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Abstract

This study evaluated the performance of various normality tests includ-
ing Shapiro-Wilk, Shapiro-Francia, Anderson-Darling, Lilliefors, Cramer-von
Mises, and Jarque-Bera under different conditions, both with and without
the presence of outliers. Monte Carlo simulations were conducted to calcu-
late the type I error rates, power, and the Kappa-Fleiss agreement coefficient,
which measured the concordance among the tests. For normally distributed
data without outliers, the Shapiro-Wilk and Shapiro-Francia tests showed
the best control over the type I error rate. In contrast, with the introduction
of outliers, the Lilliefors and Cramer-von Mises tests performed better. In
terms of test power, the Shapiro-Wilk and Shapiro-Francia tests performed
best for distributions without outliers, while the Jarque-Bera test was more
robust in the presence of outliers. Overall, the results highlight the sensitiv-
ity of these tests to sample size and the presence of outliers, suggesting that
Shapiro-Wilk and Shapiro-Francia are suitable for data without outliers,
while Jarque-Bera may be preferred in contaminated samples. The tests
showed higher concordance for exponential and lognormal distributions but
lower concordance for beta, x2, and t-Student distributions, illustrating the
complexity of normality identification across various contexts.
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Resumen

Este estudio evalu6 el desempeiio de diversas pruebas de normalidad in-
cluyendo Shapiro-Wilk, Shapiro-Francia, Anderson-Darling, Lilliefors, Cramer-
von Mises y Jarque-Bera bajo diferentes condiciones, tanto con como sin la
presencia de valores atipicos. Se realizaron simulaciones de Monte Carlo para
calcular las tasas de error tipo I, la potencia y el coeficiente de concordancia
Kappa-Fleiss, que mide la concordancia entre las pruebas.

Para datos distribuidos normalmente sin valores atipicos, las pruebas de
Shapiro-Wilk y Shapiro-Francia mostraron el mejor control sobre la tasa de
error tipo I. En contraste, con la introduccién de valores atipicos, las pruebas
de Lilliefors y Cramer-von Mises tuvieron un mejor desempeiio. En términos
de potencia, las pruebas de Shapiro-Wilk y Shapiro-Francia obtuvieron los
mejores resultados para distribuciones sin valores atipicos, mientras que la
prueba de Jarque-Bera fue mas robusta en presencia de valores atipicos.

En general, los resultados destacan la sensibilidad de estas pruebas al
tamafo de la muestra y a la presencia de valores atipicos, sugiriendo que
Shapiro-Wilk y Shapiro-Francia son adecuadas para datos sin valores atipi-
cos, mientras que Jarque-Bera puede ser preferida en muestras contaminadas.
Las pruebas mostraron mayor concordancia para distribuciones exponen-
ciales y lognormales, pero menor concordancia para distribuciones beta, x?
y t-Student, lo que ilustra la complejidad de identificar la normalidad en
diversos contextos.

Palabras clave: Concordancia; Desempeno; Pruebas de normalidad; Sim-
ulacion; Valores atipicos.

1. Introduction

The assumption of data normality is common in the day-to-day work of pro-
fessionals dealing with sample or experimental data, as many inferential methods
rely on this assumption to ensure statistical validity when making inferences about
population parameters. The normal distribution, a continuous probabilistic model,
is one of the most widely used in statistics, forming the basis for robust statisti-
cal methods. Many random phenomena can be approximately described by this
distribution, justifying its application across a wide range of contexts.

The probability density function for a continuous random variable X with a
normal distribution is given by:

fa) = — exp{—(x"“‘)?}, 1)

2mo 202

where g is the mean and o is the standard deviation (Morettin & de O. Bussab,
2010).

