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Abstract

This article proposes a bivariate Simplex distribution for modeling con-
tinuous outcomes constrained to the interval (0, 1), which can represent pro-
portions, rates, or indices. We derive analytical expressions to calculate the
dependence between the variables and examine its relationship with the asso-
ciation parameter. Parameters are estimated using the maximum likelihood
method, and their performance is assessed through Monte Carlo simulations.
The simulations explore various aspects of the bivariate distribution, includ-
ing di�erent surfaces and contour graphs. To demonstrate the methodology
and properties of the proposed model, we present two empirical applications
in the areas of Psychometry and Jurimetry. Supplementary material can be
accessed via the following link: https://github.com/carrascojalmar/BS

D.git includes user-friendly code and simulation results.

Keywords: Copula; Jurimetric; Monte Carlo; Psychometry; Simplex distri-
bution.

Resumen

Este artículo propone una distribución Simplex bivariada para modelar
resultados continuos restringidos al intervalo (0,1), que puede representar
proporciones, tasas o índices. Se derivan expresiones analíticas para calcular
la dependencia entre las variables y examinar su relación con el parámetro
de asociación. Los parámetros se estiman mediante el método de máxima
verosimilitud y su rendimiento se evalúa mediante simulaciones de Monte
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Carlo. Las simulaciones exploran diversos aspectos de la distribución bivari-
ada, incluyendo diferentes super�cies y grá�cos de contorno. Para demostrar
la metodología y las propiedades del modelo propuesto, se presentan dos apli-
caciones empíricas en las áreas de psicometría y jurimetría. Material com-
plementario disponible en: https://github.com/carrascojalmar/BSD.git
incluye código intuitivo y resultados de simulación.

Palabras clave: Cópula; Distribución simplex; Jurimétrica; Monte Carlo;
Psicometría.

1. Introduction

Relevant scienti�c studies have provided data describing intrinsic phenomena
regarding rates, fractions, proportions, or indices. For instance, the distribution
supported on the interval (0,1) plays a crucial role in research and application
in �nance (Gómez-Déniz et al., 2014) and (Biswas et al., 2021), public health
(Mazucheli et al., 2019) and (Biswas & Chakraborty, 2019) and demographics
(Andreopoulos et al., 2019). In this context, the Beta and Simplex distributions are
particularly prominent, with their density functions capable of assuming di�erent
shapes depending on parameter values.

Bivariate distributions are essential in practice because they allow simultane-
ous analysis and decision-making regarding two related or dependent variables.
Methods for constructing joint distributions for random variables can be found in
Lai & Balakrishnan (2009) and Kotz et al. (2019). Speci�cally, for the Beta dis-
tribution, Barros (2015) proposed parameter estimation methods for the bivariate
Beta distribution introduced by Nadarajah & Kotz (2005). Further studies Arnold
& Ng (2011), who explored the bivariate Beta distributions for correlated data,
and Gupta & Wong (1985), who examined two bivariate Beta distributions derived
from the Morgenstern curves and the bivariate Dirichlet distribution, respectively.
Other notable contributions include Sarabia & Castillo (2006), who studied vari-
ous bivariate extensions under a Bayesian framework, and Olkin & Liu (2003) who
demonstrated a positively dependent bivariate Beta distribution via the likelihood
ratio. The extension of the Beta distribution to the multivariate case (0, 1)s was
investigated by Jones (2002), while Machado Moschen & Carvalho (2023) analyzed
the Beta distribution proposed by Olkin & Trikalinos (2015) using both classic and
Bayesian approach.

Despite these advances, the bivariate Simplex distribution remains relatively
unexplored for modeling the distribution of two proportions, such as the propor-
tion of budget allocated to di�erent sectors. Bivariate distributions are often con-
structed using copula functions, which allow the analysis of dependence structures
between two random variables independently of their marginal distributions. This
approach o�ers �exibility in combining di�erent types of marginal distributions.
Therefore, this article proposes deriving the bivariate Simplex distribution via
copulas1 as an alternative method for analyzing bivariate data constrained to the

1A copula describes a joint distribution function in terms of its marginals and is widely used in
empirical analysis across various �elds, including survival analysis, actuarial sciences, marketing,
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Bivariate Simplex Distribution 133

standard unit interval. This contribution is signi�cant for the Simplex distribution
framework.

The article is structured as follows: Section 2 reviews the properties and in-
ferential processes associated with the Simplex distribution. Section 3 introduces
the bivariate Simplex distribution via copulas, develops analytical expressions for
calculating dependence between variables, and provides estimators using the max-
imum likelihood method. A Monte Carlo simulation study is conducted to inves-
tigate the asymptotic behavior of these estimators. Section 5 applies the proposed
methodology to two real datasets from the �elds of Psychometry and Jurimetry to
assess its empirical performance. Finally, Section 6 summarizes the conclusions.

2. Preliminaries

The Simplex distribution was proposed by Barndor�-Nielsen & Jørgensen (1991);
later introduced into a class of dispersion models by Jorgensen (1997), which ex-
tended the generalized linear models (GLMs) (Nelder & Wedderburn, 1972). The
Simplex distribution is very convenient and �exible regarding data restricted to
the continuous unit interval (0,1), which can be interpreted as proportions, rates,
or indices. Let y be a random variable that follows a Simplex distribution, with
parameters µ ∈ (0, 1) and σ2 > 0. The probability density function (pdf) of this
distribution is given by

f(y;µ, σ2) = {2πσ2[y(1− y)]3}−1/2 exp
{
− 1

2σ2
d(y;µ)

}
, (1)

where 0 < y < 1 and d(y;µ) = (y − µ)2/y(1− y)µ2(1− µ)2 is the unit deviation.
The expected value and variance of Y are given by E(Y ) = µ and

Var(Y ) = µ(1− µ)−
√

1

2σ2
exp

{ 1

2σ2µ2(1− µ)2

}
Γ
{1
2
,

1

2σ2µ2(1− µ)2

}
,

where Γ(a, b) =
∫∞
b

xa−1e−xdx is the incomplete gamma function. In addition,
the variance function is given by V (µ) = µ3(1− µ)3.

The Simplex distribution can take several shapes depending on the parameter
values (µ, σ2), as shown in Figure 1. If y is a random variable that follows the
Simplex distribution with mean µ and dispersion parameter σ2, it frequently is
denoted by y ∼ S(µ, σ2). It was shown that (i) E[d′(y;µ)] = 0, (ii) Var[d(y;µ)] =
2(σ2)2, (iii) E[d(y;µ)] = σ2, (iv) E[(y − µ)d(y;µ)] = 0, (v) E[(y − µ)d2(y;µ)] = 0,

(vi) E[(y−µ)d′′(y;µ)] = −2σ2 and (vii) 1
2E[(d

′′(y;µ)] = 3σ2

µ(1−µ) +
1

µ3(1−µ)3 , where

d′(y;µ) = ∂d(y;µ)/∂µ e d′′(y;µ) = ∂2d(y;µ)/∂µ2; for more details see Song &
Tan (2000).

medical statistics, and econometrics.
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Figure 1: Density graph of the Simplex Distribution for di�erent parameter values.

Let y1, y2, . . . , yn be a random sample, such that yi follows the Simplex distri-
bution, given in (1) for all i = 1, . . . , n. The likelihood function for the independent
observations is de�ned as L(θ;y) =

∏n
i=1 f(yi;θ), where θ = (µ, σ2)⊤. The loga-

rithm of the likelihood function is expressed in the form ℓ(θ;y) =
∑n

i=1 ℓi(θ; yi),
where ℓi(θ, yi) = − log(2π)/2− log(σ2)/2− 3 log[yi(1− yi)]/2− d(yi;µ)/2σ

2. The
maximum likelihood estimators for µ and σ2 are found by simultaneously solving
the estimation equations, i.e., ∂ℓ(θ;y)/∂µ = 0 e ∂ℓ(θ;y)/∂σ2 = 0, where

∂ℓ(θ;y)

∂µ
= − 1

2σ2

n∑
i=1

(
− 2(yi − µ)

µ(1− µ)

[
d(yi, µ) +

1

µ2(1− µ)2

])
,

∂ℓ(θ;y)

∂σ2
= − n

2σ2
+

n∑
i=1

d(yi, µ)

2(σ2)2
.

