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Abstract

The two-sample independent problem remains a persistent challenge in
statistical analysis. Parametric tests, such as Student's t-test and Welch's
t-test, are commonly employed to assess the signi�cance of di�erences be-
tween the means of two groups. However, these methods rely on the as-
sumption of normally distributed populations. When this assumption is vi-
olated, nonparametric alternatives like the Wilcoxon-Mann-Whitney, Yuen-
Welch, Brunner-Munzel, and Baumgartner tests o�er robust solutions. This
study introduces an adaptive framework for nonparametric two-sample tests,
building upon the foundation of Baumgartner-type tests. To enhance statis-
tical power, we incorporate a recently proposed relative rank transformation
method that is more resilient to scale di�erences between the two samples.
The adaptive tests are suitable for both location and scale comparisons.
Through extensive Monte Carlo simulations, we evaluate the power per-
formance of our adaptive tests under diverse distributional scenarios. Our
results demonstrate that adaptive tests o�er a substantial advantage over
traditional nonparametric methods. To illustrate the practical application
of our approaches, we apply the adaptive tests along their competitors to
six real-world biomedical datasets. These examples highlight the reliability
and e�ectiveness of the proposed methodology in addressing the two-sample
independent location-scale testing problem.
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Resumen

El problema de dos muestras independientes sigue siendo un desafío per-
sistente en el análisis estadístico. Las pruebas paramétricas, como la prueba
t de Student y la prueba t de Welch, se emplean comúnmente para evaluar
la signi�cancia de las diferencias entre las medias de dos grupos. Sin em-
bargo, estos métodos se basan en el supuesto de poblaciones distribuidas
normalmente. Cuando este supuesto se viola, alternativas no paramétri-
cas como las pruebas de Wilcoxon-Mann-Whitney, Yuen-Welch, Brunner-
Munzel y Baumgartner ofrecen soluciones robustas. Este estudio introduce
un marco adaptativo para pruebas no paramétricas de dos muestras, basado
en pruebas tipo Baumgartner. Para mejorar la potencia estadística, incorpo-
ramos un método de transformación de rangos relativos recientemente pro-
puesto que es más resistente a las diferencias de escala entre las dos muestras.
Las pruebas adaptativas son adecuadas para comparaciones de ubicación y
escala. A través de extensas simulaciones de Monte Carlo, evaluamos el
rendimiento de potencia de nuestras pruebas adaptativas bajo diversos es-
cenarios distribucionales. Nuestros resultados demuestran que las pruebas
adaptativas ofrecen una ventaja sustancial sobre los métodos no paramétricos
tradicionales. Para ilustrar la aplicación práctica de nuestros enfoques, apli-
camos las pruebas adaptativas junto con sus competidores a seis conjuntos
de datos biomédicos del mundo real. Estos ejemplos destacan la con�abili-
dad y efectividad de la metodología propuesta para abordar el problema de
prueba de ubicación-escala de dos muestras independientes.

Palabras clave: Cambio de ubicación-escala; Estadísticas tipo Baumgart-
ner; Pruebas no paramétricas; Ranking relativo; Simulaciones.

1. Introduction

A frequent challenge in data analysis, particularly within �elds like psychol-
ogy, medicine, and environmental science, is the limited sample size. Conventional
parametric tests, such as the t-test, rely on assumptions of normality and ho-
mogeneity of variance, which can be di�cult or impossible to verify with small
sample sizes, see for example Siegel & Castellan (1988). When these assumptions
are violated, the reliability of parametric tests diminishes, potentially leading to
biased estimates and inferences, especially in cases of skewed data, ordinal data,
or the presence of outliers. Nonparametric rank-based tests provide a valuable al-
ternative to parametric methods, as they are less a�ected by departures from the
assumptions of normality and homogeneity of variance. These tests are well-suited
for small, skewed, or ordinal-scaled data, allowing for comparisons without strict
distributional constraints. This �exibility expands the applicability of statistical
analysis to situations with limited sample sizes or data that is not easily amenable
to transformation or resampling techniques, see for example Conover (1999).

For small sample sizes, nonparametric tests are often implemented as permuta-
tion tests. This approach involves generating all possible permutations of the data
under the null hypothesis and calculating a test statistic for each permutation.
By comparing the observed test statistic to its permutation distribution, we can
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conduct exact inference. The resulting p-value indicates the probability of observ-
ing a test statistic as extreme or more extreme than the one calculated, under the
assumption that the null hypothesis is correct, see Manly (2018). The rationale be-
hind this approach is to assess the deviation of the test statistic from its expected
value under the null hypothesis, see for example Casella & Berger (2002). However,
this method becomes computationally expensive for large datasets, necessitating
alternative approaches for inference. For sample sizes of eight or more in each
group, asymptotic distributions, such as the asymptotic normality of the Wilcoxon
rank-sum test, can provide a suitable and accurate approximation. However, the
reliability of these approximations is contingent on the quantity and distribution
of ties within the dataset, as demonstrated by Brunner & Munzel (2000).

