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Abstract

The beta regression model is part of a class of models applied to con-
tinuous responses restricted to the standard unit interval, such as rates and
proportions. Ferrari & Cribari-Neto (2004) proposed the beta regression
model incorporating covariates in the mean of the distribution through a
link function. However, for studies in which the response variable presents
asymmetry and/or discrepant values, this model may not be appropriate. A
more convenient measure of central tendency in this situation is the mode of
the distribution because of its robustness to outliers and easy interpretation
in the presence of asymmetry. Zhou et al. (2020) proposed a parameteriza-
tion for the beta distribution in terms of the mode and a precision parameter
and presented a modal regression model robust to outliers. In this work, we
present a more complete study of the modal beta regression properties and
performance and a comparison between this model and the usual beta re-
gression model. We perform Monte Carlo simulation studies to evaluate the
maximum likelihood estimators under different scenarios of asymmetry and
sensitivity to outliers when some patterns of disturbance are imposed. Fur-
thermore, we propose and evaluate three residuals for this class of models.
The numerical results suggest that the modal regression model presents a
good performance on symmetrical and asymmetrical data and in most sce-
narios, it performs better in the presence of outliers than the usual beta
regression model. Finally, we present and discuss two empirical applications
and a comparative analysis of the mean and modal beta regression models.
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Resumen

El modelo de regresion beta es parte de una clase de modelos aplicados a
respuestas continuas restringidas al intervalo unitario estandar, como tasas y
proporciones. Ferrari & Cribari-Neto (2004) propuso el modelo de regresion
beta incorporando covariables en la media de la distribucion a través de una
funcion de enlace. Sin embargo, para estudios en los que la variable respuesta
presenta asimetria y/o valores discrepantes, este modelo puede no ser apropi-
ado. Una medida de tendencia central méas conveniente en esta situacion es
la moda de la distribucién debido a que es robusta para valores atipicos
y también a su fécil interpretacién en presencia de asimetria. Zhou et al.
(2020) propuso una parametrizacion para la distribucién beta en términos
de la moda y un pardmetro de precisién y presenté un modelo de regresion
modal robusto a valores atipicos. En este trabajo, presentamos un estudio
mas completo de las propiedades y el desempeiio de la regresion beta modal
y una comparacion entre este modelo y el modelo de regresiéon beta usual.
Fueron realizados estudios de simulacion de Monte Carlo para evaluar los
estimadores de méxima verosimilitud en diferentes escenarios de asimetria y
sensibilidad a valores atipicos cuando se imponen algunos patrones de per-
turbacién. Ademas, proponemos y evaluamos tres residuos para esta clase
de modelos. Los resultados numéricos sugieren que el modelo de regresion
beta modal presenta un buen desempeiio en datos simétricos y asimétricos y,
en la mayoria de los escenarios, se desempeiia mejor en presencia de valores
atipicos que el modelo de regresion beta habitual. Finalmente, fueron pre-
sentadas y discutidas dos aplicaciones empiricas y un anélisis comparativo
de los modelos de regresion beta media y modal.

Palabras clave: Moda; Maxima verosimilitud; Regresiéon beta; Regresion
modal paramétrica.

1. Introduction

There are several studies whose variables of interest have values in the unit
interval (0, 1), such as rates and/or proportions. In the literature, there are
some probability distributions to model this type of data. For instance, the beta
distribution is one of the most used distributions due to its simplicity compared
to some other models and the diversity of shapes assumed for different parameter
values (Ghitany et al., 2019).

In practice, there are situations where the interest is to evaluate the behavior
of a specific variable in relation to other variables. To study the relationship be-
tween these variables, we can use regression models. In this context, Kieschnick
& McCullough (2003) proposed a regression model for proportion data assuming
a beta distribution for the response variable. Nevertheless, this model uses a fixed
link function (logit) to introduce covariates in the parameter of interest, which
makes the model more restricted. Later, Ferrari & Cribari-Neto (2004) proposed
a regression model that assumes a beta distribution for the response variable and
allows for the use of a more generic link function. In addition, the authors param-
eterized the distribution in terms of a mean and a dispersion parameter, including
covariates on the mean of the distribution. In this work, we define this model as
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the mean (or usual) beta regression model. Furthermore, beta regression models
with joint modeling of the mean and the dispersion parameter were previously
proposed by Cepeda (2001) under a Bayesian approach, using linear predictors of
the form logit and log to model the parameters p and ¢, respectively. This frame-
work was extended by Cepeda & Gamerman (2005) within the biparametric family
of distributions. Additionally, Cepeda-Cuervo (2015) introduced beta regression
models that jointly model the mean and the variance, providing greater flexibility
for handling proportional data with heteroscedasticity. Several published works
have studied this model, for example, Espinheira et al. (2008a) proposed diagnos-
tic tools for the model influence, Espinheira et al. (2008b) presented two residuals
for this class of models, Ospina & Ferrari (2010) developed a zero-and-one inflated
beta regression model, and Espinheira et al. (2017) proposed a new residual to
be used in linear and non-linear beta regression models. Bourguignon & Gallardo
(2025), extend the usual mean beta regression model using a general and unified
parameterization of this distribution that is indexed by some central tendency
measure, such as median, mode, arithmetic mean, geometric mean or harmonic
mean, and a concentration parameter.

However, there are data in the unit interval that present asymmetry and/or
outliers. In these situations, the mean is not the most suitable measure of central
tendency. Thus, the beta regression model proposed by Ferrari & Cribari-Neto
(2004) may not be adequate for data with these characteristics. As an alternative,
Bayes et al. (2012) proposed a regression model in which the response variable
assumes a rectangular beta distribution. Despite the great performance, the rect-
angular beta model includes an additional parameter compared to the mean beta
model. An alternative approach in such contexts is to model the conditional mode
instead of the conditional mean. The mode is a central tendency measure of easy
interpretation, robust to outliers, more representative in asymmetric data Oelker
et al. (2015), and has also been used in regression models.