It is easy to �nd that σ̂2 =
∑n

i=1 d(yi, µ)/n. The second derivatives of ℓ(θ;y) re-
lated to the parameter vector are given by ∂2ℓ(θ;y)/∂µ2 =

∑n
i=1 −d′′(yi, µ)/2σ

2,
∂2ℓ(θ;y)/∂(σ2)2 = n/2σ4 −

∑n
i=1 d(yi, µ)/(σ

2)3 and ∂2ℓ(θ;y)/∂µ∂σ2 = −
∑n

i=1

d′(yi, µ)/(σ
2)2 where d′′(yi, µ) = ∂2d(yi, µ)/∂µ

2. Using properties (i), (iii), and
(vii) above, the Fisher's information matrix is given by

K(θ) = K(µ, σ2) =

(
Kµµ Kµσ2

Kσ2µ Kσ2σ2

)
,

where Kµµ = −E[∂2ℓ(θ;y)/∂µ2] = 3n/µ(1−µ)+n/σ2µ3(1−µ)3, Kµσ2 = Kσ2µ =
−E[∂2ℓ(θ;y)/∂µ∂σ2] = 0 and Kσ2σ2 = −E[∂2ℓ(θ;y)/∂(σ2)2] = −n/2σ4 respec-
tively. Under general regularity conditions, the maximum likelihood estimators
are consistent, and the asymptotic distribution of

√
n(θ̂− θ) is normal with mean

zero and covariance matrix K−1(θ).

3. Bivariate Simplex Distribution

In this section, we derive the bivariate Simplex distribution via copulas because
bivariate distributions based on copulas are powerful tools for modeling complex
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dependence structures between two variables. By separating the marginal distri-
butions from the dependency, copulas o�er more �exibility and accuracy, especially
in �elds where non-linear relationships and tail dependencies are essential. Ana-
lytical expressions are derived for the expected dependence between variables.

The copula was introduced by Sklar (1959), although similar ideas and results
can be found in Hoe�ding (1940). The copula function is one of several ways of
generating multivariate distributions. A copula is de�ned as a joint distribution
function of the form

C(u1, u2, . . . , uk) = P (U1 ≤ u1, U2 ≤ u2, . . . , Uk ≤ uk), (2)

where 0 ≤ uj ≤ 1, Uj ∼ U(0, 1), for every j = 1, 2, . . . , k. Suppose H(·) is
a k-dimensional cumulative distribution function with marginals F1(·), . . . , Fk(·).
Then, according to Sklar (1959), there is a k-dimensional copula C such that,
for every (y1, . . . , yk) ∈ (−∞,∞)k, H(y1, . . . , yk) = C(F1(y1), . . . , Fk(yk)). In
this sense, C is unique if F1, . . . , Fk are all continuous. The above result guar-
antees that we can �nd the joint distribution of k random variables y1, . . . , yk,
i.e., given a set of continuous random variables with marginal distribution func-
tions F1(y1), . . . , Fk(yk) and a distribution functionH(y1, . . . , yk); the joint density
function is given by

h(y1, ..., yk) =
∂kH(y1, ..., yk)

∂y1...∂yk
=

∂kC(F1(y1), ..., Fk(yk))

∂F1(y1)...∂Fk(yk)

∂F1(y1)

∂y1
× ...×

∂Fk(yk)

∂yk
= c(F1(y1)...Fk(yk))

k∏
i=1

fi(yi),

where c(F1(y1), ..., Fk(yk)) =
∂kC(F1(y1), ..., Fk(yk))

∂F1(y1) . . . ∂Fk(yk)
and fi(yi) =

∂Fi(yi)

∂yi
. In

particular, if y1 and y2 are two random variables with a joint distribution func-
tion F (y1, y2) and continuous marginal distribution functions F1(y1) and F2(y2),
respectively, then there exists a single copula C : [0, 1]2 → [0, 1] such that for all
(y1, y2) ∈ R2 and F (y1, y2) = C(F1(y1), F2(y2)), expressing a bivariate density
function with marginals F1 and F2.

The FGM copula (Farlie-Gumbel-Morgenstern copula) is a relatively simple
and classical copula used to model the dependence between two random variables.
While it is not as �exible as other copulas, it provides a basic structure to capture
weak positive or negative dependence. The FGM copula is de�ned as

C(F1(y1), F2(y2);λ) = F1(y1)F2(y2) + λF1(y1)F2(y2)(1− F1(y1))(1− F2(y2)),

where λ ∈ [−1, 1] is the dependence parameter. If λ = 0, the copula reduces
to the independence copula, meaning C(F1(y1), F2(y2)) = F1(y1)× F2(y2), which
indicates that the two random variables are independent; for λ > 0 (Positive
dependence), meaning the two variables tend to increase together (though weakly);
for λ < 0 (Negative dependence), meaning that when one variable increases, the
other tends to decrease (weak negative dependence).
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The Farlie-Gumbel-Morgenstern (FGM) copula is a valuable tool in the realm
of dependence modeling due to its simplicity and interpretability. Its structure
o�ers an intuitive way to capture weak dependence between variables, making it
particularly useful in scenarios where more complex copulas may be unnecessary,
or over�tting may be a concern. The FGM copula is symmetric, which allows it to
treat both variables equally, and its dependence parameter λ is easy to interpret,
making it accessible for analysts and practitioners alike. While it does not capture
extreme tail dependence, this feature can be advantageous in applications where
only moderate associations are needed, such as in educational settings, initial
exploratory analyses, or simple bivariate models. The FGM copula's tractability
and low computational demands make it a practical choice when the goal is to
understand basic dependence structures without the overhead of more complex
copulas, allowing it to strike a balance between simplicity and e�ectiveness.

Thus, in this particular paper, we assume that the variables y1 and y2 follow
univariate Simplex distributions, and the density function f(y1, y2), is as follows:

f(y1, y2;θ) = {2πσ2
1 [y1(1− y1)]

3}−1/2 exp

{
− 1

2σ2
1

d(y1;µ1)

}
×

{2πσ2
2 [y2(1− y2)]

3}−1/2 exp

{
− 1

2σ2
2

d(y2;µ2)

}
×

{1 + λ[1− 2F1(y1)][1− 2F2(y2)]}, (3)

where F1(y1) and F2(y2) are the distribution functions of y1 and y2, respectively,
and θ = (µ1, µ2, σ

2
1 , σ

2
2 , λ)

⊤ is the vector of unknown parameters, were µ1, µ2 and
σ1, σ2 represent the location and dispersion parameters, respectively and λ is the
dependency parameter. We denote y ∼ S2(µ,σ2, λ) the random variable vector
y = (y1, y2)

⊤ which follows the bivariate Simplex distribution with µ = (µ1, µ2)
⊤

and σ = (σ1, σ2)
⊤ parameters.

3.1. Maximum Likelihood Estimation

Let y = (y1,y2, . . . ,yn)
⊤ represent a vector, where yi = (yi1, yi2)

⊤ follow
the bivariate Simplex distribution given in (3) , for i = 1, . . . , n. The likelihood
function of all pairs of observations is de�ned as L(θ,y) =

∏n
i=1 f(yi;θ), where

θ = (µ1, µ2, σ
2
1 , σ

2
2 , λ)

⊤ and the logarithm of the likelihood function is given by
ℓ(θ;y) =

∑n
i=1 ℓi(θ;yi), where

ℓi(θ;yi) = − log(2π)− 1

2
log(σ2

1)−
3

2
log[yi1(1− yi1)]−

1

2σ2
1

d(yi1;µ1)

−1

2
log(σ2

2)−
3

2
log[yi2(1− yi2)]−

1

2σ2
2

d(yi2;µ2)

+ log{1 + λ[1− 2F1(yi1)][1− 2F2(yi2)]}. (4)

By partially deriving the logarithm of the likelihood function with respect to the
vector of parameters, the elements of the score vector U(θ) = (Uµ1 , Uµ2 , Uσ2

1
, Uσ2

2
,
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Uλ)
⊤, are obtained from the expressions:

Uµ1 =
∂ℓ(θ;y)

∂µ1
=

n∑
i=1

d(yi1;µ1)

σ2
1µ1(1− µ1)

[
(yi1 − µ1) +

yi1(1− yi1)

yi1 − µ1

]
+

2λ{2F2(yi2)− 1}Ḟ1µ1

1 + λ{2F1(yi1)− 1}{2F2(yi2)− 1}
,

Uµ2 =
∂ℓ(θ;y)