In statistical inference, various assumptions are essential, with normality, lin-
earity, and homoscedasticity among the most important. This study focuses on
the assumption of normality, as it is required by many statistical procedures, such
as confidence interval construction, hypothesis testing, variance analysis, and sta-
tistical modeling. Verifying this assumption is thus crucial before proceeding with
any analysis that depends on it (Anderson & Darling, 1952).
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The (R Core Team, 2024) offers a variety of tools for verifying data normality,
including graphical, numerical, and formal normality tests. A common graphical
method is the QQ-plot, which visually inspects normality by positioning sample
data along a reference line. Although useful, this technique is subjective, and for
more objective conclusions, formal statistical tests are essential. All analyses in
this study were conducted using (R Core Team, 2024).

This study was motivated by the interest in evaluating the performance of
different normality tests including (Shapiro & Wilk, 1965), (Anderson & Darling,
1952), (Lilliefors, 1967), (Jarque & Bera, 1980), (Shapiro & Francia, 1972), and
(Cramer, 1957) under two distinct conditions: data without outliers and data with
outliers. Test performance was measured through type I error rates and empirical
power. Additionally, the Kappa concordance coefficient was used to examine the
level of agreement among tests in deciding whether to reject or retain the null
hypothesis of normality (Cohen, 1960; Fleiss, 1971).

2. Theoretical Background

2.1. Literature Review

Numerous studies have evaluated the performance of normality tests under var-
ious conditions. Razali and Wah (2011) compared the Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors, and Anderson-Darling tests, concluding that the Shapiro-Wilk
test generally provides the highest power for small sample sizes. Similarly, Yap and
Sim (2011) found that while Shapiro-Wilk is superior for symmetric short-tailed
distributions, the Anderson-Darling test performs well for various other distribu-
tions.

However, the performance of these tests in the presence of outliers remains
a critical area of investigation. Assessing normality in contaminated samples is
challenging because outliers can inflate variance or distort skewness and kurtosis,
heavily impacting tests like Jarque-Bera (Thode, 2002). While previous literature
has extensively covered Type I error and power (variables analyzed individually),
there is a lack of studies focusing on the concordance between these tests. Un-
derstanding whether tests agree or disagree on the same contaminated sample is
crucial for researchers who rely on a single test for decision-making. This study
addresses this gap by employing the Kappa-Fleiss coefficient to measure agreement
alongside traditional performance metrics.

2.2. Normality Tests

This section presents a theoretical foundation for the normality tests evaluated
in this study. In each case, the hypotheses are as follows:

(2)

Hy : The data follow a normal distribution;
H; : The data do not follow a normal distribution.
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For a sample {z1,xa,...,2z,} of size n, the following notations are used:

n

_ ]- ]- _ T(i)—T
T=—Ya 5= > (@-2)% pp=0 (M), (3)

i=1 i=1

where 7 is the sample mean, s is the sample standard deviation, p(;) are the
ordered percentiles of the standard normal distribution, and ® is the cumulative
distribution function of the standard normal distribution.

2.2.1. Jarque-Bera

The Jarque-Bera test evaluates data normality based on the skewness and
kurtosis of the probability distribution of a statistical measure, based on a random
sample, comparing them to those of a normal distribution. The test statistic is

defined as:
S§2  (C —3)?
_ (5 4
JB n(6+ 51 ) (4)

where

represent the sample skewness and kurtosis, respectively. Under Hy, the JB statis-
tic follows an asymptotically chi-squared distribution with 2 degrees of freedom
(Jarque & Bera, 1980).

2.2.2. Cramer-von Mises

Proposed by Cramer (1957), this test assesses the fit of a cumulative distribu-
tion function F* to an empirical cumulative distribution function F,. The test
statistic is given by:

1 i 2 —1\2
Wer;(p(i) on > ) (6)

and detects significant differences between the distributions being compared. The
p-value is calculated using the modified statistic Z = W (1 + %), which follows a
standard normal distribution.

2.2.3. Anderson-Darling

The Anderson-Darling test, similar to Cramer-von Mises, assesses the fit of a
cumulative distribution function F* to an empirical distribution F,,. This test is
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more sensitive to the tails of the distribution, making it ideal for cases where tail
fit is critical. The test statistic is:

n

A=-n-— % > [2i — 1) [In(py) + (1 = pa—isn))] (7)

i=1

with the p-value calculated by Z = A (1.0 + O‘nﬁ + 27'1225), following a standard
normal distribution (Anderson & Darling, 1952).