The regression models that consider the mode modeling of the response variable
conditional on a set of regressors are known in the literature as modal regression
models. The modal regression idea was initially proposed by Sager & Thisted
(1982), who used the zero-one loss function for the maximum likelihood estima-
tion of isotonic mode regression. They minimized a weighted loss with its weight
related to a nonparametric likelihood. Lee (1989) and Lee (1993) developed some
pioneering studies on modal regression. The author introduced semiparametric
estimators for the conditional mode based on the minimization of the associated
loss function. Yao & Li (2014) developed a modal linear regression model to ex-
plore high-dimensional data. In this model, the authors consider a linear link
function to model the conditional mode of the response variable given a set of co-
variates. Through studies with real and simulated data, they concluded that the
proposed model provides smaller prediction intervals than those obtained through
linear regression models for the mean and median. In the parametric context,
modal regression has been little explored. Aristodemou (2014) proposed a para-
metric modal regression model based on the gamma, distribution, in which a new
parameterization in terms of the mode was considered and a constant precision as-
sumed. Bourguignon et al. (2020) proposed an extension of the model proposed by
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Aristodemou (2014) considering a new parameterization for the gamma distribu-
tion and enabling the assumption of non-constant precision through the incorpo-
ration of a regression structure in the precision parameter.

According to Kemp & Santos Silva (2012), interest in modal regression is much
broader, and the mode is indisputably the most intuitive measure of central ten-
dency, being especially useful in modeling right-skewed data commonly found in
many econometric applications (e.g., wages, prices, and expenditures). Modal re-
gression models have been applied across various fields of study. For instance, Cao
et al. (2023) employed modal regression models with skew-normal distributions to
analyze body mass index data. Zhou et al. (2020) used modal regression mod-
els in neuroscience data, while Ho et al. (2017) fitted modal regression models to
econometric datasets.

The beta distribution does not have a closed expression for the median for
arbitrary values of its parameters. In this context, it is more intuitive to model
data that present asymmetry and/or outliers assuming the beta distribution for
the response variable and modeling the mode, since this measure has a closed-
form expression in this distribution. Then, Zhou et al. (2020) established a modal
regression model assuming the beta distribution using a general link function. For
this, they proposed a new parameterization for the beta distribution in terms
of a mode and a precision parameter. However, the authors did not study the
inferential aspects of this model, which motivates us to write this paper. In this
work, we perform a more in-depth study of the modal beta model and explore the
following aspects: (1) obtaining the Fisher information matrix; (2) conducting a
more complete study on the performance of the model parameters estimates in
symmetrical and asymmetrical cases; (3) analyzing the coverage probability of the
approximated confidence intervals; (4) evaluating and comparing, by simulation,
the sensitivity of the modal and mean beta regression models to outliers; (5)
proposing three different residuals and their numerical evaluation; and (6) applying
the modal and mean beta regression models to two sets of real data.

This paper is organized as follows. Section 2 presents some information about
the beta distribution and the others parameterizations studied in this work, such as
the density probability function, properties, and some inferential aspects. Section
3 brings the definition of the modal beta regression model, some inferential aspects
of the model parameters, and the proposition of three residuals for this class
of models. Section 4 presents the simulation studies conducted to evaluate the
maximum likelihood estimators, coverage probability, residuals, and the sensitivity
of the mean and modal beta regression models to outliers. In Section 5, two
applications to real data are presented and discussed. In this section, the fitted
mean and modal beta regression models are compared. In addition, the adequacy
of both models to the datasets is evaluated by analyzing the residuals. Concluding
remarks and future works are presented in Section 6.
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2. Modal Beta Distribution

A random variable Y follows a beta distribution with shape parameters o > 0
and 8 > 0, denoted by Y ~ Beta(a, 3), if its probability density function (pdf) is
given by

1
flys o, B8) =
W) = Blap)

where B(a, ) = T'(a)['(3)/T'(a+p3) is the beta function and I'(a) = [~ w* 'e “dw
is the gamma function.

y i 1-y)Ph 0<y<l, (1)

The mean and variance of Y are given, respectively by

o af

EV)=0r5 YO = gpassr

(2)

This distribution has no general closed-form expression for the quantile function
and consequently has no closed-form expression for the median for arbitrary values
of @ and B. However, besides the mean, the beta distribution has a closed-form
expression for the mode, which is given by

a—1

MOde(Y) = m s

a>1 and [>1.

When a = 8 = 1, the Beta distribution corresponds to the Uniform(0,1)
distribution, characterized by a constant density function and consequently no
well-defined mode. In the case where o < 1 and § < 1, the distribution exhibits a
bimodal shape with modes located near the boundaries 0 and 1. Furthermore, for
a < 1 and g > 1, the mode is degenerate at m = 0, while for 8 < 1 and @ > 1,
the mode is degenerate at m = 1.

In this work, we consider a different parameterization for the beta distribution
proposed by Zhou et al. (2020). For « and 8> 1, welet m = (a —1)/(a+ 5 —2)
and o =a+ 5 —2,ie., a=m¢+1and 8= (1—m)p+ 1. Thus, it follows that

me + 1 m¢ + 1][(1 —m)¢ + 1]

, and Var(Y):[

Mode(Y) =m, E(Y)=
ode(Y)=m, B()="3773 6+ 226 +3)
Then, the beta density in (1) can also be rewritten as
me (1 _ 4)(1-m)¢
y"(l—y
flysm, ) = 3 0-) 0<y<l, (3)

(mé+1,(L=m)p+1)°

where 0 < m < 1 is the mode and ¢ > 0 is the precision parameter. If a random
variable has pdf given in (3), we use the notation Y ~ MB(m, ¢). From now on,
we call this distribution as modal beta distribution. Figure 1 shows the pdf of Y ~
MB(m, ¢) for different combinations of parameter values. Figure 1(a) illustrates
that, for a fixed value of ¢, the probability density function exhibits different
patterns of skewness depending on the value of m, ranging from left-skewed to
right-skewed, or adopting an approximately symmetric profile. Figures 1(b), 1(c),
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and 1(d) indicate that, as ¢ increases, the MB distribution’s pdf becomes more
concentrated around the mode, whereas smaller ¢ values result in more dispersed
pdfs. Figure 1(e) illustrates that, as ¢ approaches zero, the MB distribution’s pdf
converges to a uniform distribution.

Density

Density
0.0 05 1.0 15 20 25 3.0

() m=0.5
Ficure 1: Density functions under different parameter settings

The skewness and kurtosis coefficients of Y ~ MB(m, ¢) are respectively given

b
Y 20(1 —2m)v/¢ + 3
= (4)
(¢ +4)y/me + 1][(1 — m)¢ + 1]
and

. 6{¢°(2m — 1)*(¢ +3) — [m¢ + 1][(1 —m)¢ + 1](¢ +4)}
[m¢ +1][(1 —m)¢ +1](¢ +4)(¢ +5) '
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The factor (1 — 2m) controls the sign in (4), in other words, we confirm what
was seen at Figure 1, if m = 0.5, m > 0.5, and m < 0.5, the distribution is
symmetric, left-skewed, and right-skewed, respectively.

