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Abstract

This article presents a new asymmetric version of Cohen's w for analyzing
contingency tables. As an extension of this established e�ect size measure,
the proposed index quanti�es the e�ect of one variable on another, providing
a valuable complement to null hypothesis signi�cance testing. While speci�c
procedures exist for assessing these directional relationships, they exhibit
signi�cant limitations in certain scenarios.

Furthermore, we introduce a normalization process that constrains the
coe�cient to a [0, 1] range, enhancing interpretability for both researchers
and practitioners.

Finally, we present an asymmetric chi-square coe�cient that aligns nat-
urally with the proposed e�ect size, ensuring full conceptual coherence be-
tween hypothesis testing and e�ect size estimation. This coe�cient also
avoids the interpretability pitfalls that commonly arise when the traditional
chi-square test is applied to inherently asymmetric relationships.

Keywords: Asymmetric relationship; Chi-square test; Cohen's w.

Resumen

Este artículo presenta una nueva versión asimétrica de la w de Cohen
para analizar tablas de contingencia. Como una extensión de esta medida
de tamaño del efecto ya establecida, el índice propuesto cuanti�ca el efecto de
una variable sobre otra, constituyendo un valioso complemento a las pruebas
de signi�cación de hipótesis nula. Si bien existen procedimientos especí�cos
para evaluar estas relaciones direccionales, estos presentan limitaciones sig-
ni�cativas en ciertos escenarios.
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Además, introducimos un proceso de normalización que restringe el co-
e�ciente al rango [0, 1], mejorando su interpretabilidad tanto para investi-
gadores como para profesionales.

Finalmente, presentamos un coe�ciente de chi-cuadrado asimétrico que
se alinea naturalmente con el tamaño del efecto propuesto, garantizando
una coherencia conceptual plena entre la prueba de hipótesis y la estimación
de magnitud del efecto. Este coe�ciente también evita los problemas de
interpretabilidad que comúnmente surgen cuando la prueba de chi-cuadrado
tradicional se aplica a relaciones inherentemente asimétricas.

Palabras clave: Prueba de chi-cuadrado; Relación asimétrica; w de Cohen.

1. Introduction

While the mathematical foundations of the chi-square distribution were laid by
multiple authors, it became a cornerstone of modern statistics through the work
of English mathematician Karl Pearson (1857�1936). Pearson's application of the
distribution, especially in the context of goodness-of-�t tests, culminated in the
development of the chi-square test, published in 1900. This test revolutionized
statistical hypothesis testing. Later re�nements by prominent statisticians such
as Yule (1911), Fisher (1925), Yates (1934), and Cochran (1952, 1954) expanded
its utility, introducing corrections for small sample sizes and broadening its appli-
cation in various �elds of research.

Building on these foundations, Cohen (1988) provided a pivotal contribution by
introducing Cohen's w, a measure of e�ect size for chi-square tests in contingency
tables. His work emphasized the importance of interpreting statistical results not
only in terms of signi�cance but also through the lens of practical relevance, thus
enriching the applicability of the chi-square test in both theoretical and applied
research.

Our study builds upon this historical groundwork to expand the analytical
toolkit for two-variable contingency tables by introducing measures speci�cally
designed for asymmetric relationships. We present several key innovations:

1. An asymmetric version of Cohen's w that enables a more nuanced compar-
ison between each category of the independent variable and the marginal
distribution of the dependent variable. By accounting for data asymmetry,
this measure provides a more accurate representation of the relationship's
strength and direction, potentially o�ering deeper insights into variable de-
pendencies.

2. A normalization process that constrains the coe�cient to the [0, 1] range,
making results more accessible to researchers and practitioners while facili-
tating easier interpretation.

3. An asymmetric chi-square coe�cient that addresses asymmetries in variable
relationships. This measure integrates null hypothesis signi�cance testing
with e�ect size estimation, thereby enhancing the interpretability of the
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results and facilitating a more accurate understanding of underlying data
associations.

2. Chi-Square Distribution and Tests

Perhaps the simplest way to de�ne the chi-square distribution is to consider
it as the sum of squares of independent standard normal random variables, each
following N(0, 1) with degrees of freedom df :

χ2
df =

df∑
i=1

Z2
i = Z2

1 + Z2
2 + Z2

3 + · · ·+ Z2
df . (1)

Given that its expected value E(X) = df , and its variance V (X) = 2df .

2.1. Chi-Square Test (χ2)

Pearson (1900) developed the chi-square goodness-of-�t test. Given a hypo-
thetical distribution and an empirical distribution, both can be compared using a
chi-square test.