∂µ2
=

n∑
i=1

d(yi2;µ2)

σ2
2µ2(1− µ2)

[
(yi2 − µ2) +

yi2(1− yi2)

yi2 − µ2

]
+

2λ{2F1(yi1)− 1}Ḟ2µ2

1 + λ{2F2(yi2)− 1} 2F1(yi1)− 1}
,

Uσ2
1
=

∂ℓ(θ;y)

∂σ2
1

=

n∑
i=1

1

2σ2
1

[
d(yi1;µ1)

σ2
1

− 1

]
+

2λ{2F2(yi2)− 1}Ḟ1σ2
1

1 + λ{2F1(yi1)− 1}{2F2(yi2)− 1}
,

Uσ2
2
=

∂ℓ(θ;y)

∂σ2
2

=

n∑
i=1

1

2σ2
2

[
d(yi2;µ2)

σ2
2

− 1

]
+

2λ{2F1(yi1)− 1}Ḟ2σ2
2

1 + λ{2F2(yi2)− 1}{2F1(yi1)− 1}
,

Uλ =
∂ℓ(θ;y)

∂λ
=

n∑
i=1

{2F1(yi1)− 1}{2F2(yi2)− 1}
1 + λ{2F1(yi1)− 1}{2F2(yi2)− 1}

,

where Ḟ1µ1
= ∂F1(y1)/∂µ1, Ḟ2µ2

= ∂F2(y2)/∂µ2, Ḟ1σ2
1
= ∂F1(y1)/∂σ

2
1 , e Ḟ2σ2

2
=

∂F2(y2)/∂σ
2
2 . Similarly to the univariate case, it is possible to �nd the observed

information matrix, J(θ) = ∂ℓ(θ;y)/∂θ∂θ⊤, whose partial derivatives are given
by

Jµ1µ1
(θ) =

∂2ℓ(θ)

∂µ2
1

=

n∑
i=1

− 1

σ2
1µ

2
1(1− µ1)2

[3yi1(1− yi1)

µ2
1(1− µ1)2

− 2

µ1(1− µ1)
+

3d(yi1;µ1)
[
(yi1 − µ1)

2 + 2yi1(1− yi1)
]]

+

n∑
i=1

2λ{2F2(yi2)− 1}
G2

yi1yi2

×[
F̈1µ1

Gyi1yi2
− 2λ{F2(yi2)− 1}Ḟ1µ1

]
,

Jµ1σ2
1
(θ) =

∂2ℓ(θ)

∂µ1∂σ2
1

=

n∑
i=1

− d(yi1;µ1)

σ4
1µ1(1− µ1)

[
yi1 − µ1 +

yi1(1− yi1)

yi1 − µ1

]
+

2λ{2F2(yi2)− 1}
G2

yi1yi2

[
F̈1µ1σ2

1
Gyi1yi2 − 2λḞ1µ1

Ḟ1σ2
1
{2F2(yi2)− 1}

]
,

Jµ1µ2
(θ) =

∂2ℓ(θ)

∂µ1∂µ2
=

n∑
i=1

4λḞ1µ1
Ḟ2µ2

G2
yi1yi2

,

Jµ1σ2
2
(θ) =

∂2ℓ(θ)

∂µ1∂σ2
2

=

n∑
i=1

4λḞ1µ1
Ḟ2σ2

2

G2
yi1yi2

,
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Jµ1λ(θ) =
∂2ℓ(θ)

∂µ1∂λ
=

n∑
i=1

2{2F2(yi2)− 1}Ḟ1µ1

G2
yi1yi2

,

Jµ2µ2
(θ) =

∂2ℓ(θ)

∂µ2
2

=

n∑
i=1

− 1

σ2
2µ

2
2(1− µ2)2

[3yi2(1− yi2)

µ2
2(1− µ2)2

− 2

µ2(1− µ2)
+

3d(yi2;µ2)
[
(yi2 − µ1)

2 + 2yi2(1− yi2)
]]

+

n∑
i=1

2λ{2F1(yi1)− 1}
G2

yi1yi2

×[
F̈2µ2

Gyi1yi2
− 2λ{F1(yi1)− 1}Ḟ2µ2

]
,

Jµ2σ2
1
(θ) =

∂2ℓ(θ)

∂µ2∂σ2
1

=

n∑
i=1

4λḞ2µ2
Ḟ1σ2

1

G2
yi1yi2

,

Jµ2σ2
2
(θ) =

∂2ℓ(θ)

∂µ2∂σ2
2

=

n∑
i=1

− d(yi2;µ2)

σ4
2µ2(1− µ2)

[
yi2 − µ2 +

yi2(1− yi2)

yi2 − µ2

]
+

2λ{2F1(yi1)− 1}
G2

yi1yi2

[
F̈2µ2σ2

2
Gyi1yi2

− 2λḞ2µ2
Ḟ2σ2

2
{2F1(yi1)− 1}

]
,

Jµ2λ(θ) =
∂2ℓ(θ)

∂µ2∂λ
=

n∑
i=1

2{2F1(yi1)− 1}Ḟ2µ2

G2
yi1yi2

,

Jσ2
1σ

2
1
(θ) =

∂2ℓ(θ)

∂(σ2
1)

2
=

n∑
i=1

1

2σ4
1

− d(yi1;µ1)

σ6
1

+
2λ{2F2(yi2)− 1}

Gyi1yi2

×[
F̈1σ2

1
−

2λ{2F2(yi2)− 1}Ḟ1σ2
1

G2
yi1yi2

]
,

Jσ2
1σ

2
2
(θ) =

∂2ℓ(θ)

∂σ2
1∂σ

2
2

=

n∑
i=1

4λḞ1σ2
1
Ḟ2σ2

2

G2
yi1yi2

,

Jσ2
1λ
(θ) =

∂2ℓ(θ)

∂σ2
1∂λ

=

n∑
i=1

2{2F2(yi2)− 1}Ḟ1σ2
1

G2
yi1yi2

,

Jσ2
2σ

2
2
(θ) =

∂2ℓ(θ)

∂(σ2
2)

2
=

n∑
i=1

1

2σ4
2

− d(yi2;µ2)

σ6
2

+
2λ{2F1(yi1)− 1}

Gyi1yi2

×[
F̈2σ2

2
−

2λ{2F1(yi1)− 1}Ḟ2σ2
2

G2
yi1yi2

]
,

Jσ2
2λ
(θ) =

∂2ℓ(θ)

∂σ2
2∂λ

=

n∑
i=1

2{2F2(yi2)− 1}Ḟ2σ2
2

G2
yi1yi2

,

Jλλ(θ) =
∂2ℓ(θ)

∂λ2
=

n∑
i=1

−
[
{2F1(yi1)− 1}{2F2(yi2)− 1}

Gyi1yi2

]2
,
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where F̈1µ1
= ∂Ḟ1µ1

/∂µ1, F̈2µ2
= ∂Ḟ2µ2

/∂µ2, F̈1σ2
1
= ∂Ḟ1σ2

1
/∂σ2

1 , F̈2σ2
2
= ∂Ḟ2σ2

2

/∂σ2
2 , F̈1µ1σ2

1
= ∂F1(yi1)/∂µ1∂σ

2
1 , F̈2µ2σ2

2
= ∂F2(yi2)/∂µ2∂σ

2
2 e Gyi1yi2

= 1 +
λ{2F1(yi1)− 1}{2F2(yi2)− 1}. Under certain regularity conditions, the maximum

likelihood estimator θ̂ of θ approximates a Normal distribution with zero mean
and variance and covariance matrix J−1(θ); allowing con�dence intervals to be
found, hypotheses to be tested and predictions to be made. Ensuring parameter
identi�ability is essential for reliable inference and meaningful interpretation of
model components, particularly in copula-based constructions where dependence
and marginal parameters are estimated simultaneously. Regarding identi�ability,
the proposed bivariate Simplex model satis�es the usual conditions for copula-
based models with continuous marginals. The marginal parameters (µ1, µ2, σ

2
1 , σ

2
2)

uniquely determine the corresponding Simplex distributions, while the copula pa-
rameter λ controls the dependence structure through a monotonic relationship
with concordance measures such as Kendall's τ and Spearman's ρ. Hence, distinct
values of λ yield distinct joint distributions. Although the FGM copula captures
only weak dependence, our simulation study indicates that the maximum likeli-
hood estimator of λ remains stable and asymptotically unbiased as the sample size
increases, supporting the practical identi�ability and robustness of this parameter.