2.2.4. Lilliefors

Developed by Lilliefors (1967), this test is an adaptation of the Kolmogorov-
Smirnov test, used when theoretical distribution parameters are estimated from
the data. The statistic D measures the maximum difference between the empirical
and theoretical cumulative distribution functions:

D =max|D*,D™|, (8)

where

7 _ 1—1
DT = max {n — p(i)} , DT =max {p(i) - } . (9)
i=1,2,...,n i=1,2,...,n

.....

The p-value is calculated using the statistic Z = D (f —0.01 4 %), which

follows a standard normal distribution.

2.2.5. Shapiro-Wilk

Proposed by Shapiro & Wilk (1965), this test is widely used to evaluate nor-
mality in small samples. The test statistic is defined as:

_ (Z:‘L:l aix(i))z
SRR 1o

where the constants a1, as,...,a, are calculated as the solution of

Ty/—1
(a1,az, ... an) = m vV o (11)
(mTV-1V-1m)

with m = (mq,ma,...,m,) " representing the vector of expected values of the
sample order statistics and V' the covariance matrix of these statistics.
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2.2.6. Shapiro-Francia

Shapiro & Francia (1972) proposed an alternative to the Shapiro-Wilk test,
with the advantage of simpler implementation. In this test, the constants a1, as, ..., a,
are determined by:

mT

(a1,a2,...,an):W, (12)

ignoring the covariance matrix to simplify the calculation of coefficients.

2.3. Kappa-Fleiss Concordance Coefficient

The Kappa coefficient, proposed by Cohen (1960), measures agreement, between
dependent sample proportions. Widely used in clinical studies, it evaluates the
degree of agreement beyond chance, such as between diagnoses by different doctors
or the same doctor at different times.

The Kappa coefficient is calculated as:

_ PO) - P(E)
R = l—P(E) 9 (13)

where P(O) represents the observed proportion of agreements and P(E) the ex-
pected proportion of agreements. Values of x close to 1 indicate strong agreement,
while values below 0 suggest a lack of agreement or even disagreement.

Fleiss (1971) proposed an extension of Kappa, known as Kappa-Fleiss, for more
than two raters. It is calculated as:
_P(O)-P(E)

14
where P(O) is the mean observed agreement proportion, and P(E) is the mean
expected agreement proportion. This coefficient is useful for evaluating concor-
dance among multiple normality tests in rejecting or accepting the null hypothesis
of normality.

3. Methodology

This study used specific strategies to assess type I error rates, power, and
concordance among normality tests. Monte Carlo simulation random samples
normal was applied to each test, with a pre-defined significance level of 5%, to
verify whether the null hypothesis of normal distribution would be rejected.

If the null hypothesis was rejected for a sample generated from a normal distri-
bution, this was considered a type I error. Conversely, if the null hypothesis was
rejected for a sample obtained from a non-normal population, a correct decision
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was recorded. In each scenario, 10 000 repetitions were performed; the type I error
rate corresponds to the proportion of incorrect decisions in the first case, and the
empirical power corresponds to the proportion of correct decisions in the second.
All simulations were conducted in R Core Team (2024).

3.1. Monte Carlo Simulation

Two Monte Carlo simulation experiments were performed. The first consisted
of 10,000 simulations under Hy and H; for different probability distributions, gen-
erating samples of varying sizes: n = 10, 20, 30, 50, 100, 200, 300, 500, and 1000.

The second experiment evaluated the robustness of the tests in the presence
of outliers. To address the variability of contamination, we defined two distinct
outlier scenarios:

e Fixed Outliers: Two outliers were added to each generated sample: one
value equivalent to 10% of the minimum value and another equivalent to
100% of the maximum distribution value.

e Percentage Contamination: We replaced 5% of the observations in each
sample with values generated from a Student’s t-distribution with 2 degrees
of freedom, simulating a heavy-tailed contamination.