The modal beta density function, Equation (3), can be rewritten in the follow-
ing form:

flysm, ¢) = exp{melog (y/(1 —y)) + ¢log (1 —y) —log B (m¢ +1,(1 —m)¢ + 1)},

that is, the modal beta distribution belongs to the two-parameter canonical ex-
ponential family (k¢ = 2) with 7(m,¢) = (n1,72) = (me,¢), T = (T1,1T2) =
(log(y/(1—y)),log(1 —y)), d(m, ¢) =log(B(m¢+1, (1 —m)¢+1)), h(y) =1, and
A=(0,1).

Figure 2 shows a comparison between the mean and modal beta distributions.
For this, the same values were chosen for the first and second parameters of both
distributions under positive and negative asymmetry. The modal beta distribu-
tion’s first parameter is more informative than that of the mean beta distribution
in this scenario because it represents the point of higher mass concentration of the
distribution.

Density

00 05 1.0 16 20 25 30 35

(a) Beta(y, ¢) (b) MB(m, ¢)
F1GURE 2: Densities of Beta(u, ¢) and MB(m, ¢).

3. Modal Beta Regression Model: Inference and
Diagnostics
Let Y1,...,Y, be independent random variables with Y; ~ MB(m;, ¢), where

Mode(Y;) = m;,i = 1,...,n. We introduce a regression structure in the mode
satisfying the following functional relation:

g(mz):nl:X;r/Ba 2:1’5n7 (5)

where ¢ : (0,1) — R is a link function strictly monotone and twice differentiable,
x] = (v;1,...,7;) is the covariate vector associated with the i-th response, 3 =
(Bi,...,B,)" is the p-vector (p < n) of unknown parameters associated with the
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covariates, and 7); is the linear predictor. We assume the design matrix X =
(x1,...,2,)" with dimension n x p has full rank (rank(X) = p). Besides this, the
precision parameter ¢ is unknown and constant for all observations.

The g(-) function defined in (5) enables the use of several functions, mak-
ing the model more flexible. If we consider that the link function is logit, pro-
bit, or complement log-log, we obtain, respectively, g(m;) = log[m,/(1 — m;)],
g(m;) = @7 1(m;), and g(m;) = log{—log(1 — m;)}, where ®(-) is the cumulative
distribution function of a standard normal random variable. Based on a sample of
n independent observations, the log-likelihood function of the regression parameter
vector @ = (37, $)" has the form

n

0(8) = tmi,¢), (6)

=1

where
£(mi, @) = miglog(y:) + (1 —m;)plog(l — y;) — log[B(m;é + 1, (1 — m;)¢ + 1)].

The score vector, obtained by differentiating the log-likelihood function given
in (6) with respect to each element of 6, is given by U(8) = (Ug,Uy) T, with

Up = ¢X 'D(y" — m")

and
Up = {mi(y; —m;) +log(1 —yi) = ¥O((1 = mi)g+ 1) + T (¢ +2)},
i=1

where D = diag{g'(m1) "L, .., ¢'(mn) "}, 4* = (... y2) T m* = {mi,...,mi),

with 7 = log (ﬁiyi), mt = 0O (mig+1) — WO (1 — m;)é + 1), and T is the

digamma function.

The maximum likelihood (ML) estimators B = (E, - ,B;)T and QAS of 3 =
(B1,y-- -, BP)T and ¢, respectively, can be obtained by solving simultaneously the
nonlinear system of equations Ug = 0,x; and Usy = 0. However, no closed-
form expressions for the ML estimators are obtained. Therefore, we must use an
iterative method for nonlinear optimization.

The Fisher information matrix for the modal beta regression model can be
expressed in matrix form as

K(@) _ K,BB KIB¢ _ ¢XTWX XTDC
Kg¢ K¢¢ CTDX tI‘(V) ’

where W = diag{wy,...,w,}, ¢ = (c1,...,¢n) ", V = diag{vy, ..., v, }, with w; =
omi g (m;) =2, ¢; = p{mym;* — VD (1 —m)p+ 1)}, v; = m2m* —m; T ((1 -

mi)p+ 1) + (1= m) > ((1 = mg)¢+ 1) = VW (¢ + 2), m3* = 8D (mp + 1) +
VD ((1—my)p+1), and ¥ (z) = %. Note that the parameters 3 and ¢
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are not orthogonal because the Fisher information matrix is not a block diagonal
matrix.

When n is large and under conditions that are fulfilled for parameters in the
interior of the parameter space but not on the boundary, Cox & Hinkley (1983),

we have that R
( g ) & Nyt (( g ) ,K(ﬂ,¢>—1),

where ~ means “approximately distributed” and K(B3,$)" ! is given by

K(6)-! = { KB8 KB ]

KB K

By defining a confidence level of 100(1 — )%, with a € (0,1), for 0, the
approximate confidence intervals 8., »r = 1,...,p and ¢ are given, respectively, by

(B\T — Z1-qa/2 K(é)ff’ﬁr + 21-a/2 K(@?ﬁ)

(;Z;_ Zl1—a/2 \/ K(é\)d)d)v ;5—’_ Zl—a)2 \/ K(é\)¢¢> )

where K(8)28 and K(6)%¢ are, respectively, the asymptotic variances of 3, and ¢,
and K(6)28 represents the r-th main diagonal element of matrix K(0)%2. Besides
that, zy_,/2 denotes the quantile 1 — /2 from the standard normal distribution.

and

After fitting the model, we must perform a diagnostic analysis to verify the
assumptions of the model, such as outliers and/or model misspecification. The
main diagnostic technique used in this context is the analysis of residuals. An
important general formulation to residuals is defined in Cox & Snell (1968). The
randomized quantile residuals were initially proposed by Dunn & Smyth (1996)
and have been used so far. These residuals do not require specific distribution for
the response variable and follow a standard normal distribution since the specified
distribution to the model is correct. The randomized quantile residual proposed
to this class of models is defined by

rl = @7 (F(yss i, ),

where ®(-) is the cumulative distribution function of the standard normal dis-
tribution, F(y;m,¢) is the cumulative distribution function of the modal beta
distribution, and m and ¢ are the ML estimators of m and ¢, respectively.

