 8; = (0.5,0.5,v/5.5,v/5.5,0.1)T, 6, =
(0.5,0.5,/50,1/25,0.50) T, 83 = (0.5,0.5,1/5.5,4/25,0.25) . These settings allow
us to examine model performance under weak, moderate, and intermediate de-
pendence, respectively. For each fitted model, we computed the log-likelihood and
two standard information criteria used for model selection:

AIC = —20(8) +2p and BIC = —2(8) + plog(n),

where 8(5) is the maximized log-likelihood and p denotes the number of estimated
parameters. The results for the sub-scenario 2 are presented in Table 1, while
the outcomes for sub-scenarios 1 and 3 are provided in the supplementary mate-
rial attached to this manuscript. Figure 5 displays the surface and contour plots
corresponding to a random sample generated under sub-scenario 2. The figure
illustrates the joint distribution of (y1,y2) and reveals that the simulated obser-
vations are concentrated near the corners (0,0), (0,1), (1,0), and (1,1), that is,
around the extreme regions of the unit square. This pattern reflects the combined
effect of moderate dependence (A = 0.5) and the asymmetric dispersion parame-
ters (07,03) = (v/50,/25), which together produce heavier concentration at the
boundaries.

v2

(

FIGURE 5: Surface and contour graphs for 82 = (0.5,0.5,/50,v/25,0.5) ", sub-scenario
2.
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TABLE 1: Simulation results for model comparison in sub-scenario 2, 82 = (0.5,0.5,
V/50,4/25,0.5) T, with R = 1000 replicates.

n Model Loglik AIC BIC Correlation
Simplex-FGM 21.376 -32.751 -23.191
Simplex-Frank 21.347 -32.695 -23.134
Simplex-Gaussian 21.347 -32.695 -23.134
Simplex-Clayton 21.165 -32.331 -22.771

50 Simplex-Gumbel 20.192 -30.383 -20.823 0.187
Beta-Clayton 7.183 -4.366 5.194
Beta-Gaussian 7.070 -4.140 5.421
Beta-Frank 7.054 -4.108 5.452
Beta-FGM 7.036 -4.072 5.488
Beta-Gumbel 5.907 -1.815 7.745
Simplex-FGM 40.016 -70.033 -57.007
Simplex-Frank 39.958 -69.915 -56.889
Simplex-Gaussian 39.826 -69.652 -56.626
Simplex-Clayton 39.311 -68.622 -55.596
Simplex-Gumbel 37.829 -65.657 -52.631

100 Beta-Clayton 12.673 -15.347 -2.321 0.184
Beta-Gaussian 12.607 -15.215 -2.189
Beta-Frank 12.602 -15.203 -2.177
Beta-FGM 12.572 -15.144 -2.118
Beta-Gumbel 10.449 -10.897 2.128
Simplex-FGM 58.633 -107.266 -92.213
Simplex-Frank 58.585 -107.169 -92.116

Simplex-Gaussian 58.440 -106.880 -91.827
Simplex-Clayton 57.721 -105.441 -90.388
Simplex-Gumbel 55.682 -101.365 -86.311

150 Beta-Clayton 17.913 -25.826 -10.773 0.177
Beta-Gaussian 17.817 -25.634 -10.581
Beta-Frank 17.783 -25.566 -10.512
Beta-FGM 17.732 -25.463 -10.410
Beta-Gumbel 14.894 -19.788 -4.735
Simplex-FGM 77.706 -145.412 -128.921
Simplex-Frank 77.662 -145.324 -128.833
Simplex-Gaussian 77.419 -144.838 | -128.346
Simplex-Clayton 76.456 -142.911 -126.420

200 Simplex-Gumbel 73.946 -137.892 -121.400 0.176
Beta-Clayton 23.591 -37.183 -20.691
Beta-Gaussian 23.483 -36.966 -20.475
Beta-Frank 23.471 -36.943 -20.451
Beta-FGM 23.385 -36.771 -20.279
Beta-Gumbel 19.737 -29.474 -12.983
Simplex-FGM 187.789 -365.578 -344.505
Simplex-Frank 187.710 -365.420 -344.347
Simplex-Gaussian 187.044 -364.088 -343.015
Simplex-Clayton 184.746 | -359.493 | -338.420

500 Simplex-Gumbel 179.678 -349.357 -328.284 0.170
Beta-Frank 55.116 -100.231 -79.158
Beta-Gaussian 55.109 -100.218 -79.145
Beta-Clayton 55.019 -100.039 -78.966
Beta-FGM 54.940 -99.880 -78.807
Beta-Gumbel 47.012 -84.025 -62.952

The results in Table 1 indicate that the bivariate Simplex model with FGM
copula consistently achieved the lowest AIC and BIC values in sub-scenario 2,
confirming its superior fit when both the marginal and dependence structures
are correctly specified. Similar patterns were observed for sub-scenarios 1 and 3,
in which the Simplex-FGM model also outperformed the competing models. In
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contrast, when the same data were fitted using bivariate Beta models, all copula
combinations yielded substantially higher ATC and BIC values, revealing a poorer
fit under marginal misspecification.