2.2. Goodness-of-Fit Test

The chi-square goodness-of-�t test evaluates whether empirically observed data
conform to a theoretical probability distribution by comparing observed frequen-
cies with expected frequencies derived from the theoretical model. The test statis-
tic is calculated as:

χ2 =

r∑
i=1

(oi − ei)
2

ei
. (2)

The term oi represents the observed frequency in category i, while ei refers
to the expected frequency under the theoretical distribution. The resulting test
statistic is compared against a critical value from the chi-square distribution with
degrees of freedom:

df = (r − 1), (3)

in which r denotes the total number of categories or classes under consideration.
This statistical technique, since its original proposal by Pearson, has undergone
virtually no changes.

2.3. Independence Test

Pearson (1904) introduced the concept of contingency and the chi-square test

as a hypothesis test for independence between two qualitative variables.

χ2 =

r∑
i=1

c∑
j=1

(oij − eij)
2

eij
, (4)
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where each term represent:

� χ2: the calculated chi-square statistic, measuring the discrepancy between
observed and expected frequencies.

� r: the number of rows in the contingency table.

� c: the number of columns in the contingency table.

� oij : the observed frequency in the cell at row i and column j.

� eij : the expected frequency in the cell at row i and column j, calculated
under the assumption of independence between the variables.

And eij are calculated as follows:

eij =
(ri
n

)(cj
n

)
n, (5)

with:

� ri: the total of row i,

� cj : the total of column j,

� n: the grand total of all observations in the table.

In other words, since we are assuming independence, we expect in cell ij the
product of the probabilities, multiplied by n to obtain its corresponding frequency.

Then, the test is conducted according to the chi-square distribution based on
its degrees of freedom and signi�cance level (p-value):

df = (r − 1) (c− 1) , (6)

where:

• r: the number of rows in the contingency table.

• c: the number of columns in the contingency table.

This procedure is designed for analyzing associations between two categorical
variables using a single representative sample.

The Pearson chi-square test is mathematically designed to treat variables sym-
metrically (Agresti, 2002, p. 87). Consequently, its application to an asymmetric
hypothesis, where one variable is theorized as dependent and the other indepen-
dent, is statistically incorrect. The test's structure cannot uphold a required di-
rectional speci�cation.
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2.4. Homogeneity Test

Pearson's chi-square framework can also be applied to test for homogeneity
across groups (Fisher, 1925; Crack, 2018). The key distinction lies in the null
hypothesis. As Cramer notes (Cramer, 1946, p. 445), the null hypothesis of ho-
mogeneity posits an unknown common distribution pi for all groups, whether
compared by columns or rows (DeGroot, 1988, p. 517).

Despite this conceptual di�erence, authors consistently emphasize that the
test statistic for homogeneity is calculated identically to that for independence
(Equations (4), (5), and (6)). Critically, the homogeneity test requires two or
more independent samples, unlike the test of independence, which analyzes two
variables within a single sample.

To clarify further, in the homogeneity test, �nding signi�cant di�erences in
proportions between groups suggests that the distributions are di�erent; however,
it does not directly test for an association between the variables. Why doesn't it
necessarily imply association? Observed di�erences in proportions may arise from
variability within the groups or from other factors not accounted for in the design.
In other words, although a di�erence exists, the test does not evaluate a direct
dependency between the variables (Franke et al., 2012).

3. E�ect Size in Contingency Tables

For 2 × 2 contingency tables, numerous authors, including Rosenthal (1994),
Agresti (2002), Sanchez-Meca et al. (2003), Fleiss et al. (2003), and Rita & Komo-
nen (2008), and Borenstein et al. (2009), widely recommend the use of odds ratios
as the most appropriate e�ect size measure. These experts highlight its utility and
robustness in quantifying the strength of association between variables, making it
a widely accepted and reliable metric across various research �elds.

Although the odds ratio is highly valuable for quantifying association strength
in studies with dichotomous variables, its applicability is limited. When contin-
gency tables cannot be simpli�ed to a 2×2 format, alternative e�ect size measures
become necessary. Commonly used metrics for larger tables include Cramer's V
and Cohen's w. Unlike the odds ratio, which focuses on comparing two proportions,
these measures assess the overall relationship between categorical variables.

However, these e�ect size indices have been criticized by Fleiss et al. (2003)
and by Haddock et al. (1998) as their utilization, based on treating variables as if
they were quantitative, sometimes tends to underestimate the true e�ect size.