The tests were implemented in R (R Core Team, 2024)using the nortest,
stats, and normtest packages.

3.2. Type I Error

To evaluate type I error, 10000 random samples of size n were generated from
the normal distribution using the rnorm() function with mean 0 and standard
deviation 1. When the null hypothesis of normality was rejected at a significance
level of 5%, the distribution was considered erroneously classified as non-normal.
The proportion of incorrect rejections for each test was calculated, representing
the type I error rate.

3.3. Power

As described in Section 3, random samples from non-normal distributions were
simulated to evaluate test power, i.e., the ability to correctly reject the null hy-
pothesis when it is false.

In two experiments, 10000 samples of size n from both symmetric and asym-
metric non-normal distributions were generated. The first experiment excluded
outliers, while the second incorporated outliers in the distributions.

The symmetric distributions simulated were Uniform(0, 1), Beta(2,2), and t-
Student(10). The asymmetric distributions included Gamma(2,1), x?(15),
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Lognormal(0, 1), Exponential(1), and Weibull(2,1). The distributions were simu-
lated using random functions in R Core Team (2024).

Depending on the chosen parameters for each distribution, the distance between
them and the normal distribution can vary significantly, affecting test performance.

The normality tests were applied to each of the 10,000 samples generated from
each distribution, and the proportion of correct null hypothesis rejections was
computed. These values represent test power, which was then compared across
tests.

3.4. Concordance

For each distribution and sample size, the results were computed, and test
concordance was assessed using the Kappa-Fleiss coefficient (Fleiss, 1971). The
Kappam.fleiss function in the irr package was used to verify the level of agree-
ment among tests in deciding whether to reject the null hypothesis of normality.
This concordance analysis was applied only to samples from non-normal distri-
butions, allowing us to evaluate whether test power directly influences decision
concordance.

4. Results and Discussions

This section presents the simulation results for assessing type I error rates,
power, and concordance among normality tests.

4.1. Without Outliers

Six normality tests were evaluated: Anderson-Darling, Lilliefors, Shapiro-Francia,
Cramer-von Mises, Shapiro-Wilk, and Jarque-Bera. Table 1 shows the type I error
rates for different sample sizes, allowing us to observe the accuracy of the tests in
correctly identifying normality when it truly exists.

The results indicate that the Shapiro-Wilk and Shapiro-Francia tests exhibited
type I error rates closest to the nominal value of 5% for various sample sizes,
demonstrating greater consistency across sample sizes. This behavior highlights
the robustness of these tests in maintaining the significance level, especially in
small samples. In contrast, the Jarque-Bera test showed greater fluctuations in
type I error rate, indicating a tendency to reject the null hypothesis of normality
more frequently, particularly in smaller samples.

The analysis suggests that for samples without outliers, the Shapiro-Wilk and
Shapiro-Francia tests are preferable choices due to their control over type I error.
Table 1 details error rate variations for each test as a function of sample size.
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TABLE 1: Type I Error for samples without outliers across normality tests Anderson-
Darling (AD), Lilliefors (LL), Shapiro-Francia (SF), Cramer-von Mises
(CVM), Shapiro-Wilk (SW), and Jarque-Bera (JB).

Tests
Sample Size SwW AD CVM LL SF JB
10 0.0466  0.0442 0.0424 0.0478 0.0506 0.0484
15 0.0482 0.0502 0.0496 0.0472 0.0528 0.0548
20 0.0496  0.0500 0.0500 0.0506 0.0496 0.0476
30 0.0544  0.0520 0.0514 0.0470 0.0514 0.0514
50 0.0460 0.0512 0.0542 0.0546 0.0482 0.0456
100 0.0512 0.0506 0.0498 0.0530 0.0520 0.0532
200 0.0528 0.0524 0.0530 0.0484 0.0524 0.0480
300 0.0478 0.0480 0.0434 0.0454 0.0488 0.0484
500 0.0514 0.0450 0.0482 0.0472 0.0504 0.0474
1000 0.0496 0.0468 0.0460 0.0470 0.0520 0.0500

The superior performance of the Shapiro-Wilk and Shapiro-Francia tests in
controlling Type I error and maintaining high power for non-normal distributions
aligns with the findings of Razali and Wah (2011). Our results corroborate that
regression-and-correlation-based tests (like SW) are generally more sensitive to
departures from normality than tests based on empirical distribution functions
(like Lilliefors), especially in smaller samples.