Kruskal-Wallis, Wilcoxon, and Mann-Whitney U tests are nonparametric rank-
based tests that assess whether two or more groups di�er in central tendency
without assuming normality or homogeneity of variance. These methods are ro-
bust to outliers and deviations from normality, maximizing statistical power, see
Hollander et al. (2013). Consequently, these tests are widely used in �elds that
require precise inference from small sample sizes. They are particularly valuable
in situations where large samples are unattainable due to logistical, �nancial, or
other constraints, such as clinical trials or the analysis of rare events (Mittelstadt
& Floridi, 2016).

The Wilcoxon-Mann-Whitney (WMW) test is a widely-used nonparametric
statistical test that has been extensively studied. However, its sensitivity to de-
partures from the pure location shift model and variance homogeneity remains a
subject of ongoing debate. As shown by Moran (2006), these deviations can lead
to signi�cant levels that diverge from the nominal signi�cance level. While some
researchers advocate for the use of the WMW test only when variance ratios are be-
low speci�c thresholds, such as 1.5, see, for example, Fagerland & Sandvik (2009),
others adopt a more lenient approach. These contrasting perspectives underscore
the limitations of traditional nonparametric methods in addressing diverse data
scenarios.

To address the limitations of conventional location-based tests, Baumgartner
et al. (1998) proposed a novel approach focusing on mean di�erences. However,
this method's performance in comparing means of distributions has not been ex-
tensively explored, its applicability to scenarios with unequal variances remains
uncertain, and a comparative analysis with other rank-based methods, particu-
larly under varying sample sizes and outlier conditions, is lacking. Furthermore,
the utilization of this test in extended information spaces and multi-attribute
rankings has been relatively unexplored, suggesting potential avenues for further
development. Yuen (1974) introduced the concept of trimming to enhance robust-
ness against outliers. Brunner & Munzel (2000) proposed modi�cations to the
Wilcoxon-Mann-Whitney test, extending its applicability to data environments
with tied observations and unequal variances. Building upon these ideas, Mu-
rakami (2006) developed a modi�ed Baumgartner test speci�cally designed for
multi-sample evaluation, enabling simultaneous testing for location and scale pa-
rameters.
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Despite signi�cant advancements in statistical analysis, challenges remain in
applying various interventions to diverse datasets. For example, the WMW-test,
a widely used nonparametric method, has limitations when dealing with distri-
butions that have di�ering variances. Its sensitivity to unequal variances and
potential bias in signi�cance levels are ongoing areas of research. Similarly, the
Baumgartner and modi�ed Baumgartner tests, which incorporate decision-maker
input, may not be universally e�ective across various sample sizes, in the presence
of outliers, or under conditions of unequal variance. This study aims to address
these limitations by reviewing and improving the usability and robustness of exist-
ing nonparametric methods. Speci�cally, we focus on enhancing the performance
of these methods under challenging conditions, such as small sample sizes, skewed
distributions, and unequal variances. To achieve this goal, we propose new meth-
ods based on a modi�cation of Baumgartner-type test statistics. By calculating
ranks based on actual distances rather than uniform spacing, these new methods
aim to better align with real-world data and improve their practical applicability.

The remaining part of this paper is organized as follows. In Section 2, we pro-
vide a background of notations and test statistics. Section 3 outlines the adaptive
Baumgartner-type test statistics. Section 4 details the simulation study conducted.
Section 5 presents an empirical study. To conclude, Section 6 provides a compre-
hensive summary of the primary results obtained in this research, followed by a
detailed discussion of their signi�cance and potential applications.

2. Notations and Test-Statistics

The t-test, a widely recognized statistical test proposed by Gosset (1908), is
employed to assess the di�erence between the means of two independent normal
populations, X and Y , particularly when sample sizes are limited. For this test,
we arbitrarily select m observations from population X and n observations from
population Y , and the test-statistic is de�ned as:

T1 =
X̄ − Ȳ

sp
√
(1/m+ 1/n)

,

where, X̄ and Ȳ are the means of two samples, whereas the sp is the pooled sample
standard deviation, calculated as:

s2p =
(m− 1)s2X + (n− 1)s2Y

m+ n− 2
.

Under the null hypothesis of equal population means, the statistic T1 is assumed
to follow a Student's t-distribution with m+ n− 2 degrees of freedom (df).