Ospina (2007) proposed a standardized weighted residual to the class of usual
beta regression models. This residual is based on the difference y} — i1, where y;
is the logit of the observation y; and 7} is the ML estimation of E(Y;*), and also
from the fact that the beta distribution belongs to the two-parameter canonical
exponential family. It follows that

0d(0)

B(11) = B(Y") = 5= = ¥O(mig + 1) =¥ O((1 = mi)g + 1) =m;
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and

2 *
Var(T}) = Var(Y") = i@ _omi _ Y (mip+1) + D (1 —mi)p+ 1) =m™.
ory o

Thus, we can define the following residual to the modal beta regression model:

* 2k

o Y

A =%
m;

which consists of standardization of y;, subtracting its expected value and dividing
by its standard deviation, where E(r?) = 0 and Var(r?) =1

Another residual widely used is the Cox-Snell residual proposed by Cox &
Snell (1968). This residual follows an exponential distribution with a parameter
equal one (standard exponential) since the model is correctly fitted. The Cox-Snell
residual to this class of models is given by

-~

ri = —log(1 = F(yi;mi, 9)),

where F'(y;;m;, ¢) is the cumulative distribution function of the modal beta dis-
tribution and m and ¢ are the ML estimators of m and ¢, respectively.

To evaluate the adequacy of the fitted model, simulated envelopes were incor-
porated into the QQ-plots, generated via Monte Carlo simulations as suggested
by Atkinson (1985). Residuals (7, r?, and r¢) were computed based on the fitted
model, and three confidence bands were constructed from these values: the out-
ermost band, defined by the minimum and maximum residuals; the intermediate
band, derived from the 0.025 and 0.975 percentiles, representing a 95% confi-
dence level; and the innermost band, derived from the 0.005 and 0.995 percentiles,
representing a 99% confidence level. Under a well-specified model, residuals are
expected to fall predominantly within the outermost band, while the inner bands
provide a means to assess the degree of concordance between observed and theo-
retical quantiles, offering a rigorous visual tool for model diagnostic evaluation.

4. Simulation Study

In this section, we present a Monte Carlo (MC) simulation study to inves-
tigate and evaluate the model parameters estimates, the coverage probability of
asymptotic confidence intervals, sensitivity and residuals of the model. All simu-
lations were performed using R (R Core Team, 2020), and maximizations of the
log-likelihood function for the model parameters were performed considering the
BFGS method through the optim function.

4.1. Estimates and Coverage Probability

To evaluate the performance of the ML estimators of the proposed model, we
generated n observations of a random variable Y; ~ MB(m;, ¢) and applied the
modal beta model with structure given by
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g(m;i) = n; = log (1 m:ﬂ) =Bo+ Az + ...+ Bpxip, i=1,...,m,
1

where the values of x;1,...,z;, are taken as random draws from a uniform dis-
tribution U(0,1) and all regression parameters were chosen such that scenarios
with left and right asymmetry are obtained, and ¢ = 50. We considered different
values for the number of regression parameters (p) and sample size. The number
of Monte Carlo replicates was 10000 and all parameters were estimated by the
ML method.

For each n, we obtained the following quantities: the mean of the r estimates,
bias, standard deviation, the square root of the mean square error, the coefficient
of variation, and the asymptotic standard error, which are given, respectively, by

T

- 1 I ~ -
)\mc - ; Z:ZI )\i; b()\mc) - )\mc - )\,
~ 1 <~ - = = =
$Ane) = | 1 S = At fmse(ine) = /52 Cone) + 12 (o),
=1
CV(XmC) = Sd/(\>\7mc) X 100, SEas = K(XMC))\)\~

where A is the true value of the parameter vector, Xz is the ML estimate of the
i-th Monte Carlo replicate, and A,,. is the Monte Carlo estimate (mean of the r
estimates).

Tables 1, 2, and 3 show the estimates for the parameters of the modal beta
regression model under left asymmetry, symmetry, and right asymmetry, respec-
tively. We observe that the estimates for the square root of the mean square error,
standard deviation, asymptotic standard error, and the coefficient of variation of
3 decrease as the sample size increases for all scenarios. In most scenarios, the
bias for these estimators decreases as the sample size increases. We also note
that Bl tends to underestimate the true value of the parameter when the data are
left-skewed, and overestimate when the data are right-skewed. Similarly, for ¢,
all the quantities decrease as the sample size increases. Additionally, ¢ tends to
overestimate the true value of the parameter regardless of the scenario. We can
see that adding more covariates to the model slightly decreases the accuracy of the
estimates. The last column of Tables 1, 2, and 3 presents, in percentage terms,
the absolute value of the coefficient of variation (cv) estimates, which represents
the proportion of the estimate explained by variability.

Figure 3 shows the boxplots of the ML estimates for the model parameters
considering ¢ = 50. Making an analogy of Figure 3 with a matrix, the lines
represent the parameters By, 51, B2, 03, and ¢, respectively, and the columns
the type of asymmetry considered, being asymmetry on the left, symmetry, and
asymmetry on the right, respectively. For all scenarios, we observe that as the
sample size increases, the bias of the estimators decreases, as expected. In addition,
in all scenarios for n = 50 and n = 100, ngS tends to overestimate, in median, the
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true value of the parameter. However, as expected, as the sample size increases,
the estimates converge in median to the true value of the parameter.
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FiGure 3: Boxplots of 10000 ML estimates for parameters 5o, (1, B2, (3, and ¢ by
sample size, with ¢ = 50. Left asymmetry scenario (first column), symmetry
scenario (second column), right asymmetry scenario (third column).
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Table 4 presents the coverage probabilities of asymptotic intervals for the model
parameters to asymmetric data on the left, right, and symmetric data, considering
three levels of confidence (90%, 95%, and 99%). As a general analysis, we note that
the estimated coverage probability is close to the confidence level established in all
scenarios. The larger the sample size, the closer the estimated coverage probability
is to the determined confidence level. Although the number of covariates influences
the coverage probability, even when including more covariates we observe that the
estimates of the coverage probability are close to the nominal levels.