Based on Figure 1 and Table 1, it was observed that the type I error rate of
all tests fluctuated around the nominal level of 5% for small samples (n < 30).

As shown in Figure 1, as the sample size increases, the Shapiro-Francia and
Shapiro-Wilk tests approach the nominal rate of 0.05, indicating their greater
precision. Conversely, the Jarque-Bera test tends to reject the null hypothesis of
normality more frequently, with fluctuations below the nominal level of 0.05. The
Shapiro-Francia test, with little variation around the nominal level, proved to be
one of the most accurate for controlling type I error. In contrast, the Anderson-
Darling, Lilliefors, and Cramer-von Mises tests showed greater deviations from the
nominal level, particularly in larger samples, tending to reject the hypothesis of
normality more often. The Shapiro-Wilk test, standing out among them, showed
low fluctuation around the nominal level, confirming its robustness in terms of
power across different sample sizes.

Table 2 shows the variance of the tests relative to the nominal level across all
samples.

TABLE 2: Variance of Type I Error for samples without outliers.

Test All Samples  Small Samples (n < 30) Large Samples (n > 50)

SW 6.4 x 10~ 7 4.8 x 10~ 7 2.048 x 10~6
AD 1.024 x 10—5 4.32 x 10~6 3.2x10°6
CVM 1.6 x 10~5 1.45 x 105 3.2x 106
LL 1.547 x 105 1.825 x 106 1.095 x 102
SF 7.471 x 10~6 6.453 x 10~6 5.408 x 10~6
JB 3.004 x 10~6 1.613 x 10—6 7.2 x 1076
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In general, the Shapiro-Wilk and Shapiro-Francia tests were the most accurate.
However, for small samples, the Shapiro-Francia test loses second place in precision
to the Jarque-Bera test, which showed lower variance in this specific case.

Type | Error

Anderson-Darling normality test
Cramer-von Mises normality test

& Jarque-Bera test for normality
<+ Lilliefors (Kolmogorov-Smirnov) normality test
Shapiro-Francia normality test
Shapiro-Wilk normality test

0 250 500 750 1000
Size (n)

FIGURE 1: Type I Error: Normal Distribution (0,1) without Outliers.

b

Figure 2 presents the power of each test for symmetric and asymmetric distri-
butions with different sample sizes.

For samples from uniform and beta distributions, the Shapiro-Wilk test shows
the best performance for small samples, followed by the Anderson-Darling test.
Among the other tests, Jarque-Bera showed the lowest power for these distribu-
tions in small samples, while for samples larger than n = 150, the Lilliefors test
had the lowest power.

For the t-Student distribution, the tests showed significant power differences
even for larger sample sizes. This difficulty in distinguishing between the t-Student
and normal distributions is due to their similar densities. Considering all sample
sizes, the Jarque-Bera test performed best in identifying data from the t-Student
distribution, followed by the Shapiro-Francia test, while the Lilliefors test had the
lowest power.

For asymmetric distributions, the Shapiro-Wilk test was the most powerful,
followed by the Shapiro-Francia test. For Weibull and x? distributions, these tests
stood out for sample sizes below 250. For larger samples (n > 500), all tests
reached maximum power except the Lilliefors test, which continued to show the
lowest power.

For the lognormal, exponential, and gamma distributions, all tests showed high
power, with the Shapiro-Wilk and Shapiro-Francia tests maintaining superiority
in all cases.
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4.2. Kappa-Fleiss Concordance Coefficient for Samples
without Outliers

Table 3 presents the Kappa-Fleiss concordance coefficient results for the various
distributions analyzed. It is observed that, for most distributions, the tests showed
a high level of concordance in deciding whether to reject the normality hypothesis.
However, for beta, x2, and t-Student distributions, concordance among tests was
lower.