Welch (1938) introduced a modi�ed t-test, often referred to as the unequal vari-
ances t-test or Welch's t-test, to accommodate scenarios where the assumption of
equal population variances cannot be reasonably upheld. This test is particularly
robust when dealing with samples that exhibit unequal variances and potentially
disparate sample sizes. The Welch statistic is computed as follows:
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T2 =
(X̄ − Ȳ )√
s2X
m +

s2Y
n

,

where T2 follows a t-distribution with the following df:

df =

s2X
m

+
s2Y
n

s4X
m3 −m2

+
s4Y

n3 − n2

.

The Wilcoxon-Mann-Whitney (WMW) test is a nonparametric statistical test
used to compare two independent samples. This test involves calculating a test
statistic and ranking the observations from both samples. The test statistic, T3,
is de�ned as:

T3 = mn+
m(m+ 1)

2
−RX ,

where RX denotes the sum of the ranks for the observations in sample X. Assum-
ing the null hypothesis that the probability of an observation from sample X being
smaller than an observation from sample Y is 0.5, the test statistic T3 is approxi-

mately normally distributed with a mean of mn
2 and a variance of mn(m+n+1)

2 , see
for example Zaremba (1965). A standardized test statistic, T ∗

3 , can be computed
as follows:

T ∗
3 =

WMN −mn/2√
mn(m+ n+ 1)/12

,

which can be approximated by the standard normal distribution.

Yuen (1974) introduced a test statistic that builds upon the Welch statistic by
incorporating trimming. This method involves discarding the lowest and highest
20% of values from each sample, resulting in a trimming proportion (tr) of 0.20,
which is generally considered appropriate. The trimmed means of the samples,
denoted as X̄c and Ȳc, are subsequently used to compute the Yuen-Welch statistic:

T4 =
X̄c− Ȳ c√
wX + wY

,

where wX and wY represent estimates of the squared standard errors. T3 follows
a t-distribution with the following degrees of freedom (df):

df =
wX + wY

w2
X

hX−1 +
w2

Y

hY −1

,

where hX and hY denote the number of observations remaining in samples X and
Y , after the trimming process.

In contrast to the WMW-test, the Brunner & Munzel (2000) test is a nonpara-
metric test capable of handling both unequal variances and tied observations. To
accommodate these complexities, the test employs mid-ranks, which are the aver-
age ranks assigned to tied values. The Brunner-Munzel test statistic is calculated
as:

T5 =
M̄X − M̄Y

(m+ n)
√
SB2

X/mn2 + SB2
Y /m

2n
.
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The distribution of T5 can be approximated by a t-distribution with the following
degrees of freedom (df):

df =

(
SB2

X

n
+

SB2
Y

m

)2

/

(
SB4

X

n2(m− 1)
+

SB4
Y

m4(n− 1)

)
.

The nonparametric Baumgartner test, introduced by Baumgartner et al. (1998),
is designed to test the null hypothesis H0 that two samples originate from identi-
cal populations with a shared cumulative distribution function. The test statistic
proposed by the authors is as follows:

T6 =
1

2
(BX +BY ),

where,

BX =
1

m

m∑
i=1

(
Ri − m+n

m i
)2(

i
m+1

)(
1− i

m+1

)
n(m+n)

m

,

and

BY =
1

n

n∑
j=1

(
Hj − m+n

n j
)2(

j
n+1

)(
1− j

n+1

)
· m(m+n)

n

.

where Ri and Hj denote the ranks of the samples from the �rst and second pop-
ulations, respectively, when the samples are pooled.

Concerning the location parameter, Murakami (2006) proposed a modi�ed
Baumgartner nonparametric k-sample test, which exhibits nearly equivalent power
to the Wilcoxon test. The author argues that in the k-sample setting, where
F (x) = G

(
y
σ

)
with σ ̸= 0, the modi�ed Baumgartner statistic can be used to assess

both location and scale di�erences. The combined sample rankings of the X-values
and Y-values in ascending order of magnitude are denoted by R1 < · · · < Rm and
H1 < · · · < Hn, respectively. The test statistic can be expressed as follows:

T7 =
1

2
(B∗

X +B∗
Y ) ,

where

B∗
X =

1

m

m∑
i=1

(Ri − E(Ri))
2

Var(Ri)
,

and

B∗
Y =

1

n

n∑
j=1

(Hj − E(Hj))
2

Var(Hj)
.

3. Adaptive Baumgartner-Type Test-Statistics

Let X = X1, . . . , Xm and Y = Y1, . . . , Yn be two random samples of sizes
m and n, respectively, drawn independently from continuous distributions F (x)
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and G(y). Baumgartner's well-known test is designed to assess the equality of
locations between these two distributions, under the null hypothesis F (x) = G(y−
δ). A modi�ed version of Baumgartner's nonparametric two-sample test has been
proposed, which exhibits nearly identical power to the WMW-test for the location
parameter. Notably, this modi�ed statistic can be extended to the k-sample setting
to test for both location and scale di�erences, where the null hypothesis is F (x) =
G
(
y
σ

)
with σ ̸= 0.