5. Applications

5.1. Global Trends in Mental Health Disorder Data

In this section, we analyze a real-world dataset that illustrates the practical rel-
evance and flexibility of the proposed bivariate Simplex distribution. The dataset,
publicly available on the Kaggle platform under the title “Global Trends in Men-
tal Health Disorder", compiles information from countries around the world on
the prevalence of several mental health disorders, including schizophrenia, bipolar
disorder, eating disorders, anxiety disorders, drug use disorders, depression, and
alcohol use disorders. By making such data accessible, the source aims to foster
understanding of how these conditions affect populations globally and to support
policy decisions, prevention strategies, and resource allocation.

For our analysis, we focus on two outcomes related to the 2017 data: y; corre-
sponds to the prevalence of alcohol use disorders (in percentage) in the same year,
while yo represents the prevalence of depression (in percentage) in each country or
region. Both variables are continuous and naturally restricted to the unit interval
(0,1) when expressed as proportions, making them suitable for modeling under
the proposed bivariate Simplex framework. This dataset provides an excellent op-
portunity to evaluate the empirical performance of the proposed model relative
to the traditional bivariate Beta distribution. Figure 8 presents the boxplots and
histograms for the variables y; and y,. The graph reveals the presence of out-
liers in the Alcohol use disorders, which correspond to the Belarus (#19); Eastern
Europe (#62); Russia (#168); Estonia (#70); Ukraine (#215); United States
(#218); Latvia (#113); Moldova (#135); Central Europe, Eastern Europe, and
Central Asia (#41); Mongolia (#13); Kazakhstan (#106) and Scotland (#175),
in the depression, which correspond to the Greenland (#81), Lesotho (#115) and
Morocco (#138).
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FIGURE 6: Boxplot and histograms for the yi(Percentage of people with alcohol use
disorders) and y» (Percentage of people with depression) variables.
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Table 2 presents descriptive measures of position, dispersion, and shape for the
variables y; (percentage of people with alcohol use disorders) and yo (percentage
of people with depression). The average prevalence of depression across countries
is approximately 3.4%, with values ranging from 2.2% to 6.2%. For alcohol use
disorders, the mean prevalence is about 1.6%, ranging from 0.4% to 5.3%. Both
variables exhibit moderate dispersion relative to their means, as indicated by the
standard errors, and display positive skewness (0.656 for y; and 1.860 for ys),
suggesting that most countries present low to medium prevalence rates, while a
few exhibit substantially higher values. The high kurtosis values (4.495 for y;
and 7.746 for yo) indicate leptokurtic behavior, meaning that the distributions
are more peaked than the normal distribution, with heavy tails. Overall, these
summary statistics confirm that both variables are asymmetric and right-skewed,
with variability concentrated in the lower range of the unit interval. Such charac-
teristics reinforce the suitability of the proposed bivariate Simplex model, which is
particularly appropriate for modeling bounded, positively skewed data on (0, 1).

TABLE 2: Descriptive measures of position, dispersion, asymmetry, kurtosis, and relative
position of variables y1 and ys.

Min. Max. Q1 @3 Mean Median Standard Asymmetry  Kurtosis
Errors

y1 | 0.004 0.053 0.010 0.018 0.016 0.015 0.004 1.860 7.746

y2 | 0.022 0.062 0.029 0.038 0.034 0.035 0.006 0.656 4.495

Table 3 presents the parameter estimates, standard errors, and 95% confidence
intervals obtained from the fitted bivariate Simplex and bivariate Beta models
using the FGM copula. For both models, the estimated means fi; = 0.0159 and
fio = 0.0345 indicate that, on average, about 3.5% of the population suffers from
depression and 1.6% from alcohol use disorders, respectively. The dispersion pa-
rameters 07 = 4.05 and 55 = 1.03 in the Simplex model suggest higher variability
in alcohol use disorders compared to depression rates across countries. The esti-
mated dependence parameter A = —0.458 reveals a moderate negative association
between alcohol use disorders and depression, implying that countries with higher
prevalence of one condition tend to have lower prevalence of the other. When
comparing the competing models, the bivariate Simplex—FGM model outperforms
the bivariate Beta—FGM model, achieving higher log-likelihood (1679.97 versus
1672.01) and lower AIC (—3349.94 versus —3334.02) and BIC (—3332.73 versus
—3316.81) values. These results provide strong empirical evidence of the superior
fit and flexibility of the proposed model for describing bounded, asymmetric, and
correlated data.