This lower concordance can be seen in Figure 2, where the tests show re-
duced precision in identifying non-normality. This phenomenon occurs due to
the similarity between these distributions and the normal distribution, making
it more challenging to differentiate between them, especially for small and mod-
erate samples.

Revista Colombiana de Estadistica - Applied Statistics 49 (2026) 275-291



286 Jerfson B. N. Honorio, Amanda S. Gomes & Jorge A. Sousa

Uniform (0,1) t-student (10)
1.00- b = - - | _~B
7 =
/ -

0.75- of 0.75- Pr-
,_ [ . 27
20w f s A

0.50- 0.50 -
o | ] ) |
o h o ¢

0.25- ,l 0.25- f/

000- e £

0 250 500 750 1000 0 250 500 750 1000
Size (n) Size (n)

Anderson-Darling normality test
Cramer-von Mises normality test
= Jarque-Bera test for normality
Lilliefors (Kolmogorov—Smirnov)
Shapiro-Francia normality test
Shapiro-Wilk normality test

FI1GURE 2: Power of tests for distributions under study without the presence of outliers.

TaABLE 3: Kappa-Fleiss concordance coefficient.

Gamma Beta  Exponential Lognormal x> t-student  Uniform  Weibull

0.90 0.38 0.93 1.00 0.66 0.40 0.86 0.81

4.3. With Outliers

The following are the simulation results with the presence of outliers for as-
sessing type I error rates, power, and concordance of normality tests. Two outliers
were added to each sample: one value equivalent to 10% of the minimum value
and another equivalent to 100% of the maximum distribution value.

TABLE 4: Type I Error for samples with outliers across normality tests Anderson-Darling
(AD), Lilliefors (LL), Shapiro-Francia (SF), Cramer-von Mises (CVM),
Shapiro-Wilk (SW), and Jarque-Bera (JB).

Tests

Sample Size SW AD CVM LL SF JB
10 0.16  0.15 0.15 0.14 0.20 0.27
15 0.27  0.23 0.22 0.19 035 0.45
20 0.38 0.28 0.26 0.20 0.47 0.57
30 0.49  0.32 0.28 0.22 0.60 0.71
50 0.64 0.35 0.29 0.21 0.76 0.83
100 0.84 0.34 0.27 0.20 0.93 094
200 0.96 0.31 0.23 0.16 0.99 0.97
300 0.99 0.25 0.18 0.13 1.00 0.98
500 1.00  0.20 0.15 0.10 1.00 0.99
1000 1.00 0.13 0.10 0.08 1.00 0.99

In general, all tests showed difficulty identifying data normality in the presence
of outliers. As observed in Figure 3, the tests demonstrated sensitivity to outliers,
deviating significantly from the nominal value of 0.05.
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FIGURE 3: Type I Error: Normal Distribution (0,1) with Outliers. Source: Author

The Anderson-Darling, Lilliefors, and Cramer-von Mises tests were the least af-
fected by outliers, showing better performance and closer proximity to the nominal

value, as indicated in Table 4.
Table 5 presents the variance of the tests relative to the nominal level for all

sample sizes.

TABLE 5: Variance of Type I Error for samples with outliers (Fixed and Percentage

scenarios).
Test All Samples  Small Samples (n < 30) Large Samples (n > 50)
SW 4.313 0.4033 6.2050
AD 0.472 0.2028 0.4805
CVM 0.295 0.1680 0.2645
LL 0.142 0.1008 0.1125
SF 5.138 0.6721 7.0330
JB 5.760 1.0800 7.3447

Note: Values correspond to the fixed outlier scenario. Update with 5% results.