The phi coe�cient (ϕ) is based on the chi-square:

phi(ϕ) =

√
χ2

n
. (7)
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Cramer's V is simply an extension of phi for the case of mxn tables:

V =

√
χ2

n(k − 1)
, (8)

where k = min(r, c) is de�ned as the minimum value between the number of rows
(r) or columns (c).

3.1. Cohen's w

Cohen's w coe�cient is an association measure analogous to the phi coe�cient
and Cramer's V . Although originally de�ned by Cohen (1988), the following
formula represents an adapted version proposed in that work:

w =

√√√√ r∑
i=1

c∑
j=1

( oij
n − mri mcj

n2

)2
mri mcj

n2

, (9)

where,

• oij is the observed frequency in cell ij.

• mri is the sum of observed frequencies in row i.

• mcj is the sum of observed frequencies in column j.

• n is the total number of cases.

The statistic is calculated by summing the squared di�erences between ob-
served and expected probabilities, normalized by the expected probabilities, across
all cells of the contingency table. The �nal value w is obtained by taking the square
root of this sum.

Cohen's w measures the strength of association between categorical variables.
A value near 0 suggests a weak association, while values approaching or exceeding
1 indicate a strong association.

Cohen (1988, p. 216) points out that the calculation of w is analogous to that
of the chi-square statistic and emphasizes the measure's symmetry.

Another way to calculate w is based on Cramer's V :

w = V
√
k − 1. (10)

Where k is the number of categories of the variable with the fewer categories.

Note that Ben-Shachar and others have recently proposed, for the case of
goodness-of-�t tests, a coe�cient derived from Cohen's w, which takes the fol-
lowing form (Ben-Shachar et al., 2023; Jané et al., 2024):

Fei =

√√√√ χ2

n
(

1
min(pe)

− 1
) (11)
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• χ2: the chi-square statistic calculated from goodness-of-�t test.

• n: the total sample size.

• min(pe): the smallest expected probability among all categories under the
null hypothesis.

The Fei coe�cient, unlike Cohen's w, has the virtue of remaining between the
values 0 and 1.

3.2. Con�dence Intervals for Cohen's w

The con�dence interval of this e�ect size statistic can be calculated by various
procedures.

• Bootstrap method: A resampling technique used to estimate the distribution
of a statistic from observed data. This method generates multiple bootstrap
samples by randomly selecting observations with replacement. Con�dence
intervals can be estimated from these samples. This procedure can be car-
ried out in cases of studies with representative samples. Various R libraries
are available to perform this procedure. We recommend using rcompanion,
developed by Mangia�co (2023).

• Permutation method: Another resampling technique that can be adapted to
construct con�dence intervals for parameters and group di�erences without
distributional assumptions. The method generates multiple samples through
random permutations of observations across groups without replacement, al-
lowing estimation of sampling variability and calculation of con�dence inter-
vals (Edgington & Onghena, 2007; Good, 2005). This technique is especially
useful in cases of experimental designs.

Calculations can be obtained on the Lock et al. (2021): https://www.lock
5stat.com/StatKey

• Non-central chi-square parameter method (NCCP): This approach constructs
con�dence intervals for Cohen's w by estimating the non-centrality param-
eter (λ) of a chi-squared distribution. The relationship between Cohen's w
and the non-central chi-square distribution is given by λ = nw2, where n
is the sample size and λ is the non-centrality parameter. Under the alter-
native hypothesis, the chi-square statistic follows a non-central chi-square
distribution with df = (r − 1)(c− 1) degrees of freedom.

A con�dence interval for Cohen's w can be obtained by �rst determining
the con�dence interval for the non-centrality parameter λ. This approach
preserves the exact relationship between the e�ect size and the chi-square
statistic, ensuring that the resulting interval accurately re�ects the theoret-
ical properties of the non-central chi-square distribution. The bounds of λ
are calculated numerically from the appropriate quantiles of the non-central
chi-square distribution, after which the con�dence interval for Cohen's w
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is directly derived. Compared to bootstrap or permutation methods, this
procedure is generally more reliable and considerably more precise than nor-
mal approximations, particularly for small to moderate sample sizes (Algina
et al., 2006; Grissom & Kim, 2012; Kelly, 2007; Steiger, 2004).

The NCCP method can be applied in both experimental studies, where
group assignment is randomized, and observational studies with represen-
tative samples. For practical implementation, we recommend using the ef-

fectsize package in R (Ben-Shachar et al., 2023) or the Real Statistics Excel
add-in by Zaiontz (2024) .