3.2. Moments

In this sub-section, we derive the joint expectation E(y1y2) stated in the the-
orem below. For algebraic convenience, we will denote y1 = x and y2 = y. The
proof involves several transformations and the use of special functions (Bessel and
Struve), which we state explicitly for clarity.

Theorem 1. Let (x, y)⊤ be a random vector following the bivariate Simplex dis-
tribution, where (µx, µy, σ

2
x, σ

2
y, λ)

⊤ is the vector of parameters. The joint moment
of x and y is given by

E[xy] = µxµy + λ

[
r2xπ

2

(
1

axξx
+

1

ax
+Ax

)
− µx

][
r2yπ

2

(
1

ayξy
+

1

ay
+Ay

)
− µy

]
,

where, for m ∈ {x, y}, Am = 1− 2
(
K0(2am)L−1(2am) +K1(2am)L0(2am)

)
,

am =
(ξm + 1)2

σ2
mξm

, rm =
1

σm

√
2π

, ξm =
1

µm
− 1,

and where Kν(·) denotes the modi�ed Bessel function of the second kind and Lν(·)
denotes the modi�ed Struve function.
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Proof . We want to calculate E[xy] =
∫ 1

0

∫ 1

0
xy f(x, y) dx dy, where f(x, y) is given

in Equation (3). After substituting (3) and rearranging terms, we obtain

E[xy] = µxµy+ λ

[
2

∫ 1

0

xg(x;µx, σ
2
x)G(x;µx, σ

2
x)dx− µx

]
×[

2

∫ 1

0

yh(y;µy, σ
2
y)H(y;µy, σ

2
y)dy − µy

]
, (5)

where g and h denote the univariate Simplex densities and G, H their correspond-
ing cumulative distribution functions. Therefore, it is su�cient to compute the
univariate integral

I =

∫ 1

0

x g(x;µ, σ2)G(x;µ, σ2) dx.

From expression (1) we obtain:

I =

∫ 1

0

x{2πσ2[x(1− x)]3}−1/2 exp
(
−d(x, µ)

2σ2

)
×(∫ x

0

{2πσ2[t(1− t)]3}−1/2 exp
(
−d(t, µ)

2σ2

)
dt
)
dx,

where d(t;µ) = (t− µ)2/t(1− t)µ2(1− µ)2. Letting r = (2πσ2)−1/2, the previous
expression can be simpli�ed by

I = r2
∫ 1

0

1

x1/2(1− x)3/2
exp(−d(x, µ)

2σ2
)

∫ x

0

1

t3/2(1− t)3/2
exp(−d(t, µ)

2σ2
)dtdx.

Let µ = 1
ξ+1 . By applying the change of variable t = 1

z+1 to the inner integral,
we obtain:

∫ x

0

1
t3/2(1−t)3/2

exp
(
− d(t,µ)

2σ2

)
dt =∫ 1

x−1

∞

(z + 1)3

z3/2
exp
(
− 1

2σ2

(ξ − z)2(ξ + 1)2

zξ2

)(
− dz

(z + 1)2

)
.

Simplifying and substituting this result into the expression for I, we obtain

I = r2
∫ 1

0

1

x1/2(1− x)3/2
exp
(
− d(x,µ)

2σ2

)
×∫ ∞

1
x−1

z + 1

z3/2
exp
(
− 1

2σ2

(ξ − z)2(ξ + 1)2

zξ2

)
dz dx.

Applying again the same change of variable x = 1
ω+1 to the outer integral yields

I = r2
∫ ∞

0

1

ω3/2
exp
(
− 1

2σ2

(ξ − ω)2(ξ + 1)2

ωξ2

)
×∫ ∞

ω

z + 1

z3/2
exp
(
− 1

2σ2

(ξ − z)2(ξ + 1)2

zξ2

)
dz dω.
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We observe that, setting β = (ξ+1)2

σ2 and γ = (ξ+1)2

σ2ξ2 , the exponential term in z

can be written as exp{−(βz−1 + γz)/2} exp{a}, where a = (ξ+1)2

σ2ξ . The same form
holds for the term in ω. We thus obtain the following simpli�ed expression:

I = r2 exp(2a)

∫ ∞

0

1

ω3/2
exp
(
−1

2
(βω−1 + γω)

)
×∫ ∞

ω

z + 1

z3/2
exp
(
−1

2
(βz−1 + γz)

)
dzdω.

Once again, we perform a change of variables in the inner integral. Let p = z/ω.
Note that here ω is treated as a constant, so dz = ω dp. We then obtain

I = r2 exp(2a)

∫ ∞

0

∫ ∞

1

1

p3/2

(
1

ω2
+

p

ω

)
×

exp
(
− 1

2

(
βω−1 + γω + β(ωp)−1 + γωp

) )
dp dω.

Now we regroup terms and exchange the order of integration, obtaining

I = r2 exp(2a)

∫ ∞

1

∫ ∞

0

1

p3/2

(
1

ω2
+

p

ω

)
×

exp
(
− 1

2

(
(β + β

p )ω
−1 + (γ + γp)ω

))
dω dp. (6)

We intend to apply Proposition 1 to Equation (6). For this purpose, we note
that the integral above can be written as the sum of two integrals, I = I1 + I2,
where

I1 = r2 exp(2a)

∫ ∞

1

1

p3/2

∫ ∞

0

ων1−1 exp
(
− 1

2 ((β + β/p)ω−1 + (γ + γp)ω)
)
dωdp,

where ν1 = −1,

and

I2 = r2 exp(2a)

∫ ∞

1

1

p1/2

∫ ∞

0

ων2−1 exp
(
−1

2
((β + β/p)ω−1 + (γ + γp)ω)

)
dωdp,

where ν2 = 0.

Now we apply Proposition 1 to I1 and I2, substitute these results into expres-
sion (6), and obtain the following simpli�ed integral involving Bessel functions:

I = 2r2 exp(2a)

{
1

ξ

∫ ∞

1

1

p
K1

(
a
p+ 1

p1/2

)
dp+

∫ ∞

1

1

p3/2
K0

(
a
p+ 1

p1/2

)}
.
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Applying the change of variables q =
√
p, we obtain:

I = r2 exp(2a){1
ξ

∫ ∞

1

1

q
K1

(
a
q2 + 1

q

)
dq +

∫ ∞

1

K0

(
a
q2 + 1

q

)
dq}. (7)

For simplicity, we denote J0 and J1 by the following integrals

J0 =

∫ ∞

1

K0

(
a
q2 + 1

q

)
dq, and J1 =

∫ ∞

1

1

q
K1

(
a
q2 + 1

q

)
dq.

We recall that expression (7) represents the integral
∫ 1

0
xg(x;µ, σ2)G(x;µ, σ2) dx

introduced at the beginning of this proof. Therefore, substituting J0 and J1 into
the identity (7), we obtain:

I =

∫ 1

0

xg(x;µ, σ2)G(x;µ, σ2)dx = r2 exp(2a){J1/ξ + J0}. (8)

Note that the integrals J0 and J1 were calculated in Lemma 2 and Corollary 1
respectively:

J1 =
π

4a
exp−2a, (9)

and

J0 =
π

4a
exp(−2a) +

[π
4
− π

2
(K0(2a)L−1(2a) +K1(2a)L0(2a))

]
. (10)

Substituting (8) into (5), we obtain the following expression for E[xy]:

E[xy] = µxµy + λ
[
2r2x exp 2ax(J

x
1 /ξx + Jx

0 )− µx

]
×[

2r2y exp 2ay(J
y
1 /ξy + Jy

0 )− µy

]
, (11)

where, for m ∈ {x, y}, we have

rm =
1

σm

√
2π

, am =
(ξm + 1)2

σ2
mξm

, ξm =
1

µm
− 1,

Jm
0 =

∫ ∞

1

K0

(
am

m2 + 1

m

)
dm, Jm

1 =

∫ ∞

1

1

m
K1

(
am

m2 + 1

m

)
dm.

Finally, substituting the identities (9) and (10) into (11) yields the result.