Given two distinct samples, we hypothesize that the smaller sample is derived
from the distribution F (x) and the larger sample from G(y). These two samples
are then merged into a consolidated set Θi as

Θi = {X1, X2, . . . , Xm, Y1, Y2, . . . , Yn}.

Arrange the observations of Θi in ascending order as

Θi = {θ(1), θ(2), . . . , θ(m+n)},

Each value of Θi is assigned to one of two samples, ordered such that θ(1) < θ(2) <
· · · < θ(m+n). Given the continuity assumption of the cumulative distribution
functions F (x) and G(y), the probability of ties within the set Θi is negligible.
Therefore, all inequalities among the Θi values are straightforward. The adaptive
Baumgartner-type test-statistic is formulated by applying a relative-rank trans-
formation to the set Θi as follows:

1. De�ne Rr
1 = 1.

2. For i = 2, 3, . . . , (m+ n), we de�ne the following expression

νi = i− 1 +
(n1 + n2 − 1)(θ(i) − θ(i−1))

θ(m+n) − θ(1)
.

3. De�ne Rr
i as the (i − 1)th smallest value of {ν2, ν3, . . . , νm+n} for

i = 2, 3, . . . , (m+ n). This will ensure that

Rr
1 < Rr

2 < · · · < Rr
m+n.

Let R
(r)
1 < · · · < R

(r)
m and H

(r)
1 < · · · < H

(r)
n denote the combined sample ranks

of the X-values and Y -values in increasing order of magnitude, respectively.

T8 =
1

2
(BMX

+BMY
),

where

BMX
=

1

m

m∑
i=1

(
R

(r)
i − n+m

m i
)2

(
i

m+1

)(
1− i

m+1

)
n(m+n)

m

,

and

BMY
=

1

n

n∑
j=1

(
H

(r)
j − m+n

n j
)2

(
j

n+1

)(
1− j

n+1

)
m(m+n)

n

.
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We also provided an adaptive test-statistic for Murakami (2006), which can be
de�ned as:

T9 =
1

2

(
B∗

MX
+B∗

MY

)
,

where

B∗
MX

=
1

m

m∑
i=1

(R
(r)
i − E(R

(r)
i ))2

Var(R
(r)
i )

,

and

B∗
MY

=
1

n

n∑
j=1

(H
(r)
j − E(H

(r)
j ))2

Var(H
(r)
j )

.

The expected values and variances can be computed as:

E(Ri) =
m+ n+ 1

n+ 1
i,

V (Ri) =
i

n+ 1
(1− i

n+ 1
)
m(n+m+ 1)

n+ 2
,

E(Hj) =
n+m+ 1

m+ 1
j,

and

V (Hj) =
j

m+ 1
(1− j

m+ 1
)
n(n+m+ 1)

m+ 2
.

The mean and variance of Baumgartner-type statistics are indeterminate and
can only be approximated through rigorous simulation. In this study, we utilized
several distributions, like normal, uniform, exponential and Laplace with 10 000
replications to derive these values, which are presented in Table 1. These val-
ues are closely aligned with those of both adaptive and original Baumgartner-
type statistics. Additionally, Figure 1 illustrates the distributional properties
of Baumgartner-type statistics within the simulation framework. The presented
statistics exhibit enhanced robustness without introducing bias or altering dis-
tributional assumptions, making them valuable additions to non-parametric ap-
proaches.

Table 1: Mean and variance of Baumgartner-type test-statistics.

T6 T7 T8 T9

µ 0.9880 1.0181 1.2672 1.2769

σ2 0.6488 0.7744 0.7331 0.7884
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Figure 1: The distributional behaviors of Baumgartner-type statistics: (a) T6, (b) T7,
(c) T8, and (d) T9.

This study demonstrates the e�ectiveness of adaptive methodological enhance-
ments in improving the power of nonparametric statistical tests. By strategically
adjusting rankings, we align our �ndings with previous research on power opti-

Revista Colombiana de Estadística - Applied Statistics 49 (2026) 213�230



222 Zaheer Aslam, Syed Wajahat Ali Bokhari, Nasir Ali & Abid Hussain

mization in ranking-based methods. Our approaches highlight the potential for
enhancing hypothesis testing through targeted modi�cations to test statistic cal-
culations, o�ering valuable insights for both theoretical and applied statistical
research.

4. Simulations Study

Tables 2-6 present a comprehensive comparison of nine test statistics across
diverse scenarios, encompassing shifts in location, scale, or both, along varying
sample sizes. This study employed a range of distributions with dynamic char-
acteristics, including normal, exponential, uniform, and Laplace. All simulations
were executed using R software (version 4.4.2), and statistical tests were conducted
at the 5% signi�cance level. To assess the performance of each test statistic,
10 000 replications were performed. For precise comparisons, simulation results
were rounded to four decimal places.