TABLE 1: Numerical results for the modal beta regression model with left asymmetry.

n  Parameter True value @,w b(éme) sd(é'\mc) SE.s \/ mse(@nc) cv(@mc)
Bo 1.0 0.9996 —0.0004 0.1500 0.1454 0.1501 15.01

1 5.0 4.9855 —0.0146 0.6169 0.5933 0.6170 12.37

10} 50.0 54.4219 4.4219 11.8928 10.9613 12.6883 21.85

Bo 1.0 1.0052 0.0052 0.2001 0.1887 0.2001 19.90

1 5.0 49673 —0.0327 0.4695 0.4424 0.4706 9.45

50 Ba —-1.0 —1.0013 —0.0013 0.2921 0.2751 0.2921 29.17
10} 50.0 55.7621 5.7621 12.1652 11.2834 13.4608 21.82

Bo 1.0 1.0094 0.0094 0.2738 0.2541 0.2740 27.13

1 5.0 4.9513 —0.0487 0.5387 0.5015 0.5409 10.88

o —1.0 —1.0043 —0.0043 0.3254 0.3065 0.3254 32.39

3 0.5 0.4951 —0.0049 0.3175 0.3011 0.3176 64.13

103 50.0  56.9308 6.9308 12.7301 11.4751 14.4945 22.36

5o 1.0 0.9999 —0.0001 0.1036 0.1021 0.1036 10.36

1 5.0 4.9930 —0.0070 0.4240 0.4200 0.4240 8.49

10} 50.0  51.9697 1.9697 7.5562 7.3986 7.8087 14.54

Bo 1.0 0.9978 —0.0022 0.1373 0.1328 0.1373 13.76

1 5.0 4.9895 —0.0105 0.3218 0.3154 0.3220 6.45

100 B —1.0 —0.9949 0.0052 0.1985 0.1931 0.1985 19.95
103 50.0  52.5599 2.5599 7.8083 7.5179 8.2172 14.86

Bo 1.0 1.0033 0.0033 0.1842 0.1761 0.1842 18.36

o3 5.0 49710 —0.0290 0.3682 0.3543 0.3693 7.41

o —1.0 —0.9961 0.0039 0.2183 0.2113 0.2183 21.91

3 0.5 0.4952 —0.0048 0.2143 0.2079 0.2143 43.26

10} 50.0 53.3349 3.3349 7.9402 7.5957 8.6121 14.89

Bo 1.0 0.9999 —0.0001 0.0451 0.0454 0.0451 4.52

1 5.0 4.9966 —0.0034 0.1859 0.1875 0.1859 3.72

10} 50.0  50.5264 0.5264 3.3316 3.2153 3.3729 6.59

Bo 1.0 1.0001 0.0001 0.0596 0.0590 0.0596 5.96

1 5.0 4.9980 —0.0020 0.1433 0.1411 0.1433 2.87

500 o —1.0 —0.9995 0.0005 0.0860 0.0854 0.0860 8.60
10} 50.0  50.5757 0.5757 3.2632 3.2341 3.3136 6.45

o 1.0 0.9997 —0.0003 0.0786 0.0781 0.0786 7.87

1 5.0 4.9951 —0.0049 0.1615 0.1597 0.1615 3.23

o —1.0 —0.9973 0.0027 0.0928 0.0934 0.0928 9.31

B3 0.5 0.4993 —0.0007 0.0913 0.0917 0.0913 18.28

10} 50.0  50.5940 0.5940 3.2637 3.2193 3.3174 6.45
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TABLE 2: Numerical results for the modal beta regression model with symmetry.

n  Parameter True value Orme b(@m) sd(é\mc) SE.s \/ mse(amc) cv(é\mc)
Bo 0.5 0.5000 0.0000 0.0899 0.0864 0.0899 17.98

1 1.0 0.9987 —0.0013 0.1652 0.1597 0.1652 16.54

10} 50.0  54.5977 4.5977 12.1370 11.2407 12.9786 22.23

Bo 0.5 0.4995 —0.0006 0.1138 0.1093 0.1138 22.78

1 1.0 0.9981 —0.0019 0.1517 0.1470 0.1517 15.20

50 o —2.0 —1.9980 0.0020 0.1573 0.1507 0.1573 7.87
10} 50.0 55.8075 5.8075 12.5754 11.4702 13.8516 22.53

o 0.5 0.4994 —0.0006 0.1436 0.1353 0.1436 28.76

1 1.0 1.0009 0.0009 0.1629 0.1522 0.1629 16.28

o —2.0 —1.9965 0.0035 0.1657 0.1565 0.1658 8.30

3 1.0 0.9956 —0.0044 0.1590 0.1524 0.1591 15.97

10} 50.0 56.7654 6.7654 12.4983 11.6674 14.2119 22.02

5o 0.5 0.4996 —0.0004 0.0625 0.0616 0.0625 12.51

o3 1.0 0.9997 —0.0003 0.1153 0.1137 0.1153 11.53

10} 50.0 52.1531 2.1531 7.7945 7.6026 8.0864 14.95

Bo 0.5 0.4996 —0.0004 0.0794 0.0776 0.0794 15.90

1 1.0 0.9995 —0.0005 0.1057 0.1044 0.1057 10.58

100 B —2.0 —1.9995 0.0005 0.1111 0.1071 0.1111 5.56
10} 50.0 52.8516 2.8516 7.9666 7.6926 8.4616 15.07

5o 0.5 0.4998 —0.0002 0.0988 0.0963 0.0988 19.76

51 1.0 0.9988 —0.0012 0.1112 0.1082 0.1112 11.13

o —2.0 —1.9987 0.0013 0.1152 0.1114 0.1152 5.76

3 1.0 0.9989 —0.0011 0.1104 0.1082 0.1104 11.05

10} 50.0 53.1074 3.1074 8.0613 7.7327 8.6395 15.18

Bo 0.5 0.4997 —0.0003 0.0275 0.0276 0.0275 5.51

1 1.0 1.0005 0.0005 0.0511 0.0510 0.0511 5.11

10} 50.0  50.4049 0.4049 3.3238 3.2894 3.3484 6.59

Bo 0.5 0.5003 0.0003 0.0354 0.0349 0.0354 7.08

1 1.0 0.9995 —0.0005 0.0476 0.0470 0.0476 4.77

500 o —2.0 —2.0003 —0.0003 0.0486 0.0482 0.0486 2.43
10} 50.0  50.5244 0.5244 3.2821 3.2930 3.3237 6.50

o 0.5 0.4999 —0.0001 0.0432 0.0431 0.0432 8.64

1 1.0 0.9999 —0.0000 0.0489 0.0485 0.0489 4.89

o —2.0 —1.9995 0.0006 0.0501 0.0500 0.0501 2.50

3 1.0 0.9994 —0.0006 0.0484 0.0485 0.0484 4.84

10} 50.0  50.6310 0.6310 3.3398 3.3015 3.3989 6.60
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TABLE 3: Numerical results for the modal beta regression model with right asymmetry.