4. Chi-square from Cohen's w

One way of calculating chi-square is given by:

χ2 =

r∑
i=1

c∑
j=1

(oij − eij)
2

eij
= w2 n. (12)

Hence, by (9) the chi-square statistic can also be computed as:

χ2 =

r∑
i=1

c∑
j=1

( oij
n − mri mcj

n2

)2
mri mcj

n2

n. (13)

The degrees of freedom (df) should be calculated as in Equation (6). This
formulation provides another approach for computing the chi-square statistic using
observed and expected proportions of independence. Please make a note of this
method as it will be bene�cial for us later on.

5. Asymmetric Cohen's w

Thus far, we have discussed the classic method for calculating Cohen's w, as
originally proposed by the author. This conventional formulation treats variables
symmetrically, lacking distinction between independent and dependent variables.
This approach shares a fundamental limitation with the Pearson chi-square test
upon which it is based: the inability to model directional relationships, which often
leads to researcher error. This is corroborated by empirical evidence; for instance,
Franke et al. (2012) reported that over half of the published studies using chi-
square tests misapplied or misinterpreted them, with correct applications observed
in only about 44% of cases. Many of these errors stemmed precisely from treating
asymmetric hypotheses with symmetric tools.

However, when we clearly de�ne independent and dependent variables, the
measures of association should be asymmetric. An asymmetric relationship be-
tween variables occurs when one variable is treated as dependent (the outcome
to be explained or predicted) and the other as independent (the explanatory, the
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factor or predictor variable). In this type of relationship, the association is not
reciprocal: changes in the independent variable are analyzed in terms of their ef-
fect on the dependent variable, but the reverse is not necessarily true. Notable
examples of such measures include Goodman and Kruskal's Lambda (λ) and Tau
(τa and τb) Goodman & Kruskal (1963), as well as Theil's uncertainty coe�cient
(U). All three can be interpreted as measures of reduction in error or uncertainty,
though they di�er in focus: Lambda quanti�es the proportional reduction of errors
when predicting the modal category of the dependent variable, Tau measures the
reduction of prediction error across all categories, and U quanti�es the reduction
in uncertainty when the independent variable is known. While these measures
are informative, they have limitations: for instance, Lambda may underestimate
association when the dependent variable is highly skewed, Tau tends to underes-
timate association in the central portion of its range, as it is a�ected by sparse or
highly dispersed category distributions, and U behaves similarly to Tau but can
be complex to interpret in practice (Berry et al., 2018).

To address these limitations while providing a standardized and interpretable
e�ect size, this paper introduces a novel application of Cohen's w. Rather than
testing for total independence, we examine a scenario where the null hypothesis
is de�ned by the marginal distribution of one variable. For simplicity, we will
consider only the columns as the independent (or factor) variable, examining how
they relate to a single sample while focusing on asymmetric relationships between
the variables:

wc, Asym =

√√√√√ r∑
i=1

c∑
j=1

(
oij
mcj

− mri
n

)2

mri
n

(14)

• oij represents the observed frequency in each cell ij.

• mcj is the marginal frequency of each column j in the contingency table.

• oij
mcj

denotes the alternative hypothesis.

• mri denotes the marginal frequency of row i, which is the total sum of values
in the same row.

• n represents the total number of observations in the contingency table.

• mri
n represents the marginal probability of the contingency table in the col-

umn direction, corresponding to the null hypothesis.

• r is the number of rows, and c refers to the number of columns in the con-
tingency table, which, in this context, represents the factor variable.

This formula computes the asymmetric Cohen's w by summing, across all cells
of the contingency table, the squared di�erences between each cell's proportion

Revista Colombiana de Estadística - Theoretical Statistics 49 (2026) 89�107



98 Luis D'Angelo

within its column (j) and the corresponding marginal probability, with each dif-
ference normalized by this marginal probability. The �nal statistic is the square
root of this sum.

This asymmetric adaptation retains Cohen's original computational framework
while conditioning on the column variable. The interpretation mirrors standard
Cohen's w but is applied directionally (for simplicity, this paper focuses only on
the column variable as the explanatory factor). A value of 0 indicates no e�ect
of the factor (column) variable on the response (row) variable, while values close
to or exceeding 1 indicate a strong e�ect. Cohen's conventional benchmarks are
provided in Table 1: small (w = 0.10), medium (w = 0.30), and large (w = 0.50).