Although the derivation of the proposed model involves special functions (mod-
i�ed Bessel and Struve functions) and some numerical integration, the computa-
tional cost is quite modest. These functions are e�ciently implemented in stan-
dard scienti�c libraries, and the required integrals are evaluated once per likelihood
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computation. In practice, the estimation procedure scales well with the sample
size: in the Monte Carlo experiments (Section 4) involving 1,000 replications with
n = 1000, the complete simulation study was executed within a few minutes on
a standard computer. This demonstrates that the proposed approach is compu-
tationally tractable and suitable for large-sample or resampling analyses such as
bootstrapping.

4. Simulation Study

In this section, we perform a Monte Carlo simulation study to assess the asymp-
totic behavior of the maximum likelihood estimators for the bivariate Simplex
distribution. The numerical results are derived on R = 1, 000 Monte Carlo repli-
cations, with sample sizes n = 50, 100, 150, 200, and 1, 000. The random response
vector y = (y1, . . . ,yn)

⊤, where yi = (y1i, y2i)
⊤ is generated by using the algo-

rithm described in Johnson (1987). The algorithm involves the following steps: (i)
Generate two independent random variables u1 and v with uniform distributions,
U(0, 1); (ii) Compute: A = λ(2u1 − 1)− 1, B = [1− λ(2u1 − 1)]2 + 4vλ(2u1 − 1)
and u2 = 2v/(

√
B − A); (iii) Apply the inverse transformation method to obtain

y1 = F−1
1 (u1) and y2 = F−1

2 (u2), where F1(·) and F2(·) are the cumulative dis-
tribution function of y1 and y2, respectively. The mean, bias, root mean square
error (RMSE), and the 95% con�dence interval coverage probability are computed
based on the following expressions:

θj =
1

R

R∑
i=1

θ̂
(i)
j , Bias(θj) = θj − θj and RMSE(θj) =

√√√√ 1

R

N∑
i=1

(θ̂
(i)
j − θj)2,

where θ = (θ1, θ2, θ3, θ4, θ5)
⊤ = (µ1, µ2, σ

2
1 , σ

2
2 , λ)

⊤. We considered four scenarios,
in which the parameter λ takes on values of −1, 0 and 1 to perform the behavior
of θ̂.

4.1. Scenario 1

In this scenario, the following vectors are taken as the true values of the parame-
ters θ1 = (0.5, 0.5, 2, 2, 1)⊤, θ2 = (0.5, 0.5, 5, 5, 1)⊤ and θ3 = (0.9, 0.9,

√
11,

√
11, 1)⊤.

Figure 1 (see supplementary material2) illustrates the surface and contour plots
of the generated samples. The joint moments E(y1y2) for θ1, θ2 and θ3 are 0.36,
0.40 and 1.24, respectively. For θ1, the generated samples are concentrated in the
interval (0.25; 0.75), indicating a bimodal behavior. Similarly, for θ2 and θ3, the
samples are concentrated near zero and one simultaneously and near one, respec-
tively. Figure 2 displays the simulation results for this scenario. The parameter
vectors θ1, θ2, and θ3 are represented by the colors red, green, and blue, respec-
tively. Solid and dashed lines in the �gure correspond to the parameters associated
with y1 and y2, respectively. As expected, the bias and root mean square error

2https://github.com/carrascojalmar/BSD.git

Revista Colombiana de Estadística - Theoretical Statistics 49 (2026) 131�159

https://github.com/carrascojalmar/BSD.git


144 Amaral et al.

−0.001

0.000

0.001

50 100 150200 1000

B
ia

s

−0.120

−0.090

−0.060

−0.030

0.000

50 100 150200 1000

B
ia

s

−0.150

−0.100

−0.050

0.000

50 100 150200 1000

B
ia

s

0.000

0.010

0.020

0.030

50 100 150200 1000

R
M

S
E

0.000

0.200

0.400

50 100 150200 1000

R
M

S
E

0.000

0.100

0.200

50 100 150200 1000

R
M

S
E

93.00

94.00

95.00

96.00

50 100 150200 1000

C
ov

er
ag

e

87.00

90.00

93.00

50 100 150200 1000

C
ov

er
ag

e

95.00

96.00

97.00

98.00

99.00

50 100 150200 1000

C
ov

er
ag

e

Figure 2: Bias (row 1), RMSE (row 2) and Coverage (row 3) of the parameters µ1 and
µ2 (column 1), σ2

1 and σ2
2 (column 2) and λ (column 3) for Scenario 1.

(RMSE) approach zero as the sample size increases, indicating that the maximum
likelihood estimators are asymptotically unbiased. The probability of coverage
for the parameters µ1 and µ2 are close to the nominal 95% level across di�erent
parameter vectors θ and sample sizes. However, for parameters σ2

1 and σ2
2 , the

coverage probability is underestimated when samples are generated using the θ2

parameter. The coverage of the λ parameters is overestimated for di�erent sample
sizes. Tables 1-3 (in the supplementary material) show the results of this scenario.

4.2. Scenario 2

In this scenario, the following vectors are taken as the true values of the param-
eters θ1 = (0.5, 0.5, 2, 2,-1)⊤, θ2 = (0.5, 0.5, 5, 5,-1)⊤ and θ3 = (0.9, 0.9,

√
11,

√
11,-

1)⊤. Figure 2 (see supplementary material) shows the surface and contour plots
of the generated samples. The joint moments E(y1y2) for θ1, θ2 and θ3 in this
scenario are 0.14, 0.10 and 0.38, respectively. For θ1, the samples are concentrated
within the interval (0.25; 0.75), indicating a bimodal behavior that is the inverse
of the behavior observed in the �rst scenario. Similarly, for θ2 and θ3, the samples
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are concentrated near zero and one. Figure 3 presents the simulation results for
this scenario. Again, the colors red, green, and blue for the parameter vectors θ1,
θ2, and θ3, respectively. The solid and dashed lines correspond to the parameters
associated with the variables y1 and y2, respectively.
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Figure 3: Bias (row 1), RMSE (row 2) and Coverage (row 3) of parameters µ1 and µ2

(column 1), σ2
1 and σ2

2 (column 2) and λ (column 3) for Scenario 2.

In this scenario, as expected, the bias and the root mean square error (RMSE)
approach zero as the sample size increases, indicating that the maximum like-
lihood estimators are asymptotically unbiased. The coverage probability for the
parameters µ1 and µ2 are close to the nominal 95% level across di�erent parameter
vectors θ and sample sizes. However, for the parameters σ2

1 and σ2
2 , the coverage

is underestimated when θ2 is assumed. Conversely, the coverage for the parameter
λ is overestimated regardless of the parameter vector θ and the various sample
sizes. The results can also be found in the supplementary material in Tables 4-6.
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4.3. Scenario 3

In this scenario, the following vectors are taken as the true values of the parame-
ters θ1 = (0.5, 0.5, 2, 2, 0)⊤, θ2 = (0.5, 0.5, 5, 5, 0)⊤ and θ3 = (0.9, 0.9,

√
11,

√
11, 0)⊤.

Figure 3 (see supplementary material) illustrates the surface and contour plots for
the generated samples. The joint moments E(y1y2) for θ1, θ2 and θ3 are 0.26, 0.25
and 0.81, accordingly. For θ1, the generated samples are concentrated around 0, 5,
indicating an unimodal behavior. Similarly, for θ2 and θ3, the samples are concen-
trated near zero and one. Figure 4 presents the simulation results in this scenario.
The parameter vectors θ1, θ2 and θ3 are represented by the red, green, and blue,
respectively. Solid and dashed lines correspond to the parameters associated with
y1 and y2, respectively.
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Figure 4: Bias (row 1), RMSE (row 2) and Coverage (row 3) of the parameters µ1 and
µ2 (column 1), σ2

1 and σ2
2 (column 2) and λ (column 3) for the Scenario 3.