n  Parameter True value (;mﬁ b(gmc) sd(g’\mc) SE.s \/mse(?)\mc) cv((?me)
o 1.0 —1.0005 —0.0005 0.1521  0.1452 0.1521  15.20

8 5.0 —49789  0.0211 0.6187  0.5907 0.6191  12.43

) 50.0 544859  4.4859 11.5910 10.9763 12.4288  21.27

5o 1.0 -1.0002 —0.0002 0.1984  0.1881 0.1984  19.84

B 50 —4.9689  0.0311 04714  0.4429 0.4724 9.49

Bs 1.0 09952 —0.0048 0.2867  0.2749 0.2868  28.81

& 50.0 556592  5.6592 12.4714 11.2636 13.6953  22.41

50 5o 1.0 —09973  0.0027 02285 0.2167 0.2285  22.91
8 50 —49616  0.0384 04192  0.3905 0.4210 8.45

8, 1.0 09937 —0.0063 0.2683  0.2552 0.2684  27.00

B4 0.5 04940 —0.0060 0.2671  0.2516 02672  54.06

& 50.0 57.2101  7.2101 12.8789 11.6120 14.7598 2251

%o 1.0 —1.0005 —0.0005 0.1042  0.1020 0.1042 1042

8 50 —49923  0.0077 04288  0.4193 0.4289 8.59

& 50.0 52.1448 21448  7.7104  7.4227 8.0031  14.79

Bo 1.0 —1.0002 —0.0002 0.1379  0.1327 01379  13.78

8 50 —49821 00179 03225  0.3145 0.3230 6.47

By 1.0 09951 —0.0049 0.1969  0.1929 0.1970  19.79

& 50.0  52.6490  2.6490  7.8663  7.5323 83003  14.94

100 Bo ~1.0 —1.0001 —0.0001 0.1562  0.1520 0.1562  15.62
8 50 —4979  0.0205 0.2837  0.2776 0.2845 5.70

Bs 1.0 09970 —0.0030 0.1819  0.1780 0.1819  18.24

Bs 0.5 04990 —0.0010 0.1815  0.1754 0.1815  36.37

& 50.0 53.3457  3.3457 T.8644  T7.6562 8.5465  14.74

o 1.0 —1.0006 —0.0006 0.0453  0.0454 0.0453 453

8 5.0 —4.9942  0.0058 0.1861  0.1875 0.1862 3.73

& 50.0  50.5495  0.5495  3.3290  3.2170 3.3741 6.59

Bo 1.0 —09987  0.0013  0.0597  0.0590 0.0597 5.98

B 50 —49982  0.0018 0.1427  0.1411 0.1427 2.85

B, 1.0 09983 —0.0017 0.0866  0.0855 0.0866 8.67

& 50.0 505310  0.5310  3.2407  3.2315 3.2839 6.41

500 Bo 1.0 09999  0.0001 0.0679  0.0676 0.0679 6.79
8 50 —4.9958  0.0042 01256  0.1250 0.1257 2.51

8, 1.0 09993 —0.0007 0.0791  0.0790 0.0791 7.92

Bs 0.5 04992 —0.0008 0.0788  0.0779 0.0788  15.78

& 50.0  50.6425  0.6425  3.2860  3.2502 3.3482 6.49

Revista Colombiana de Estadistica - Theoretical Statistics 49 (2026) 33-63



48 Erika Fernandes, Francisco Medeiros & Marcelo Bourguignon

TABLE 4: Coverage probability of asymptotic confidence intervals for the model param-
eters under different asymmetry scenarios and confidence levels.

Left asymmetry Symmetry Right asymmetry

n  Parameter 90% 95% 99% 90% 95% 99% 90% 95% 99%
Bo 88.8 942 98.6 88.1 93.8 984 88.2 93.7 985

B 874 923 97.2 8.1 939 98.6 86.9 923 97.0

o 89.6 95.1 99.2 89.5 935 99.1 90.8 95.8 99.2

Bo 88.3 93.8 98.3 88.0 93.8 984 87.8 93.6 98.2

50 b1 86.4 922 971 88.2 939 985 86.4 91.8 96.9
Ba 87.8 93.6 98.3 88.3 933 98.2 88.0 93.8 984

o} 89.9 954 99.2 89.0 94.7 99.2 89.3 949 989

Bo 87.8 934 983 873 93.1 981 87.7 934 983

Jeit 8.9 914 96.3 87.0 92.7 98.0 8.9 91.7 97.0

Ba 88.1 93.5 98.3 87.6 933 979 87.7 934 983

B3 87.8 932 983 876 932 983 876 932 984

10} 88.6 949 99.2 89.1 955 994 88.2 947 99.2

Bo 89.1 943 989 89.4 943 9838 88.6 943 98.7

B 88.8 93.6 98.2 89.3 943 98.8 88.4 932 97.7

¢ 90.5 954 99.0 899 953 99.1 90.0 949 99.1

Bo 88.8 944 98.6 89.0 943 98.7 88.8 94.1 98.6

100 B 88.5 939 983 89.4 946 98.8 88.3 93.8 98.1
Ba 89.3 941 98.6 88.4 93.8 98.8 89.1 942 98.7

o 89.5 951 99.1 89.8 953 99.1 89.7 951 99.1

Bo 88.7 93.8 98.6 89.0 944 98.6 88.7 944 98.7

b1 87.6 928 97.9 88.8 942 985 88.4 94.0 983

Ba 88.6 939 98.7 88.4 94.0 98.7 89.2 943 98.8

B3 88.7 94.0 98.7 889 944 988 88.8 94.1 98.7

10) 89.1 948 99.3 89.4 95.0 99.1 89.7 953 993

Bo 90.0 95.0 99.2 90.3 95.0 98.9 90.0 94.8 98.9

b1 90.1 95.0 98.9 89.7 949 989 89.9 94.8 9838

10} 88.8 94.6 99.1 899 949 98.9 889 943 98.9

Bo 89.4 948 99.2 89.3 945 988 89.4 947 98.9

500 b1 889 945 989 89.4 94.7 989 89.4 943 989
Ba 89.6 949 99.0 89.5 94.7 98.9 89.7 94.8 98.8