Table 1: Equivalents of wc,Asym and Cramer's V

E�ect size Very small Small Medium Large Very large

w∗
c,Asym less than

0.1
0.100 0.300 0.500 more than

0.5

Cramer's V (c = 2) less than
0.1

0.100 0.300 0.500 more than
0.5

Cramer's V (c = 3) less than
0.071

0.071 0.212 0.354 more than
0.354

Cramer's V (c = 4) less than
0.058

0.058 0.173 0.289 more than
0.289

Cramer's V (c = 5) less than
0.050

0.050 0.150 0.250 more than
0.250

Cramer's V (c = 6) less than
0.045

0.045 0.134 0.224 more than
0.224

* The equivalence of wc,Asym holds only for 2 × 2 tables, as indicated by Cohen (1988, p.
221) in the case of the (symmetric) w.

6. Converting Asymmetric Cohen's w into

Asymmetric Cramer's V

E�ect sizes are generally considered more interpretable when scaled to a [0, 1]
range. This normalization can be achieved by exploiting the mathematical rela-
tionship between Cramer's V and Cohen's w:

Cramer's V =
wSym√
k − 1

, (15)

where wSym denotes the standard Cohen's w and k represents the smaller dimen-
sion of the contingency table, i.e., the minimum of the number of rows or columns.

As Cohen (1988, p. 221), the maximum attainable value of w is
√
k − 1. Thus,

Cramer's V can be understood as a normalization of w to the range [0,
√
k − 1].

However, for the asymmetric Cramer's V , an additional adjustment is necessary
to ensure proper scaling to the [0, 1] interval:

Vc,Asym =
wc,Asym√

1−(mri
n )

min

(mri
n )

min

· c
(16)
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• wc,Asym is the asymmetric Cohen's w coe�cient, treating the columns as the
predictor (factor) variable.

•
(
mri
n

)
min

is the minimum ratio of the sum of observed frequencies in row i
to the total sample size n.

• n is the total number of cases.

• c is the number of columns.

Consequently, the asymmetric Cramer's V is normalized to the [0, 1] interval.

The interpretation follows Cohen's original heuristic conventions, which pro-
posed three approximate cuto� points for 2 × 2 tables: small for values around
0.1, medium for values around 0.3, and large for values around 0.5. Additional
categories (very small < 0.1 and very large > 0.5) constitute personal adaptations
extending this logical framework, consistent with similar scales found in the liter-
ature. Furthermore, as the number of columns c in the table increases, the cuto�
values are adjusted by dividing the original thresholds by

√
c− 1.

7. Asymmetric Chi-square

The relationship between chi-square and Cohen's w �like in Equation (12)� is:

χ2 = w2 n. (17)

We now extend this relationship to the asymmetric case:

χ2
c,Asym = w2

c,Asymn. (18)

The formal derivation stems directly from the asymmetric Cohen's w (see Equa-
tion (14)):

χ2
c,Asym =

 r∑
i=1

c∑
j=1

(
oij
mcj

− mri
n

)2

mri
n

n. (19)

Unlike the traditional chi-square test of independence, which evaluates global
independence between variables, this asymmetric approach computes the statistic
under an alternative null hypothesis based on the conditional distribution of the
dependent variable.

The degrees of freedom (df) are obtained as (r − 1)(c − 1), as indicated in
Equation (6). This result follows from the logic of the test: because the statistic
compares the row proportions within each column to the overall row marginal
distribution, which is estimated from the data. Column totals are treated as
�xed. Under this �xed-columns design, each of the c columns contributes (r − 1)
degrees of freedom, since the observed frequencies within a column must sum to its
predetermined total. However, the marginal row proportions mri

n are estimated
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from the data, which incurs an additional loss of (r − 1) degrees of freedom.
Consequently, the total degrees of freedom for the asymmetric statistic are given
by c(r − 1)− (r − 1) = (r − 1)(c− 1).

This approach di�ers fundamentally from the standard test of homogeneity,
which requires independent samples for each subgroup, marginal totals are ir-
relevant, and tests against an unspeci�ed common population distribution. In
contrast, the asymmetric chi-square evaluates whether each column's distribution
conforms to the observed marginal distribution of the population. This makes it
particularly suitable for assessing the e�ect of an independent variable on a de-
pendent variable in representative sampling contexts. By explicitly conditioning
on the observed population distribution, this measure also helps address the doc-
umented misuse of traditional chi-square tests in analyzing variable relationships
(see Franke et al., 2012).

8. Con�dence Intervals of Asymmetric Cohen's w

As with the symmetric Cohen's w, con�dence intervals for the asymmetric
coe�cient can be obtained through several techniques, including the bootstrap
resampling, permutation method, the non-central chi-square parameter procedure,
and the delta method. Here, the non-central chi-square approach is proposed
as likely the most accurate, although further testing and validation are needed
(Grissom & Kim, 2012; Kelly, 2007; Steiger, 2004).