Figure 7 displays the estimated joint density surface and the corresponding con-
tour plot of the fitted bivariate Simplex-FGM model, obtained using the maximum
likelihood estimates reported in Table 3. The plots provide a visual representation
of the dependence structure between alcohol use disorders (y;) and depression (y2).
The shape of the fitted surface is consistent with the empirical distribution of the
data, concentrating most of the probability mass in regions corresponding to low-
to-moderate prevalence levels and reflecting the negative association captured by
the estimate of A\. These graphical results, together with the information criteria,
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support the adequacy of the proposed bivariate Simplex model for describing the

joint behavior of the two mental health indicators.

TABLE 3: Simplex and Beta Models:Estimates, standard errors, and confidence intervals

with a confidence coefficient of 95%.

Parameter  Metric Simplex Beta
Estimate 0.0159 0.0159
n1 Standard Error 0.0005 0.0005
CI195% (0.0149 ; 0.0169) (0.0149 ; 0.0168)
Estimate 0.0345 0.0344
12 Standard Error 0.0004 0.0004
CI195% (0.0337 ; 0.0353) (0.0336 ; 0.0352)
Estimate 4.0489 0.0593
o2 Standard Error 0.1879 0.0029
C195% (3.6807 ; 4.4172) (0.0539 ; 0.0648)
Estimate 1.0322 0.0340
o2 Standard Error 0.0480 0.0015
C195% (0.9382 ; 1.1263) (0.0309 ; 0.0371)
Estimate —0.4577 —0.4573
A Standard Error 0.1930 0.1965
C195% (—0.8360 ; —0.0794)  (—0.8426 ; —0.0720)
logLik 1679.969 1672.009
AIC —3349.938 —3334.017
BIC —3332.726 —3316.805
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FIGURE 7: Estimated joint density surface (left) and contour plot (right) of the fitted
bivariate Simplex-FGM model for depression and alcohol use disorders.

5.2. Jurimetric Data

In this section, we illustrate the practical applicability of the proposed bivariate
Simplex distribution via the FGM copula using a real dataset from the Jurimetry
field. The aim of this analysis is not to compare alternative models but rather
to demonstrate that the proposed model provides an adequate and interpretable
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representation for bounded bivariate data arising in applied contexts. The dataset
was obtained from the 2014 Annual Report of the Regional Labor Court of the
5th Region (TRT5) in Bahia, Brazil. The mission of TRT5 is to promote jus-
tice in labor relations with efficiency, transparency, and swiftness, contributing to
social harmony and strengthening citizenship within Bahia. For this study, the
outcomes are defined as follows: y;, the Congestion Rate, represents the propor-
tion of unresolved cases relative to the total cases processed within a year; and ys,
the Conciliation Index, corresponds to the percentage of sentences and decisions
resolved through agreements relative to the total number of final decisions issued
by the 88 Labor Courts in Bahia. Figure 8 presents the boxplots and histograms
for the variables y; (Congestion Rate) and y2 (Conciliation Index). The graph
reveals the presence of outliers in the Conciliation Index, which correspond to the
courts located in the cities of ITtamaraju (#33), Simdes Filho (#84), Santo Amaro
(#80), and Candeias (#10 and #11).
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FI1GURE 8: Boxplot and histograms for the y;(Congestion Rate) and y2 (Conciliation
Index) variables.

Table 4 highlights the central tendency and dispersion measures for the variables.

TABLE 4: Descriptive measures of position, dispersion, asymmetry, kurtosis, and relative
position of variables y; and y2.

Min. Max. Q1 @3 Mean Median Standard Asymmetry  Kurtosis
Errors

y1 | 0.308 0.749 0.456 0.579  0.524 0.524 0.095 -0.160 -0.382

y2 | 0.109 0.613 0.270 0.357 0.315 0.320 0.086 0.288 1.273

As shown in Table 4, the average Conciliation Index is notably lower than
the Congestion Rate, despite conciliation being the fastest route to a resolution.
Given that both y; and ys are constrained to the (0,1) interval, we propose using
a model that accounts for this characteristic. Accordingly, we applied the bivari-
ate Simplex distribution defined in Section 3 to obtain the estimates, standard
errors, and confidence intervals, which are reported in Table 5. The estimate for
the joint expectation, F(y1y2), is 0.162, and the maximum likelihood estimators
are obtained when the dependence parameter A\ = 0.077 (positive dependence).
This suggests that the Congestion Rate and Conciliation Index tend to increase
together.