¢ 89.8 95.1 99.2 904 954 99.2 90.1 953 99.2

Bo 89.7 94.7 99.0 90.0 95.1 99.1 899 948 98.8

B 89.7 946 98.8 89.8 94.8 98.9 89.7 94.7 99.0

Ba 90.0 954 99.1 89.9 949 99.0 89.9 948 98.9

Bs 90.2 952 99.2 89.8 95.1 99.1 89.3 94.6 99.0

o} 89.6 94.8 99.0 899 953 99.0 89.7 94.8 99.0
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4.2. Sensitivity Study

In this section, we conduct a simulation study to compare the sensitivity of
the mean and modal beta regressions in the presence of outliers. The procedure
used was based on the one described by Bayes et al. (2012). In order to evaluate
the influence of outliers on the regression parameter estimates, we considered a
contamination of 2% in the response variable for the simulated data, that is, 2% of
the observations (y;) were replaced by their contaminated values y}(A) = yX £ A.
Three cases were considered for the pattern of disturbance:

(i) A decrease of A units in the response values for higher values of z;
(ii) An increase of A units in the response values for lower values of x;

(ili) A decrease and increase of A units in the response values for higher and
lower values of x, respectively.

Figure 4 illustrates each of these three cases described above and shows how
is the shift of the atypical observations. For this illustration, we used the same
sample size and combination of parameters that we used in the simulation we
shall describe later. Figure 4(a) illustrates the first disturbance pattern, where 2%
of observations for higher values of = were randomly selected and shifted down
A units in the response variable. Figure 4(b) illustrates the second disturbance
pattern, where 2% of observations for lower values of x were randomly selected
and shifted up A units in the response variable. Finally, Figure 4(c) illustrates
the third disturbance pattern, where cases i and ii occur simultaneously.

The A values vary from 0 to 0.6 with increments of 0.05 (13 cases) for cases (i)
and (ii). For case (iii) , A varies from 0 to 0.55 with increments of 0.05 (12 cases).

We considered n = 200, 5y = 0.5, 81 = 1, ¢ = 30, and the logit link function.
The covariate was taken as random draws from U(—3, 3).

T ot
e
- > . fyg"
PR
G aR@ S
o AN
St B o
x X X
(a) Case (i) (b) Case (ii) (c) Case (iii)

FiGurg 4: Contaminated datasets under three different outlier patterns in the response

variable.

Initially, we generated data from a mean beta distribution with parameters
1 and ¢ and fitted the mean beta regression model to the observed data. An
MC simulation study with 5000 replications was carried out for each case of per-
turbation previously described. Next, we generated realizations of a modal beta
distribution with parameters m and ¢ and fitted the modal beta regression model
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to the data. An MC simulation study with 5000 replications was also performed
for each case of perturbation.

In order to compare the performance of the mean and modal beta regression
models in an outlier context, we obtained the MC estimates of the regression
parameters for both models with different values of A. In addition, we obtained
the relative bias, RB = |>‘;>\’\| x 100, for each case and model, where X is the MC
estimate and A is the true value of the parameter vector. The closer the RB is to
zero, the closer the estimate is to the true value.

Figures 5, 6, and 7 show the curves produced by the average of the 10,000
estimates under the mean and modal beta regression models for parameters 5y and
B1, in relation to each value of A, and cases (i), (ii), and (iii), respectively, as well
as the curves of relative bias for each parameter. For case (i), we observe that the
parameter estimates generated from the modal beta regression model show better
performance, considering that they are closer to the true value of the parameter
than the estimates from the mean beta regression model and, consequently, they
present smaller relative bias, as for 8y and §; (see Figure 5). In case (ii), see Figure
6, it is observed that the estimates for 5, from the modal beta regression model
are closer to the true parameter value and exhibit a smaller range of variation than
the parameters estimates of the mean beta regression model. As a consequence,
the estimates of 31 for the modal beta regression model show smaller relative bias.
However, for 5y, the mean beta regression model shows a better performance
than the modal beta model in this scenario. In case (iii), the modal beta model
estimates show, in general, a smaller relative bias up to A = 0.5. For parameter
b1, the modal beta regression model presents a similar performance to that seen
in case (i), that is, a better performance than the mean beta regression model
for any value of A, see Figure 7. Therefore, we conclude that the modal beta
regression model presents, in most scenarios, better performance than the mean
beta regression model, mainly for the parameter associated with the covariate x

(B1)-

4.3. Residuals Analysis

The residual simulation study was developed to examine the residuals ], r?
and r¢. We generated 20 observations of a random variable Y; ~ MB(m;, ¢ = 50
with

)

m; .
g(ml)zlog(l ):60+51$i1:77i7 1217"'7203

i
where x;; = (211,...,2Z,1) were generated from a standard uniform distribution.

In the first stage, the 3 vector was 37 = (0.5,1) and in the second stage, we
chose three different combinations for 3, 87 = (-2.2,1.8), 87 = (-0.4,0.8), and
BT = (0.4,2), so that m € [0.1,0.4), m € [0.4,0.6), and m € [0.6,0.9], respectively.
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F1GURE 5: Monte Carlo estimates and relative bias of the regression parameters for case

(i).

Table 5 reports the mean, standard deviation, kurtosis, and skewness of the
residuals computed for each j-th residual corresponding to the i-th observation
(i=1,...,n; 5 = 1,...,M), where M = 10000 denotes the number of Monte
Carlo replications. The residuals considered include the randomized quantile resid-
uals (rf,;), the standardized weighted residuals (r7;), and the Cox-Snell residuals
(r$.)- The standard normal distribution presents mean, kurtosis, and skewness
equal to zero and standard deviation equal to one. The standard exponential dis-
tribution has mean and standard deviation equal to one, kurtosis equal to six, and
skewness equal to two. In general, there is agreement between these samples and
the theoretical values.
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F1GURE 6: Monte Carlo estimates and relative bias of the regression parameters for case

(i).

TABLE 5: Mean, standard deviation, kurtosis and skewness coefficients of the residuals

considered in this study.