In this scenario, the bias and root mean square error (RMSE) decreases to zero
when the sample size increases. The coverage probability for the parameters µ1,
µ2, σ

2
1 and σ2

2 are close to the nominal 95% level across di�erent parameters vector
θ and sample sizes. However, for the parameter λ, only θ2 achieves coverage close
to the nominal 95% level, while for θ1 and θ3, the coverage is underestimated.
Again, the results can also be found in Tables 7-9 in the supplementary material.
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4.4. Scenario 4

In this scenario, we performed an additional Monte Carlo sensitivity analysis
to assess the robustness of the proposed model under alternative copula struc-
tures and marginal speci�cations. The data were generated from the bivariate
Simplex distribution via the FGM copula, representing the true data-generating
process. Using the same simulated sample, we �tted: Bivariate Simplex mod-
els combined with the Clayton, Gaussian, Frank, FGM, and Gumbel copulas
Durante & Sempi (2016), and Bivariate Beta models combined with the same
set of copulas. Appendix B presents the algebraic form of each copula consid-
ered. We considered three sub-scenarios corresponding to di�erent levels of de-
pendence, de�ned by the parameter vectors θ1 = (0.5, 0.5,

√
5.5,

√
5.5, 0.1)⊤, θ2 =

(0.5, 0.5,
√
50,

√
25, 0.50)⊤, θ3 = (0.5, 0.5,

√
5.5,

√
25, 0.25)⊤. These settings allow

us to examine model performance under weak, moderate, and intermediate de-
pendence, respectively. For each �tted model, we computed the log-likelihood and
two standard information criteria used for model selection:

AIC = −2ℓ(θ̂) + 2p and BIC = −2ℓ(θ̂) + p log(n),

where ℓ(θ̂) is the maximized log-likelihood and p denotes the number of estimated
parameters. The results for the sub-scenario 2 are presented in Table 1, while
the outcomes for sub-scenarios 1 and 3 are provided in the supplementary mate-
rial attached to this manuscript. Figure 5 displays the surface and contour plots
corresponding to a random sample generated under sub-scenario 2. The �gure
illustrates the joint distribution of (y1, y2) and reveals that the simulated obser-
vations are concentrated near the corners (0, 0), (0, 1), (1, 0), and (1, 1), that is,
around the extreme regions of the unit square. This pattern re�ects the combined
e�ect of moderate dependence (λ = 0.5) and the asymmetric dispersion parame-
ters (σ2

1 , σ
2
2) = (

√
50,

√
25), which together produce heavier concentration at the

boundaries.
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Figure 5: Surface and contour graphs for θ2 = (0.5, 0.5,
√
50,

√
25, 0.5)⊤, sub-scenario

2.
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Table 1: Simulation results for model comparison in sub-scenario 2, θ2 = (0.5, 0.5,√
50,

√
25, 0.5)⊤, with R = 1000 replicates.

n Model Loglik AIC BIC Correlation

50

Simplex-FGM 21.376 -32.751 -23.191

0.187

Simplex-Frank 21.347 -32.695 -23.134

Simplex-Gaussian 21.347 -32.695 -23.134

Simplex-Clayton 21.165 -32.331 -22.771

Simplex-Gumbel 20.192 -30.383 -20.823

Beta-Clayton 7.183 -4.366 5.194

Beta-Gaussian 7.070 -4.140 5.421

Beta-Frank 7.054 -4.108 5.452

Beta-FGM 7.036 -4.072 5.488

Beta-Gumbel 5.907 -1.815 7.745

100

Simplex-FGM 40.016 -70.033 -57.007

0.184

Simplex-Frank 39.958 -69.915 -56.889

Simplex-Gaussian 39.826 -69.652 -56.626

Simplex-Clayton 39.311 -68.622 -55.596

Simplex-Gumbel 37.829 -65.657 -52.631

Beta-Clayton 12.673 -15.347 -2.321

Beta-Gaussian 12.607 -15.215 -2.189

Beta-Frank 12.602 -15.203 -2.177

Beta-FGM 12.572 -15.144 -2.118

Beta-Gumbel 10.449 -10.897 2.128

150

Simplex-FGM 58.633 -107.266 -92.213

0.177

Simplex-Frank 58.585 -107.169 -92.116

Simplex-Gaussian 58.440 -106.880 -91.827

Simplex-Clayton 57.721 -105.441 -90.388

Simplex-Gumbel 55.682 -101.365 -86.311

Beta-Clayton 17.913 -25.826 -10.773

Beta-Gaussian 17.817 -25.634 -10.581

Beta-Frank 17.783 -25.566 -10.512

Beta-FGM 17.732 -25.463 -10.410

Beta-Gumbel 14.894 -19.788 -4.735

200

Simplex-FGM 77.706 -145.412 -128.921

0.176

Simplex-Frank 77.662 -145.324 -128.833

Simplex-Gaussian 77.419 -144.838 -128.346

Simplex-Clayton 76.456 -142.911 -126.420

Simplex-Gumbel 73.946 -137.892 -121.400

Beta-Clayton 23.591 -37.183 -20.691

Beta-Gaussian 23.483 -36.966 -20.475

Beta-Frank 23.471 -36.943 -20.451

Beta-FGM 23.385 -36.771 -20.279

Beta-Gumbel 19.737 -29.474 -12.983

500

Simplex-FGM 187.789 -365.578 -344.505

0.170

Simplex-Frank 187.710 -365.420 -344.347

Simplex-Gaussian 187.044 -364.088 -343.015

Simplex-Clayton 184.746 -359.493 -338.420

Simplex-Gumbel 179.678 -349.357 -328.284

Beta-Frank 55.116 -100.231 -79.158

Beta-Gaussian 55.109 -100.218 -79.145

Beta-Clayton 55.019 -100.039 -78.966

Beta-FGM 54.940 -99.880 -78.807

Beta-Gumbel 47.012 -84.025 -62.952

The results in Table 1 indicate that the bivariate Simplex model with FGM
copula consistently achieved the lowest AIC and BIC values in sub-scenario 2,
con�rming its superior �t when both the marginal and dependence structures
are correctly speci�ed. Similar patterns were observed for sub-scenarios 1 and 3,
in which the Simplex-FGM model also outperformed the competing models. In
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contrast, when the same data were �tted using bivariate Beta models, all copula
combinations yielded substantially higher AIC and BIC values, revealing a poorer
�t under marginal misspeci�cation.

5. Applications

5.1. Global Trends in Mental Health Disorder Data

In this section, we analyze a real-world dataset that illustrates the practical rel-
evance and �exibility of the proposed bivariate Simplex distribution. The dataset,
publicly available on the Kaggle platform under the title �Global Trends in Men-
tal Health Disorder", compiles information from countries around the world on
the prevalence of several mental health disorders, including schizophrenia, bipolar
disorder, eating disorders, anxiety disorders, drug use disorders, depression, and
alcohol use disorders. By making such data accessible, the source aims to foster
understanding of how these conditions a�ect populations globally and to support
policy decisions, prevention strategies, and resource allocation.

For our analysis, we focus on two outcomes related to the 2017 data: y1 corre-
sponds to the prevalence of alcohol use disorders (in percentage) in the same year,
while y2 represents the prevalence of depression (in percentage) in each country or
region. Both variables are continuous and naturally restricted to the unit interval
(0, 1) when expressed as proportions, making them suitable for modeling under
the proposed bivariate Simplex framework. This dataset provides an excellent op-
portunity to evaluate the empirical performance of the proposed model relative
to the traditional bivariate Beta distribution. Figure 8 presents the boxplots and
histograms for the variables y1 and y2. The graph reveals the presence of out-
liers in the Alcohol use disorders, which correspond to the Belarus (#19); Eastern
Europe (#62); Russia (#168); Estonia (#70); Ukraine (#215); United States
(#218); Latvia (#113); Moldova (#135); Central Europe, Eastern Europe, and
Central Asia (#41); Mongolia (#13); Kazakhstan (#106) and Scotland (#175),
in the depression, which correspond to the Greenland (#81), Lesotho (#115) and
Morocco (#138).
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Figure 6: Boxplot and histograms for the y1(Percentage of people with alcohol use
disorders) and y2 (Percentage of people with depression) variables.
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Table 2 presents descriptive measures of position, dispersion, and shape for the
variables y1 (percentage of people with alcohol use disorders) and y2 (percentage
of people with depression). The average prevalence of depression across countries
is approximately 3.4%, with values ranging from 2.2% to 6.2%. For alcohol use
disorders, the mean prevalence is about 1.6%, ranging from 0.4% to 5.3%. Both
variables exhibit moderate dispersion relative to their means, as indicated by the
standard errors, and display positive skewness (0.656 for y1 and 1.860 for y2),
suggesting that most countries present low to medium prevalence rates, while a
few exhibit substantially higher values. The high kurtosis values (4.495 for y1
and 7.746 for y2) indicate leptokurtic behavior, meaning that the distributions
are more peaked than the normal distribution, with heavy tails. Overall, these
summary statistics con�rm that both variables are asymmetric and right-skewed,
with variability concentrated in the lower range of the unit interval. Such charac-
teristics reinforce the suitability of the proposed bivariate Simplex model, which is
particularly appropriate for modeling bounded, positively skewed data on (0, 1).