Table 2: The probability of rejecting H0 : X ∼ N(0, 1) vs. H1 : Y ∼ N(µ, 1).

Test m n µ = 0.0 0.5 1.0 1.5 2.0 2.5 3.0

T1 5 10 0.0533 0.1344 0.3605 0.6636 0.8757 0.9723 0.9961

T2 0.0402 0.1100 0.3423 0.6456 0.8737 0.9742 0.9962

T3 0.0484 0.1282 0.3614 0.6565 0.8733 0.9727 0.9952

T4 0.0685 0.1630 0.4131 0.7059 0.8995 0.9723 0.9900

T5 0.0638 0.1157 0.2892 0.5145 0.6993 0.8314 0.9076

T6 0.0501 0.1023 0.3137 0.6117 0.8543 0.9640 0.9946

T7 0.0536 0.1276 0.3684 0.6668 0.8965 0.9761 0.9974

T8 0.0432 0.0853 0.2591 0.5508 0.8166 0.9488 0.9906

T9 0.0554 0.1190 0.3315 0.6433 0.8758 0.9732 0.9960

T1 10 10 0.0485 0.1861 0.5528 0.8860 0.9888 0.9993 1.0000

T2 0.0416 0.1603 0.5179 0.8525 0.9808 0.9990 1.0000

T3 0.0463 0.1825 0.5500 0.8830 0.9890 0.9994 1.0000

T4 0.0552 0.1948 0.5631 0.8828 0.9846 0.9997 1.0000

T5 0.0500 0.1487 0.4617 0.7888 0.9537 0.9950 1.0000

T6 0.0482 0.1741 0.5215 0.8599 0.9818 0.9983 1.0000

T7 0.0484 0.1767 0.5279 0.8523 0.9798 0.9992 1.0000

T8 0.0391 0.1374 0.4486 0.8101 0.9677 0.9974 1.0000

T9 0.0444 0.1481 0.4666 0.8116 0.9708 0.9980 1.0000

T1 20 20 0.0503 0.3353 0.8751 0.9961 0.9990 1.0000 1.0000

T2 0.0505 0.3300 0.8489 0.9945 1.0000 1.0000 1.0000

T3 0.0480 0.3302 0.8723 0.9960 1.0000 1.0000 1.0000

T4 0.0531 0.3297 0.8567 0.9945 1.0000 1.0000 1.0000

T5 0.0468 0.2966 0.8026 0.9891 1.0000 1.0000 1.0000

T6 0.0497 0.3176 0.8464 0.9929 1.0000 1.0000 1.0000

T7 0.0486 0.3023 0.8335 0.9933 0.9999 1.0000 1.0000

T8 0.0470 0.2759 0.8063 0.9903 0.9999 1.0000 1.0000

T9 0.0423 0.2694 0.7960 0.9903 1.0000 1.0000 1.0000
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Table 3: The probability of rejecting H0 : X ∼ N(0, 1) vs. H1 : Y ∼ N(µ, σ2), for the
case of (m = n = 10).