Revista Colombiana de Estadistica - Theoretical Statistics 49 (2026) 131-159



Bivariate Simplex Distribution 153

TABLE 5: Estimates, standard errors, and confidence intervals with a confidence coeffi-
cient of 95%.

Parameter | Estimate Standard error Confidence Interval (95%)
I 0.5178 0.0100 (0.4982 ; 0.5375)
12 0.3132 0.0096 (0.2943 ; 0.3321)
o; 0.7987 0.0602 (0.6807 ; 0.9167)
o2 0.9498 0.0716 (0.8094 ; 1.0802)
AIC -333.4668
BIC -321.0802

Figure 9 displays the surface and contour plots based on the estimates obtained.
The contour graph, in particular, demonstrates a good fit of the model to the data.

v2

03 0.4 05 06 07 08

0.8 Y1
Ficure 9: Congestion Rate surface graph (left) and contour graph (right) (y1) and the
Conciliation Index (y2).

6. Conclusions

This article introduced a bivariate Simplex distribution constructed via the
FGM copula as a flexible alternative for modeling continuous data constrained to
the unit interval (0,1). The proposed formulation allows joint inference on two
proportion-type variables and retains analytical tractability, leading to closed-form
expressions for the joint density, likelihood function, and the joint expectation
E(Y1Y2). Through an extensive Monte Carlo study, we examined the asymptotic
properties of the maximum likelihood estimators under different dependence struc-
tures. The results demonstrated that the estimators are consistent and asymptot-
ically unbiased across scenarios, with the dependence parameter A\ taking val-
ues of 1, —1, and 0. Although the FGM copula captures only weak dependence
([-1/3, 1/3]), its adoption in this work is justified by its analytical simplicity,
symmetry, and interpretability. These features facilitate explicit derivations and
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provide a foundation for further extensions to copulas capable of modeling stronger
or asymmetric dependence. To assess robustness, we also compared the proposed
model with alternatives based on Frank, Gaussian, Clayton, and Gumbel copulas.
The results confirmed the stability of the estimation procedure and the potential
for extending the framework to richer dependence structures. Finally, the proposed
methodology was applied to two empirical datasets drawn from the fields of Psy-
chometry and Jurimetry: (i) global trends in mental health disorders worldwide,
and (ii) the Annual Report of the Regional Labor Court of the 5*" Region (TRT5)
in Bahia, Brazil. The empirical analyses corroborated the practical suitability of
the proposed model, underscoring its effectiveness in modeling bounded bivari-
ate outcomes and its potential applicability to other research domains involving
proportions and rate-based data.
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Appendix A. Mathematical Results used in the Proof
of Theorem 1

Let K, be the modified Bessel function of the second kind. From the definition,
we know that for v real and z positive, K, (z) is real. Additionally, the following
symmetry holds K_,(z) = K, (z). Below we state some properties of this function.

Proposition 1. Let 8 and 7 be positive real numbers, and let v € R. Then we
have the following integral representation for the modified Bessel function of the

second kind:
o0

e e 0 g = o0y, (),
0 v

Proof. See Kropac (1982). O

Proposition 2. Let z € C such that the real part of z, R(z), is positive. Then,
1. 57 Ki(2z cosh (t))dt = 5 K7 5(2)

2. [, Ko(2z cosh (t)) cosh(t)dt = %Kf/z(z).

Proof. See expression 10.32.17 (https://dlmf .nist.gov/10.32). O

Corollary 1. Let a € C be such that R(a) > 0. Then

<1 241
/ —-K; (ax + )dm = 16_2(1.
1T x 4a
Proof. Considering z = e’ we have
(oo} 1 2 1 (e e)
/ le(aI + )dx:/ K1(2a cosh(t))dt.
1 X €z 0

Using Proposition 2 with z = a and the fact that K;/y(a) = /5.~ % we obtain
the result. O
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Additionally, we introduce the notion of asymptotic equivalence and little-o nota-
tion:

Definition 1. Two functions f and g are asymptotic equivalents as = approaches

a if
g =

This relationship is denoted by f ~g g.

We observe that the asymptotic equivalence relation is transitive, that is, if
f ~agand g ~, h, then f ~, h.

Definition 2. A function f(x) is o(g(z)) for z — a if f(z) grows slower than g(z)
as = approaches a. In simpler terms,

lim M =0.

T—ra g(,]j)
From now on, we denote L, as the modified Struve function, and ph(z) denotes
the phase of the complex number z.