Table 2: Descriptive measures of position, dispersion, asymmetry, kurtosis, and relative
position of variables y1 and y2.

Min. Max. Q1 Q3 Mean Median
Standard

Errors
Asymmetry Kurtosis

y1 0.004 0.053 0.010 0.018 0.016 0.015 0.004 1.860 7.746

y2 0.022 0.062 0.029 0.038 0.034 0.035 0.006 0.656 4.495

Table 3 presents the parameter estimates, standard errors, and 95% con�dence
intervals obtained from the �tted bivariate Simplex and bivariate Beta models
using the FGM copula. For both models, the estimated means µ̂1 = 0.0159 and
µ̂2 = 0.0345 indicate that, on average, about 3.5% of the population su�ers from
depression and 1.6% from alcohol use disorders, respectively. The dispersion pa-
rameters σ̂2

1 = 4.05 and σ̂2
2 = 1.03 in the Simplex model suggest higher variability

in alcohol use disorders compared to depression rates across countries. The esti-
mated dependence parameter λ̂ = −0.458 reveals a moderate negative association
between alcohol use disorders and depression, implying that countries with higher
prevalence of one condition tend to have lower prevalence of the other. When
comparing the competing models, the bivariate Simplex�FGM model outperforms
the bivariate Beta�FGM model, achieving higher log-likelihood (1679.97 versus
1672.01) and lower AIC (−3349.94 versus −3334.02) and BIC (−3332.73 versus
−3316.81) values. These results provide strong empirical evidence of the superior
�t and �exibility of the proposed model for describing bounded, asymmetric, and
correlated data.

Figure 7 displays the estimated joint density surface and the corresponding con-
tour plot of the �tted bivariate Simplex-FGM model, obtained using the maximum
likelihood estimates reported in Table 3. The plots provide a visual representation
of the dependence structure between alcohol use disorders (y1) and depression (y2).
The shape of the �tted surface is consistent with the empirical distribution of the
data, concentrating most of the probability mass in regions corresponding to low-
to-moderate prevalence levels and re�ecting the negative association captured by
the estimate of λ. These graphical results, together with the information criteria,
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support the adequacy of the proposed bivariate Simplex model for describing the
joint behavior of the two mental health indicators.

Table 3: Simplex and Beta Models:Estimates, standard errors, and con�dence intervals
with a con�dence coe�cient of 95%.

Parameter Metric Simplex Beta

µ1

Estimate 0.0159 0.0159

Standard Error 0.0005 0.0005

CI95% (0.0149 ; 0.0169) (0.0149 ; 0.0168)

µ2

Estimate 0.0345 0.0344

Standard Error 0.0004 0.0004

CI95% (0.0337 ; 0.0353) (0.0336 ; 0.0352)

σ2
1

Estimate 4.0489 0.0593

Standard Error 0.1879 0.0029

CI95% (3.6807 ; 4.4172) (0.0539 ; 0.0648)

σ2
2

Estimate 1.0322 0.0340

Standard Error 0.0480 0.0015

CI95% (0.9382 ; 1.1263) (0.0309 ; 0.0371)

λ

Estimate −0.4577 −0.4573

Standard Error 0.1930 0.1965

CI95% (−0.8360 ; −0.0794) (−0.8426 ; −0.0720)

logLik 1679.969 1672.009

AIC −3349.938 −3334.017

BIC −3332.726 −3316.805
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Figure 7: Estimated joint density surface (left) and contour plot (right) of the �tted
bivariate Simplex-FGM model for depression and alcohol use disorders.

5.2. Jurimetric Data

In this section, we illustrate the practical applicability of the proposed bivariate
Simplex distribution via the FGM copula using a real dataset from the Jurimetry
�eld. The aim of this analysis is not to compare alternative models but rather
to demonstrate that the proposed model provides an adequate and interpretable
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representation for bounded bivariate data arising in applied contexts. The dataset
was obtained from the 2014 Annual Report of the Regional Labor Court of the
5th Region (TRT5) in Bahia, Brazil. The mission of TRT5 is to promote jus-
tice in labor relations with e�ciency, transparency, and swiftness, contributing to
social harmony and strengthening citizenship within Bahia. For this study, the
outcomes are de�ned as follows: y1, the Congestion Rate, represents the propor-
tion of unresolved cases relative to the total cases processed within a year; and y2,
the Conciliation Index, corresponds to the percentage of sentences and decisions
resolved through agreements relative to the total number of �nal decisions issued
by the 88 Labor Courts in Bahia. Figure 8 presents the boxplots and histograms
for the variables y1 (Congestion Rate) and y2 (Conciliation Index). The graph
reveals the presence of outliers in the Conciliation Index, which correspond to the
courts located in the cities of Itamaraju (#33), Simões Filho (#84), Santo Amaro
(#80), and Candeias (#10 and #11).
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Figure 8: Boxplot and histograms for the y1(Congestion Rate) and y2 (Conciliation
Index) variables.

Table 4 highlights the central tendency and dispersion measures for the variables.

Table 4: Descriptive measures of position, dispersion, asymmetry, kurtosis, and relative
position of variables y1 and y2.

Min. Max. Q1 Q3 Mean Median
Standard

Errors
Asymmetry Kurtosis

y1 0.308 0.749 0.456 0.579 0.524 0.524 0.095 -0.160 -0.382

y2 0.109 0.613 0.270 0.357 0.315 0.320 0.086 0.288 1.273

As shown in Table 4, the average Conciliation Index is notably lower than
the Congestion Rate, despite conciliation being the fastest route to a resolution.
Given that both y1 and y2 are constrained to the (0,1) interval, we propose using
a model that accounts for this characteristic. Accordingly, we applied the bivari-
ate Simplex distribution de�ned in Section 3 to obtain the estimates, standard
errors, and con�dence intervals, which are reported in Table 5. The estimate for
the joint expectation, Ê(y1y2), is 0.162, and the maximum likelihood estimators
are obtained when the dependence parameter λ = 0.077 (positive dependence).
This suggests that the Congestion Rate and Conciliation Index tend to increase
together.
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Table 5: Estimates, standard errors, and con�dence intervals with a con�dence coe�-
cient of 95%.

Parameter Estimate Standard error Con�dence Interval (95%)

µ1 0.5178 0.0100 (0.4982 ; 0.5375)

µ2 0.3132 0.0096 (0.2943 ; 0.3321)

σ2
1 0.7987 0.0602 (0.6807 ; 0.9167)

σ2
2 0.9498 0.0716 (0.8094 ; 1.0802)

AIC -333.4668

BIC -321.0802

Figure 9 displays the surface and contour plots based on the estimates obtained.
The contour graph, in particular, demonstrates a good �t of the model to the data.
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Figure 9: Congestion Rate surface graph (left) and contour graph (right) (y1) and the
Conciliation Index (y2).

6. Conclusions

This article introduced a bivariate Simplex distribution constructed via the
FGM copula as a �exible alternative for modeling continuous data constrained to
the unit interval (0, 1). The proposed formulation allows joint inference on two
proportion-type variables and retains analytical tractability, leading to closed-form
expressions for the joint density, likelihood function, and the joint expectation
E(Y1Y2). Through an extensive Monte Carlo study, we examined the asymptotic
properties of the maximum likelihood estimators under di�erent dependence struc-
tures. The results demonstrated that the estimators are consistent and asymptot-
ically unbiased across scenarios, with the dependence parameter λ taking val-
ues of 1, −1, and 0. Although the FGM copula captures only weak dependence
([−1/3, 1/3]), its adoption in this work is justi�ed by its analytical simplicity,
symmetry, and interpretability. These features facilitate explicit derivations and
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provide a foundation for further extensions to copulas capable of modeling stronger
or asymmetric dependence. To assess robustness, we also compared the proposed
model with alternatives based on Frank, Gaussian, Clayton, and Gumbel copulas.
The results con�rmed the stability of the estimation procedure and the potential
for extending the framework to richer dependence structures. Finally, the proposed
methodology was applied to two empirical datasets drawn from the �elds of Psy-
chometry and Jurimetry: (i) global trends in mental health disorders worldwide,
and (ii) the Annual Report of the Regional Labor Court of the 5th Region (TRT5)
in Bahia, Brazil. The empirical analyses corroborated the practical suitability of
the proposed model, underscoring its e�ectiveness in modeling bounded bivari-
ate outcomes and its potential applicability to other research domains involving
proportions and rate-based data.
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Appendix A. Mathematical Results used in the Proof

of Theorem 1

Let Kν be the modi�ed Bessel function of the second kind. From the de�nition,
we know that for ν real and z positive, Kν(z) is real. Additionally, the following
symmetry holds K−ν(z) = Kν(z). Below we state some properties of this function.