Test µ σ2 = 2.0 3.0 4.0 5.0 6.0

T1 0.0 0.0547 0.0644 0.0667 0.0656 0.0661

T2 0.0672 0.0873 0.0921 0.0988 0.1019

T3 0.0485 0.0523 0.0509 0.0515 0.0523

T4 0.0497 0.0347 0.0335 0.0329 0.0299

T5 0.0619 0.0691 0.0561 0.0603 0.0702

T6 0.0960 0.2630 0.2657 0.3409 0.4109

T7 0.0499 0.0736 0.1141 0.2202 0.2743

T8 0.0863 0.1785 0.2744 0.3597 0.4345

T9 0.6509 0.8878 0.9492 0.9686 0.9767

T1 1.0 0.2749 0.1667 0.1289 0.1010 0.0884

T2 0.2486 0.1652 0.1212 0.1121 0.1059

T3 0.2616 0.1567 0.1055 0.0858 0.0761

T4 0.2593 0.1467 0.0990 0.0797 0.0640

T5 0.2119 0.1374 0.1093 0.0878 0.0833

T6 0.3443 0.3360 0.3655 0.4003 0.4518

T7 0.3240 0.3075 0.3315 0.3870 0.4283

T8 0.3423 0.3621 0.4129 0.4701 0.5211

T9 0.5213 0.5850 0.6710 0.7485 0.7952

T1 2.0 0.6538 0.4821 0.3682 0.3364 0.2401

T2 0.7090 0.4346 0.2963 0.2263 0.1888

T3 0.7439 0.4485 0.2774 0.2052 0.1519

T4 0.7069 0.4050 0.2452 0.1635 0.1271

T5 0.6253 0.3625 0.2402 0.1895 0.1408

T6 0.7936 0.6399 0.5772 0.5568 0.5542

T7 0.7811 0.6177 0.5397 0.5139 0.5286

T8 0.6960 0.8160 0.9140 0.9678 0.9865

T9 0.8956 0.8293 0.8212 0.8417 0.8610

Table 2 presents the simulated results, which rejected the null hypothesis of
normal distribution for various sample sizes: (m,n) = (5, 10), (10, 10), (20, 20).
The Type I error rates for all tests are approximately 0.05, as indicated by the �rst
column in each panel. In terms of power, the test statistic T4 exhibits superior
performance for small location shifts. The proposed adaptive tests consistently
outperform their original counterparts across all table entries. Table 3 presents
the simulated results for location-scale shifts with the sample size (m,n) = (10, 10).
For all shifts, it is evident that the proposed adaptive tests outperform the original
tests across all table entries.

Table 4 presents the results of the uniform distribution experiment for two
sample size pairs: (m,n) = (5, 10), (10, 10). The observed signi�cance levels closely
approximate the nominal error rate for all employed test statistics. In terms of
power, the adaptive tests (T8 and T9) demonstrated superior performance when
sample sizes were unequal. However, these tests did not meet expectations for the
uniform distribution for equal sample size. This discrepancy can be attributed to
the fact that these tests are designed to detect outliers within a sample, while the
uniform distribution assigns equal weight to all sample units.

Revista Colombiana de Estadística - Applied Statistics 49 (2026) 213�230



224 Zaheer Aslam, Syed Wajahat Ali Bokhari, Nasir Ali & Abid Hussain

Table 4: The probability of rejecting H0 : X ∼ U(0, 1) vs. H1 : Y ∼ U(0, 1) + δ.

Test m n δ = 0.0 0.1 0.2 0.3 0.4 0.5 0.6

T1 5 10 0.0609 0.0888 0.1845 0.3385 0.5619 0.7801 0.9297

T2 0.0436 0.0724 0.1608 0.3191 0.5225 0.7308 0.8880

T3 0.0679 0.0882 0.1868 0.3482 0.5697 0.7769 0.9247

T4 0.0719 0.1046 0.2115 0.3877 0.6105 0.7992 0.9321

T5 0.0719 0.0906 0.1409 0.2235 0.3398 0.4675 0.5982

T6 0.0480 0.0671 0.1451 0.2839 0.4775 0.6885 0.8601

T7 0.0507 0.0779 0.1776 0.3400 0.5432 0.7456 0.8967

T8 0.0325 0.0868 0.1809 0.3522 0.5825 0.7904 0.9269

T9 0.0437 0.1078 0.2304 0.4287 0.6620 0.8500 0.9561

T1 10 10 0.0514 0.1060 0.2868 0.5776 0.8316 0.9615 0.9970

T2 0.0442 0.0439 0.2534 0.5016 0.7476 0.9119 0.9823

T3 0.0508 0.1058 0.2948 0.5718 0.8305 0.9631 0.9971

T4 0.0512 0.1182 0.3009 0.5619 0.7952 0.9363 0.9881

T5 0.0582 0.0840 0.1807 0.3471 0.5581 0.7595 0.9008

T6 0.0459 0.1017 0.2588 0.5213 0.7603 0.9243 0.9865

T7 0.0528 0.1024 0.2519 0.5148 0.7656 0.9274 0.9841

T8 0.0344 0.0650 0.1944 0.4229 0.6893 0.9001 0.9820

T9 0.0371 0.0628 0.1922 0.4369 0.7007 0.8991 0.9801

For location-scale problems involving Laplace distributions, we compared the
performance of our proposed adaptive tests with their competitors. The results,
summarized in Table 5, demonstrate the superior performance of our suggested
tests across all scenarios. A similar pattern of superiority was observed for the
exponential distribution, as shown in Table 6. In conclusion, our simulation study
indicates that the proposed adaptive test statistics, particularly T9, exhibit higher
power than the competing methods.

Upon examination of Tables 2-6, the following observations can be made:

1. Statistical test performance: The T1 and T4 consistently outperforms the
reference test under normal and T1 perform better in the case of uniform
distribution assumptions.

2. Location-scale problem: Adaptive procedures exhibit superior performance
compared to traditional two-sample tests, regardless of distributional as-
sumptions, with the exception of uniform distributions.

3. Nonnormal distributions: In the context of nonnormal distributions, adap-
tive procedures demonstrate superior performance to both the Baumgartner
statistic and the modi�ed Baumgartner statistic across all study conditions.
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Table 5: The probability of rejecting H0 : X ∼ L(0, 1) vs. H1 : Y ∼ L(µ, σ), for the
case of (m = n = 10).