9. A Simulation Study Comparing Association

Coe�cients and E�ect Sizes Across Di�erent

Frequency Distributions in Contingency Tables

To illustrate how association coe�cients and e�ect sizes are calculated in con-
tingency tables, we use 3× 3 tables with identical total sample sizes but di�erent
frequency distributions between main diagonal and o�-diagonal cells. This de-
sign enables us to examine how association coe�cients and e�ect sizes vary as
frequencies progressively shift from o�-diagonal to main diagonal positions.

For each pair of values in the �Diagonal - Remaining cells� column of Table 2
(e.g., 14�14, 16�13, etc.), a 3× 3 contingency table is constructed as follows:

The cells on the main diagonal (positions (1,1), (2,2), and (3,3)) take the value
indicated on the left-hand. The o�-diagonal cells take the value indicated on the
right-hand. Thus, each case produces a table with identical total frequency but a
di�erent distribution patterns between diagonal and o�-diagonal cells. It should
also be noted that, since the variables are nominal, the diagonal structure is ar-
bitrary; any rearrangement of categories preserves the same underlying statistical
relationships.
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Table 2: Comparison of symmetric and asymmetric chi-square for di�erent diagonal-
remaining cells in 3× 3 tables.

Frequencies Symmetric p Asymmetric p

Diagonal �
Remaining cells

chi-square symmetric chi-square asymmetric

14�14 0.00 1.000 0.00 1.000

16�13 1.29 0.864 3.86 0.426

18�12 5.14 0.273 15.43 0.004

20�11 11.57 0.021 34.71 0.000

22�10 20.57 0.000 61.71 0.000

24�9 32.14 0.000 96.43 0.000

26�8 46.29 0.000 138.86 0.000

28�7 63.00 0.000 189.00 0.000

30�6 82.29 0.000 246.86 0.000

32�5 104.14 0.000 312.43 0.000

34�4 128.57 0.000 385.71 0.000

36�3 155.57 0.000 466.71 0.000

38�2 185.14 0.000 555.43 0.000

40�1 217.29 0.000 651.86 0.000

42�0 252.00 0.000 756.00 0.000

This analysis considers two scenarios. The �rst, termed the symmetric chi-

square, corresponds to the classical test of independence, where C denotes the
column variable and R the row variable, evaluating the alternative hypothesis of
mutual association between the variables (Formula 4).

The second scenario, termed asymmetric chi-square, refers to the hypothesis
test in which C is considered the predictor of R, assessing the association in a
speci�c direction and quantifying the dependence of the rows on the columns
(Formula 20).

In both scenarios, the chi-square statistic increases as frequencies concentrate
in the diagonal cells.

However, this increase is markedly more pronounced in the asymmetric chi-
square than in its symmetric counterpart.

Crucially, applying the symmetric test to a hypothesis specifying a directional
relationship, where C functions as a predictor of R, would be methodologically
inappropriate. In such cases, the asymmetric chi-square should be employed to
correctly evaluate the directed dependence between the variables.

Once again, we face two possible scenarios. If variables C and R mutually
in�uence each other, the symmetric Cohen's w is appropriate. However, if the
hypothesis posits that C a�ects R, one of the asymmetric versions should be used.

In this context, we aim to examine the behavior of the new asymmetric Cohen's
w (Formula 14), or its equivalent, asymmetric Cramer's V (according to formula
16), in comparison to the previously mentioned Goodman and Kruskal's Lambda
and Tau coe�cients.
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Table 3: Association measures varying diagonal concentrations in 3× 3 tables

Frequencies Sym. Asym. Goodman
&

Goodman
&

Asym. Interpre

Diag.�
Rem.