Lemma 1. Let z € C such that |ph(z)| < %, and let v € R such that v+ § ¢ —N.

Then the following asymptotic expansion holds for |z| > 1:

1
BT v=le== 4 3 (A1)

2K, 1(2) Ly (2) ~ ¢, 5

Proof. In this proof, we refer to Olver et al. (2010, p.249, 252, 288, 293) for know
results used. First we observe that L,(z) = M,(z) + I,(z). Also, the following
asymptotic equivalences hold

and

1
E k v—2k—1
MV(Z) ~ ; CVZV )
k>0

where M, is the modified Struve function, I, is the modified Bessel function

DRI (k+1/2)(1/2)Y 2R —2k— -
and & = U 1“((1,11//2)(71@/)) - Since Yo bz = o(c)z¥71), then
k>0 chzv2k =1~ 92771 and by transitivity M, (z) ~ L0271, Therefore,
Lo(2) = My(2) + I(2) ~ 201 4 o[
14 v 1% 27TZ
Finally,

O
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Corollary 2.

lim x(Ko(x)L_l(x) n Kl(x)Lo(x)> ~ 1.

r—>-+00
Proof. This proof is straightforward from Proposition 1. O

Proposition 3. Let z € C. Then:
/ Ko(2)dz = S2(Ko(2) L1 (2) + K (2) Lo(2)) + C.

Proof. See expression 10.43.2 (https://d1lmf.nist.gov/10.43) O

Lemma 2. For a > 0, we have

*° 241 T o, w1
/1 Ko (a . )dx = Le™ 47 [5 — Ko(2a)L_1(2a) — K1(2a)L0(2a)].

Proof. Let x = et. Then

o0 2 1 [e’e)
Ky (ax + )daj = e' Ko(2a cosh(t))dt,
1 xz 0

= /OO cosh(t) Ko(2a cosh(t))dt +

/00 sinh(¢) Ko(2a cosh(t))dt.
0

Using Proposition 2 with z = a and the fact that K /y(a) = \/5;¢~* we find that

71'6_20’

4da

/00 cosh(t) Ko(2a cosh(t))dt =
0

For the remaining integral, let y = 2a cosh(t), yielding

oo 1 o0
/ sinh(t) Ko <2a cosh(t))dt =% Ko(y)dy.
0 2a
To compute the last integral, simply apply Proposition 3 and Corollary 2. O

Proposition 4. Leterf denote the error function given by er f(z) = % fOZ e=tdt.
Then

(i) erf'(z) = %e‘z

(i) lim,_sierf(z) =1

2

2
(iii) fefai)w?*%zdx = g[egaberf(ax—i- by te2eber flax—2)]+C for = >0 and
[ph(a)| < w/4.
Proof. See Olver et al. (2010, Cap. 7). O
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Appendix B. Simulation: Scenario 4

Let u; and wo denote the distribution functions of y; and yo, respectively.
Equation (3) can be rewritten as

Wi y2:0) = fyrs pa,07) X fy2; p2, 03) % c(u1, uz),

where f(y1;u1,0%) and f(yo; p2,05) are the marginal density functions of y; and
ya2, respectively, and c(u1,uz) denotes the copula density function that captures
the dependence structure between them. The following copulas are considered in
this work: Clayton, Frank, Gumbel, and Gaussian.

1. Clayton Copula: The bivariate Clayton copula Durante & Sempi (2016)
is defined as

c(uy,ug; A) = max{(ul_A + u;A — 1)_1//\ , O} ,

where the dependence parameter A belongs to the interval [—1,00), A # 0.
The case A — 0 corresponds to the independence copula.

2. Frank Copula: The bivariate Frank copula Durante & Sempi (2016) is

given by
1 (exp{—Aui} — 1)(exp{—Auz} — 1)
AN)=——1In(1
C(u17u27 ) A Il< + exp{—/\}—l 5
where A € R, A #£ 0. As A — 0, the copula converges to the independence
copula.

3. Gumbel Copula: The bivariate Gumbel copula Durante & Sempi (2016)
is defined as

c(uy,ug; A) = exp (— [(—hlul))\ + (—111“2))\]1/)\) )

where X\ € [1,00). The case A = 1 corresponds to the independence copula.

4. Gaussian Copula: The bivariate Gaussian copula Durante & Sempi (2016)
is expressed as

e (w) @7 (u2) 1 s — 2\st + 2
c(ul,uQ;/\):/7oo LOO T exp <—2(1_)\2) )dtds,

where ®~!(-) denotes the quantile function (inverse CDF) of the standard
normal distribution, and A € (—1,1) is the linear correlation coefficient.
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