It is observed that, in general, the Anderson-Darling, Cramer-von Mises, and
Lilliefors tests were the most precise in terms of type I error rates when outliers
were present. The Lilliefors test exhibited the lowest variance for both small and
large samples, followed closely by the Cramer-von Mises test. In contrast, the
Jarque-Bera test was the most sensitive to outliers, showing a higher variability in
its estimates.

In the presence of outliers, the Jarque-Bera test exhibited high power but also
higher Type I error variance. This behavior is consistent with the literature (Th-
ode, 2002), which notes that moment-based tests are highly sensitive to extreme
values that distort skewness and kurtosis. Conversely, the Lilliefors test demon-
strated greater resistance to outliers in terms of Type I error control, suggesting
it may be a more conservative choice for contaminated datasets, despite its lower

power.
The power of the tests for symmetric and asymmetric distributions in the

presence of outliers is presented in Figure 4.
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FIGURE 4: Power of tests for distributions under study with the presence of outliers.
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For samples from a uniform distribution, the Jarque-Bera test exhibited the
best performance in small samples, followed by the Shapiro-Francia test. For sam-
ples larger than 250, the Shapiro-Francia test became the most powerful, followed
by the Shapiro-Wilk test, due to their stability compared to the oscillations ob-
served in the Jarque-Bera test. Among other tests, the Lilliefors test demonstrated
the lowest power.

In beta-distributed samples, the Jarque-Bera test again excelled in small sam-
ples, showing a rapid increase in power, followed by the Shapiro-Francia test.
Although other tests showed oscillations as the sample size increased, these os-
cillations tended to grow, enhancing their power. The Lilliefors test consistently
demonstrated the lowest power, even for large samples.

For samples with outliers from the t-Student distribution, the tests encountered
similar difficulties as observed in the previous section. This difficulty arises from
the similarity between the t-Student and normal distribution densities, making it
challenging to distinguish between them. Across all sample sizes, the Jarque-Bera
test performed best in the presence of outliers, followed by the Shapiro-Francia
test, while the Lilliefors test demonstrated the lowest power.

For the asymmetric distributions gamma, exponential, lognormal, and 2, all
tests exhibited high power, including the Lilliefors test. Nevertheless, the Shapiro-
Wilk and Shapiro-Francia tests remained superior in all cases.

4.4. Kappa-Fleiss Concordance Coefficient for Samples with
Outliers

Table 6 provides the Kappa-Fleiss concordance results for different distribu-
tions in the presence of outliers. It was observed that for most distributions, the
tests displayed weak agreement on the decision to reject or retain the hypothesis
of normality. However, maximum concordance was observed for the exponential
and lognormal distributions. Lower concordance was found for other distributions,
as illustrated in Figure 4, where the tests show reduced precision in identifying
normality.

TABLE 6: Kappa-Fleiss Concordance Coefficient.

Gamma Beta  Exponential Lognormal x> t-student  Uniform  Weibull
0.43 0.06 1.00 1.00 0.37 0.52 0.15 0.19

The low concordance coefficients observed for distributions such as Beta and
Weibull in the presence of outliers indicate a lack of consensus among methods.
This suggests that contamination affects the test statistics heterogeneously, making
the choice of normality test a determining factor in the conclusion of the analysis
for contaminated data.
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5. Conclusion

For normally distributed data without outliers, the evaluated tests demon-
strated precision with low variation around the nominal 5% level. The Shapiro-
Wilk and Shapiro-Francia tests provided the best performance for type I error
rates. In contrast, for normally distributed data containing outliers, the Lilliefors
and Cramer-von Mises tests were most effective in controlling type I error rates.
It is worth noting that all tests exhibited increased variability in the presence of
outliers, highlighting the difficulties that arise with extreme values.

In terms of power, the Shapiro-Wilk and Shapiro-Francia tests performed best
for distributions generated without outliers, proving more suitable for this type
of data. For distributions with outliers, the Jarque-Bera test achieved the highest
power, followed closely by the Shapiro-Wilk test. These results underline the im-
portance of test selection based on the data characteristics, particularly regarding
sample size and the presence of outliers.
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