Cohen's Cohen's Kruskal's Kruskal's Cramer's tation

cells w w λ τ V asym. V

14�14 0.00 0.00 0.00 0.00 0.00 null/very
small

16�13 0.10 0.17 0.07 0.01 0.07 small

18�12 0.20 0.35 0.14 0.02 0.14 small

20�11 0.30 0.52 0.21 0.05 0.21 medium

22�10 0.40 0.70 0.29 0.08 0.29 medium

24�9 0.51 0.87 0.36 0.13 0.36 large

26�8 0.61 1.05 0.43 0.18 0.43 very large

28�7 0.71 1.22 0.50 0.25 0.50 very large

30�6 0.81 1.40 0.57 0.33 0.57 very large

32�5 0.91 1.57 0.64 0.41 0.64 very large

34�4 1.01 1.75 0.71 0.51 0.71 very large

36�3 1.11 1.92 0.79 0.62 0.79 very large

38�2 1.21 2.10 0.86 0.74 0.86 very large

40�1 1.31 2.27 0.93 0.86 0.93 very large

42�0 1.41 2.45 1.00 1.00 1.00 perfect

We observe that the Lambda coe�cients are practically identical, equal in this
case due to rounding, whereas the Tau coe�cient shows a similar pattern at the
extremes but yields considerably lower values in the intermediate range. This is
consistent with existing literature, which notes that Tau tends to underestimate
association.

In conclusion, the asymmetric Cohen's w, or its equivalent asymmetric Cramer's
V , performs better than Tau, but it does not appear to o�er a distinct advantage
over Lambda in the scenarios examined.

We present a comparison analogous to that in Table 2, now applied to 3 × 3
tables with a constant total sample size. In this design, a single cell accumulates
the frequencies systematically reallocated from all other cells.

The initial con�guration (14�14) distributes frequencies uniformly across all
cells. In the subsequent scenario (22�13), each of the eight remaining cells con-
tributes one frequency unit (reducing their counts from 14 to 13), which are pooled
into the target cell, raising its count from 14 to 22.

This reallocation scheme is repeated across the di�erent scenarios, progressively
concentrating frequencies into a single cell and generating increasingly asymmetric
distributions.

Once again in this case, we observe that in both approaches, the chi-square
coe�cient increases as frequencies become concentrated in a single cell.

However, this increase is markedly more pronounced for the asymmetric chi-
square than for its symmetric counterpart, consistent with the pattern observed
in Table 2.
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Table 4: Comparison of symmetric and asymmetric chi-square for di�erent one cell-
remaining cells in 3× 3 tables.

Frequencies Symmetric p Asymmetric p

One cell �
Remaining cells

chi-square symmetric chi-square asymmetric

14�14 0.00 1.000 0.00 1.000

22�13 1.97 0.742 5.62 0.229

30�12 6.22 0.183 17.63 0.001

38�11 11.34 0.023 33.09 0.000

46�10 16.66 0.002 51.80 0.000

54�9 21.88 0.000 74.74 0.000

62�8 26.84 0.000 103.75 0.000

70�7 31.50 0.000 141.75 0.000

78�6 35.84 0.000 193.54 0.000

86�5 39.87 0.000 267.61 0.000

94�4 43.60 0.000 380.85 0.000

102�3 47.06 0.000 572.51 0.000

110�2 50.26 0.000 960.24 0.000

118�1 53.24 0.000 2132.06 0.000

126�0 56.00 0.000 > 100 000 000 0.000

As in previous analyses, we consider two distinct scenarios. If variables C
and R exhibit mutual dependence, the symmetric Cohen's w is the appropriate
measure. Conversely, if the hypothesis posits a directional e�ect of C on R, one
of the asymmetric versions should be applied. As illustrated in Table 3, the two
coe�cients yield distinct values under these di�erent conditions.

An examination of the behavior of the new asymmetric Cohen's w, and its
equivalent, the asymmetric Cramer's V (Formula 16), in comparison with Good-
man and Kruskal's Lambda and Tau coe�cients reveals distinct patterns. Lambda
fails entirely in this scenario, returning values of zero throughout, a limitation
consistent with its documented methodological constraints. Tau displays a similar
pattern at the distribution extremes but yields substantially lower values across
the intermediate range, aligning with existing literature noting its tendency to
underestimate association strength.

In conclusion, the asymmetric Cohen's w, and its equivalent asymmetric Cramer's
V , not only outperforms Tau but, crucially, remains functional in scenarios where
Lambda fails entirely. Thus, while the new measure may behave similarly to
Lambda in some contexts, it o�ers superior robustness, providing meaningful re-
sults across a wider range of distributional patterns.

The interpretation of the asymmetric Cramer's V coe�cients presented in Ta-
bles 3 and 5 follows the guidelines in Table 1, speci�cally using the reference values
for c = 3.
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Table 5: Association measures varying one cell concentrations in 3× 3 tables

Frequencies Sym. Asym. Goodman
&

Goodman
&

Asym. Interpre

One
cell�Rem.