Proposition 1. Let β and γ be positive real numbers, and let ν ∈ R. Then we
have the following integral representation for the modi�ed Bessel function of the
second kind: ∫ ∞

0

xν−1e−
1
2 (βx

−1+γx)dx = 2(
β

γ
)ν/2Kν(

√
βγ).

Proof . See Kropá£ (1982).

Proposition 2. Let z ∈ C such that the real part of z, ℜ(z), is positive. Then,

1.
∫∞
0

K1(2z cosh (t))dt =
1
2K

2
1/2(z)

2.
∫∞
0

K0(2z cosh (t)) cosh(t)dt =
1
2K

2
1/2(z).

Proof . See expression 10.32.17 (https://dlmf.nist.gov/10.32).

Corollary 1. Let a ∈ C be such that ℜ(a) > 0. Then∫ ∞

1

1

x
K1

(
a
x2 + 1

x

)
dx =

π

4a
e−2a.

Proof . Considering x = et we have∫ ∞

1

1

x
K1

(
a
x2 + 1

x

)
dx =

∫ ∞

0

K1(2a cosh(t))dt.

Using Proposition 2 with z = a and the fact that K1/2(a) =
√

π
2ae

−a we obtain
the result.
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Additionally, we introduce the notion of asymptotic equivalence and little-o nota-
tion:

De�nition 1. Two functions f and g are asymptotic equivalents as x approaches
a if

lim
x→a

f(x)

g(x)
= 1.

This relationship is denoted by f ∼a g.

We observe that the asymptotic equivalence relation is transitive, that is, if
f ∼a g and g ∼a h, then f ∼a h.

De�nition 2. A function f(x) is o(g(x)) for x → a if f(x) grows slower than g(x)
as x approaches a. In simpler terms,

lim
x→a

f(x)

g(x)
= 0.

From now on, we denote Lν as the modi�ed Struve function, and ph(z) denotes
the phase of the complex number z.

Lemma 1. Let z ∈ C such that |ph(z)| < π
2 , and let ν ∈ R such that ν ± 1

2 /∈ −N.
Then the following asymptotic expansion holds for |z| ≫ 1:

zKν+1(z)Lν(z) ∼ cν

√
zπ

2
zν−1e−z +

1

2
. (A1)

Proof . In this proof, we refer to Olver et al. (2010, p.249, 252, 288, 293) for know
results used. First we observe that Lν(z) = Mν(z) + Iν(z). Also, the following
asymptotic equivalences hold

Kν(z) ∼
√

π

2z
e−z,

Iν(z) ∼
√

1

2πz
ez,

and

Mν(z) ∼
1

π

∑
k≥0

ckνz
ν−2k−1,

where Mν is the modi�ed Struve function, Iν is the modi�ed Bessel function

and ckν = (−1)k+1Γ(k+1/2)(1/2)ν−2k−1

Γ(ν+1/2−k) . Since
∑

k≥1 c
k
νz

ν−2k−1 = o(c0νz
ν−1), then∑

k≥0 c
k
νz

ν−2k−1 ∼ c0νz
ν−1 and by transitivity Mν(z) ∼ 1

π c
0
νz

ν−1. Therefore,

Lν(z) = Mν(z) + Iν(z) ∼
1

π
c0νz

ν−1 +

√
1

2πz
ez.

Finally,

zKν+1(z)Lν(z) ∼ c0ν

√
1

2π
zν−1/2e−z +

1

2
∼

1

2
.
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Corollary 2.

lim
x−>+∞

x
(
K0(x)L−1(x) +K1(x)L0(x)

)
= 1.

Proof . This proof is straightforward from Proposition 1.

Proposition 3. Let z ∈ C. Then:∫
K0(z) dz =

π

2
z(K0(z)L−1(z) +K1(z)L0(z)) + C.

Proof . See expression 10.43.2 (https://dlmf.nist.gov/10.43)

Lemma 2. For a > 0, we have∫ ∞

1

K0

(
a
x2 + 1

x

)
dx =

π

4a
e−2a +

π

2

[1
2
−K0(2a)L−1(2a)−K1(2a)L0(2a)

]
.

Proof . Let x = et. Then∫ ∞

1

K0

(
a
x2 + 1

x

)
dx =

∫ ∞

0

etK0(2a cosh(t))dt,

=

∫ ∞

0

cosh(t)K0(2a cosh(t))dt+∫ ∞

0

sinh(t)K0(2a cosh(t))dt.

Using Proposition 2 with z = a and the fact that K1/2(a) =
√

π
2ae

−a we �nd that∫ ∞

0

cosh(t)K0(2a cosh(t))dt =
πe−2a

4a
.

For the remaining integral, let y = 2a cosh(t), yielding∫ ∞

0

sinh(t)K0

(
2a cosh(t)

)
dt =

1

2a

∫ ∞

2a

K0(y)dy.

To compute the last integral, simply apply Proposition 3 and Corollary 2.

Proposition 4. Let erf denote the error function given by erf(z) = 2√
π

∫ z

0
e−t2dt.

Then

(i) erf ′(z) = 2√
π
e−z2

(ii) limz−>+∞erf(z) = 1

(iii)
∫
e−a2x2− b2

x2 dx =
√
π

4a [e
2aberf(ax+ b

x )+ e−2aberf(ax− b
x )]+C for z > 0 and

|ph(a)| < π/4.

Proof . See Olver et al. (2010, Cap. 7).
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Appendix B. Simulation: Scenario 4

Let u1 and u2 denote the distribution functions of y1 and y2, respectively.
Equation (3) can be rewritten as

f(y1, y2;θ) = f(y1;µ1, σ
2
1)× f(y2;µ2, σ

2
2)× c(u1, u2),

where f(y1;µ1, σ
2
1) and f(y2;µ2, σ

2
2) are the marginal density functions of y1 and

y2, respectively, and c(u1, u2) denotes the copula density function that captures
the dependence structure between them. The following copulas are considered in
this work: Clayton, Frank, Gumbel, and Gaussian.

1. Clayton Copula: The bivariate Clayton copula Durante & Sempi (2016)
is de�ned as

c(u1, u2;λ) = max
{(

u−λ
1 + u−λ

2 − 1
)−1/λ

, 0
}
,

where the dependence parameter λ belongs to the interval [−1,∞), λ ̸= 0.
The case λ → 0 corresponds to the independence copula.

2. Frank Copula: The bivariate Frank copula Durante & Sempi (2016) is
given by

c(u1, u2;λ) = − 1

λ
ln

(
1 +

(exp{−λu1} − 1)(exp{−λu2} − 1)

exp{−λ} − 1

)
,

where λ ∈ R, λ ̸= 0. As λ → 0, the copula converges to the independence
copula.

3. Gumbel Copula: The bivariate Gumbel copula Durante & Sempi (2016)
is de�ned as

c(u1, u2;λ) = exp
(
−
[
(− lnu1)

λ + (− lnu2)
λ
]1/λ)

,

where λ ∈ [1,∞). The case λ = 1 corresponds to the independence copula.

4. Gaussian Copula: The bivariate Gaussian copula Durante & Sempi (2016)
is expressed as

c(u1, u2;λ) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√
1− λ2

exp

(
−s2 − 2λst+ t2

2(1− λ2)

)
dt ds,

where Φ−1(·) denotes the quantile function (inverse CDF) of the standard
normal distribution, and λ ∈ (−1, 1) is the linear correlation coe�cient.
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