Test µ σ = 1.00 1.25 1.50 1.75 2.00 2.25

T1 0.0 0.0424 0.0442 0.0457 0.0430 0.0419 0.0455

T2 0.0435 0.0481 0.0580 0.0638 0.0614 0.0705

T3 0.0513 0.0513 0.0417 0.0435 0.0403 0.0422

T4 0.0407 0.0548 0.0560 0.0561 0.0516 0.0498

T5 0.0447 0.0425 0.0407 0.0396 0.0400 0.0454

T6 0.0482 0.0779 0.1216 0.1774 0.2280 0.2785

T7 0.0470 0.0710 0.1238 0.1673 0.2199 0.2711

T8 0.0669 0.0684 0.0839 0.1015 0.1154 0.1275

T9 0.0895 0.0909 0.1031 0.1220 0.1417 0.1671

T1 1.0 0.3590 0.1747 0.1049 0.0830 0.0718 0.0602

T2 0.3791 0.2072 0.1472 0.1235 0.1026 0.1002

T3 0.3471 0.1771 0.1159 0.0822 0.0678 0.0623

T4 0.4122 0.2224 0.1387 0.1016 0.0861 0.0712

T5 0.4041 0.2035 0.1250 0.0902 0.0766 0.0631

T6 0.4105 0.2826 0.2647 0.2872 0.3098 0.3430

T7 0.4158 0.2672 0.2521 0.2588 0.2963 0.3235

T8 0.3827 0.3516 0.3333 0.3307 0.3318 0.3425

T9 0.4043 0.3791 0.3587 0.3568 0.3546 0.3639

T1 2.0 0.8406 0.5129 0.2988 0.1972 0.1479 0.1171

T2 0.8642 0.5756 0.3782 0.2791 0.2254 0.1939

T3 0.8423 0.5101 0.3000 0.1961 0.1406 0.1152

T4 0.8691 0.5691 0.3553 0.2403 0.1848 0.1383

T5 0.8814 0.5628 0.3444 0.2393 0.1640 0.1353

T6 0.3633 0.6733 0.5547 0.5082 0.4795 0.4782

T7 0.8971 0.6628 0.5209 0.4812 0.4586 0.4556

T8 0.8588 0.7919 0.7483 0.7384 0.7553 0.7667

T9 0.9260 0.8063 0.7608 0.7563 0.7703 0.7918

Table 6: The probability of rejecting H0 : X ∼ Exp(0) vs. H1 : Y ∼ Exp(λ), for the
case of (m = n = 10).

Test λ = 2.0 3.0 4.0 5.0 6.0 7.0

T1 0.2148 0.4542 0.6283 0.7311 0.7956 0.8376

T2 0.2129 0.4693 0.6524 0.7827 0.8569 0.8989

T3 0.2077 0.4543 0.6318 0.7353 0.7978 0.8351

T4 0.2536 0.5168 0.6897 0.8013 0.8606 0.9052

T5 0.1311 0.2659 0.3506 0.4087 0.4585 0.4972

T6 0.2370 0.5029 0.6928 0.8036 0.8836 0.9177

T7 0.2383 0.5078 0.6933 0.8088 0.8723 0.9180

T8 0.5827 0.8210 0.9325 0.9694 0.9869 0.9948

T9 0.6673 0.8758 0.9486 0.9810 0.9926 0.9962
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5. Empirical Data

This section demonstrates the applicability of adaptive tests using six real-
world data examples presented in Table 7.

• Dataset 1: Sourced from the UCI machine learning repository https://archiv

e.ics.uci.edu/ml/datasets/HCV+data, this dataset examines Cholinesterase
(CHE), a liver enzyme used to assess liver function. Lower CHE levels indicate
poor liver protein synthesis capacity, while higher levels may suggest conditions
such as nephrotic syndrome, hyperthyroidism, or fatty liver.

• Dataset 2: This dataset, as described in Wild & Seber (1999), investigates
genetic inheritance by analyzing the mean sister chromatid exchange (MSCE)
of Native American and Caucasian individuals from diverse ethnic backgrounds.

• Dataset 3: This dataset, initially presented in Tasdan & Sievers (2009), examines
the e�ect of thyroxine on young mice. It compares a control group of 7 mice
with the remaining mice used for thyroxine treatment.

• Datasets 4 and 5: These datasets, respectively from Hettmansperger & McKean
(2011) and Lindsey et al. (1987), explore the following: Plasma LDL levels in
quails fed a special diet containing a drug compared to a non-drug-fed control
group. The width of the �rst tarsal joint in two di�erent Chaetocnema insect
species.

• Dataset 6: This dataset, initially studied by Karpatkin et al. (1981) and further
discussed by Hollander & Wolfe (1999), investigates the in�uence of maternal
steroid medication on newborn platelet counts. It compares platelet count pa-
rameters in infants born to mothers with autoimmune thrombocytopenia pur-
pura (ATP) who received prednisone treatment with those born to mothers
without ATP.