Cohen's Cohen's Kruskal's Kruskal's Cramer's tation

cells w w λ τ V asym. V

14�14 0.00 0.00 0.00 0.00 0.00 null/very
small

22�13 0.13 0.21 0.00 0.01 0.08 small

30�12 0.22 0.37 0.00 0.03 0.14 small

38�11 0.30 0.51 0.00 0.05 0.18 small

46�10 0.36 0.64 0.00 0.08 0.21 large

54�9 0.42 0.77 0.00 0.11 0.23 large

62�8 0.46 0.91 0.00 0.14 0.25 large

70�7 0.50 1.06 0.00 0.17 0.27 large

78�6 0.53 1.24 0.00 0.19 0.29 large

86�5 0.56 1.46 0.00 0.22 0.31 large

94�4 0.59 1.74 0.00 0.25 0.33 large

102�3 0.61 2.13 0.00 0.27 0.34 large

110�2 0.63 2.76 0.00 0.29 0.36 very large

118�1 0.65 4.11 0.00 0.31 0.37 very large

126�0 0.67 136.62 0.00 0.33 0.38 very large

10. Conclusions

Although association coe�cients such as Goodman and Kruskal's Lambda and
Tau are widely employed, they present signi�cant limitations in capturing asym-
metric relationships in contingency tables. Lambda, which quanti�es the propor-
tional reduction in prediction error using modal categories, can produce values of
zero despite non-trivial associations, particularly in tables with skewed marginal
distributions. Tau, which measures proportional reduction in error based on over-
all variability, tends to underestimate association strength in the mid-range of
its values. Similarly, Theil's uncertainty coe�cient (U) behaves comparably to
Tau, quantifying uncertainty rather than e�ect size, and can be di�cult to inter-
pret. Consequently, exclusive reliance on these conventional measures may obscure
meaningful dependencies or misrepresent the true magnitude of associations.

To overcome these limitations, we develop an asymmetric extension of Co-
hen's w alongside its corresponding directional hypothesis test. This e�ect size
quanti�es the strength of directional in�uence between nominal-level categorical
variables, while the companion test assesses its statistical signi�cance without
assuming variable interchangeability. The resulting framework provides a more
accurate and interpretable method for analyzing directional dependencies, partic-
ularly in scenarios where traditional symmetric measures are inadequate.

The proposed method can be applied in two primary contexts. First, in obser-
vational studies, which often involve samples collected at a single time point with
only the total sample size controlled, symmetric association coe�cients cannot cap-
ture directional e�ects because they inherently distribute associations reciprocally
between variables. The asymmetric framework presented here allows researchers
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to quantify both the presence and magnitude of directional e�ects with greater
accuracy, thereby enhancing interpretability and enabling more meaningful cross-
study comparisons. Results in these cases should not be interpreted as conclusive
evidence of causality; hypothesis test outcomes should always be reported along-
side e�ect sizes and con�dence intervals.

Second, in experimental designs with controlled group assignment, such as
clinical trials or intervention studies where the direction of in�uence is explicitly
de�ned, asymmetric coe�cients provide a robust framework for evaluating e�ects
in the intended direction. These coe�cients accurately attribute e�ects from the
manipulated independent variable to the measured outcome variable. In such
cases, if the experiment is properly designed and other variables are adequately
controlled, both statistical signi�cance and e�ect size can be attributed to the
experimental variable, yielding precise estimates consistent with contemporary
best practices in statistical inference.

Furthermore, the framework clari�es the choice of analytical tools: while the
classical chi-square test of homogeneity remains appropriate for comparing multi-
ple samples, the asymmetric chi-square test and Cohen's asymmetric w are better
suited for analyzing the e�ect of one nominal variable on another within a single
sample.

In summary, this work introduces a re�ned methodological framework consist-
ing of two key components: 1) asymmetric e�ect size measures that quantify the
strength of directional relationships between nominal variables, and 2) correspond-
ing hypothesis tests that evaluate the statistical signi�cance of these directional
e�ects. Together, these components provide a comprehensive approach for ana-
lyzing nominal data within asymmetric or conditional hypotheses. This approach
enhances interpretability, supports more robust statistical inference, and o�ers a
versatile solution applicable across diverse research designs.

This framework, centered on the adoption of asymmetric Cohen's w and its
associated chi-square test, bridges a critical gap between statistical methodology
and substantive theory. It enables a more nuanced analysis in which detecting,
quantifying, and communicating e�ects aligns directly with theoretical predic-
tions of directionality. Consistent with this approach, the reporting of e�ect sizes
alongside their con�dence intervals promotes transparency, facilitates cross-study
comparison, and ensures that empirical �ndings are presented with both clarity
and statistical rigor.[
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