To visually represent the data, we constructed violin plots as shown in Figure
2. To analyze these datasets, we employed two newly developed adaptive tests
alongside seven well-established tests. The results, summarized in Table 8, are
presented as p-values, whereas the signi�cance level is indicated at the 0.05. The
outcomes of the adaptive tests strongly support the distributional patterns ob-
served in Figure 2. Therefore, when dealing with outliers, adaptive test-statistics
can be considered reliable and appropriate alternatives. Based on the observed
data and at the given signi�cance level, we conclude that the results are consis-
tent. These �ndings demonstrate the potential of the suggested adaptive tests as
valuable tools, comparable to other well-established tests in the literature.
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Table 7: The datasets used in this study.

Dataset Values

Dataset 1:
Cholinesterase levels
(hepatitis and �brosis)

Fibrosis: 11.49, 9.64, 6.97, 7.76, 7.28, 10.43, 8.74, 8.77, 8.59, 6.60

9.45, 7.10, 9.92, 9.24, 8.55, 8.61, 7.29, 10.21, 3.99, 7.75, 6.65

Hepatitis: 9.58, 7.55, 7.09, 6.00, 8.77, 8.79, 12.16, 10.11, 13.80, 9.71

10.30, 11.42, 10.23, 9.67, 8.91, 16.41, 9.54, 10.12, 5.75, 5.95

6.88, 7.08, 7.51, 9.48

Dataset 2: Wild and
Seber data (MSCE values)

Native American: 8.50, 9.48, 8.65, 8.16, 8.83, 7.76, 8.63

Caucasian: 8.27, 8.20, 8.25, 8.14, 9.00, 8.10, 7.20, 8.32, 7.70

Dataset 3:

Thyroid weights (grams)

Control group: 0.7, 1.2, 1.4, 2.3, 1.6, 0.9, 1.3

Treatment group: 4.1, 4.4, 3.3, 2.1, 3.5, 2.9, 2.8, 4.3

Dataset 4:

Hettmansperger
and McKean (LDL levels)

Treatment group: 10, 1, 20, 18, 122, 14, 44, 8, 51, 34

Control group: 34, 19, 24, 34, 67, 36, 46, 14, 41, 59, 40, 42

41, 25, 30, 32, 16, 47, 56, 41

Dataset 5:

Lindsey et al. (tarsal joint
widths)

Species A: 31, 34, 37, 27, 28, 18, 34, 29, 31, 15

Species B: 7, 22, 44, 31, 8, 18, 22, 27, 25, 24

Dataset 6:

Newborn platelet counts

Control subjects: 12, 20, 112, 32, 60, 40

Case subjects: 120, 124, 215, 90, 67, 95, 190, 180, 135, 399

Table 8: The p-values for each test statistic across datasets.

Dataset T1 T2 T3 T4 T5 T6 T7 T8 T9

1 0.1483 0.2026 0.1385 0.2034 0.2440 0.1900 0.1980 0.2122 0.1112

2 0.1066 0.1142 0.1141 0.1028 0.0606 0.1562 0.1135 0.0670 0.0912

3 0.0001 0.0006 0.0001 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

4 0.5814 0.1343 0.6760 0.2110 0.1725 0.0612 0.0712 0.0600 0.0612

5 0.1834 0.1031 0.1860 0.1012 0.0258 0.0912 0.0601 0.0000 0.0000

6 0.0141 0.0017 0.0047 0.0001 0.0051 0.0000 0.0010 0.0000 0.0000
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Figure 2: Violin plots illustrating the distribution of various real-life datasets: (a)
Dataset 1, (b) Dataset 2, (c) Dataset 3, (d) Dataset 4, (e) Dataset 5, and (f)
Dataset 6.

6. Conclusions

The application of rank transformations in nonparametric statistical inference
has been a subject of ongoing debate, see for example Zimmerman (2012). To
address the limitations of traditional rank transformations, Hussain et al. (2024)
proposed a novel approach, the relative rank transformation, which preserves �ner
distinctions between values. This study investigates the utility of relative ranks in
the context of Baumgartner-type statistics. We evaluate the performance of our
adaptive approaches against widely used test statistics for the two-sample inde-
pendent problem. Simulation results indicate that our adaptive tests, employing
relative ranks, outperform all other well-known tests when both location and scale
parameters shift under various normal and non-normal distributions. Real-world
medical case studies further demonstrate the signi�cant improvement in perfor-
mance achieved by the proposed adaptive techniques. Overall, our investigation
suggests that employing relative ranks can yield more reliable results for the two-
sample independent problem, especially when both location and scale parameters
shift simultaneously.
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