" Meg.u ‘ Standard deviation‘ Kurtosis ‘ Skewﬁess i

1 —0.0030 —0.0033 0.9957 0.9998 0.9978 0.9774 —0.0865 —0.0481 4.7940 —0.0462 0.0839 1.8504
2 —0.0116 —0.0118 0.9899 0.9980 0.9981 0.9933 —0.1158 —0.0274 5.7333 0.0379 0.1689 1.9391
3 0.0101 0.0100  1.0095 1.0016 1.0010 0.9861 —0.1745 —0.1299 3.7452 —0.0281 0.0970 1.7260
4 0.0081 0.0083 1.0094 1.0038 1.0036 0.9984 —0.0987 —0.0385 5.0795 —0.0138 0.1193 1.8776
5 —0.0065 —0.0068 0.9917 0.9964 0.9955 0.9747 —0.1628 —0.1037 4.3814 —0.0167 0.1111 1.8072
6 —0.0027 —0.0027 0.9970 0.9983 0.9981 0.9917 —0.0891 —0.0239 4.6876 0.0078 0.1409 1.8713
7 0.0000 —0.0005 0.9938 0.9893 0.9885 0.9751 —0.1351 —0.0669 4.9785 —0.0056 0.1234 1.8655
8 —0.0008 —0.0008 1.0004 1.0015 1.0010 0.9971 —0.0726 —0.0096 5.1669 0.0029 0.1362 1.9170
9 —0.0016 —0.0016  0.9988 1.0014 1.0005 0.9891 —0.0890 —0.0218 5.1682 —0.0205 0.1125 1.9096
10 —0.0076  —0.0074  0.9929 0.9996 0.9984 0.9784 —0.1661 —0.1114 4.7243 —0.0145 0.1135 1.8175
11 —0.0041 —0.0045 0.9920 0.9934 0.9923 0.9759 —0.0941 —0.0459 4.8521 —0.0180 0.1136 1.8471
12 —0.0129 —0.0128 0.9903 1.0033 1.0021 0.9835 —0.1380 —0.0805 4.6413 —0.0104 0.1172 1.8445
13 0.0109 0.0116  1.0200 1.0169 1.0170 1.0147 —0.1417 —0.0915 4.2858 —0.0105 0.1206 1.8033
14 0.0080 0.0081 1.0084 1.0021 1.0018 0.9985 —0.0976 —0.0219 5.6490 —0.0087 0.1267 1.9326
15 —0.0032 —0.0034 0.9962 0.9981 0.9975 0.9825 —0.1753  —0.1023 4.6145 —0.0028 0.1245 1.8311
16 —0.0080 —0.0075 0.9969 1.0058 1.0054 1.0029 —0.0856 0.0032 6.3725 0.0161  0.1509 2.0190
17 0.0062 0.0062  1.0044 0.9967 0.9968 0.9943 —0.1239  —0.0580 4.8698 0.0137 0.1448 1.8668
18 0.0128 0.0123  1.0067 0.9916 0.9914 0.9843 —0.1437  —0.0702 5.6036 —0.0082 0.1208 1.8933
19 0.0058 0.0059 1.0076 1.0018 1.0027 1.0071 —0.1194 —0.0293 5.0098 0.0321 0.1656 1.9054
20 —0.0000 0.0001 1.0016 0.9995 1.0005 1.0108 —0.0672 0.0274 5.4922 0.0534 0.1890 1.9766
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F1GURE 7: Monte Carlo estimates and relative bias of the regression parameters for case

(i)

Figure 8 shows the QQ-plots of the average of the residual order statistics,
calculated from 10 000 replications, by the theoretical distribution for each studied
scenario. We can see that regardless of the 3 combination, the randomized quantile
and standardized weighted residuals are well approximated by the standard normal
distribution, and the Cox-Snell residuals are well approximated by the standard
exponential distribution.

Consider now the case of model misspecification where the data are generated
from a mean beta regression distribution, but the modal beta regression model is
fitted. For this, we generated n = 100 observations from Y; ~ Beta(u;, ), where
¢ = 50 with BT = (1,5), (—1,-5), and (0.5,1) for left-skewed, right-skewed,
and symmetric data, respectively. Figure 9 shows the simulated envelopes of the
residuals for this example of misspecification. By analogy with the structure of
a matrix, the columns represent the randomized quantile, standardized weighted,
and Cox-Snell residuals, respectively, and the lines represent the cases of asymme-
try on the left, symmetry, and asymmetry on the right, respectively. As expected,
in cases of positive or negative asymmetry, the residuals detected the model mis-
specification, and in the symmetry case, due to the mean and the mode being the
same, the residuals did not detect any misspecification.
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Ficure 8: QQ-plots for the randomized quantile, standardized weighted, and Cox-Snell

residuals.

5. Applications to Real Data

In this section, we apply the mean and modal beta regression models in two
real datasets to compare their performance.

5.1. First Application

In the first application, we deal with data taken from atlasbrasil.org.br,
considering the municipalities in the state of Mato Grosso in the 2010 Brazilian
census. In this application, the response variable is the illiteracy rate of people
aged between 25 and 29 years old by municipality, and the covariate is the Human
Development Index (HDI) by municipality. In the Brazilian census, the illiteracy
rate is calculated as the percentage of people who do not know how to read and
write at least one simple note in their native language of the total resident pop-
ulation of the same age group, in a given geographical space and year. The HDI
was proposed by the United Nations economists in 1990, and created in order to
represent, in a single quantity, the degree of development of each country. This
measure is based on the education, longevity, and income index of each country.
Pearson’s coefficient of skewness obtained for the illiteracy rate is 3.95, indicating
that the response variable is right-skewed. In addition, we note the presence of
upper outliers in the illiteracy rate (Figure 10), indicating that the modal beta
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F1aUurRE 9: QQ-plots for the residuals of the modal beta regression model in the misspec-

ification example.

regression could be a good choice for modeling these data. Moreover, there is a
slightly negative relationship between HDI and illiteracy rate, that is, the higher
the HDI the lower the illiteracy rate.
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F1Gure 10: Adjusted boxplot and scatterplot for the illiteracy data.
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Table 6 shows the summary measures of the study variables. We see that the
most frequent illiteracy rate among municipalities in Mato Grosso is 2.4% and
the most frequent HDI is 0.704 (high HDI). For these data, we fitted the usual
beta (Y; ~ Beta(u;, ¢)) and the modal beta (Y; ~ MB(m;, ¢)) regression models,
following the structure defined, respectively, by

10g< Hi ):/80+/81zi17 221,,141
1T —py

and

10g< o ):60—1_611:1'17 Z:1571417

1-— m;

where x;; is the value of HDI in the i-th municipality. Table 7 shows the ML
estimates, standard errors (SE), Wald statistics, and p-values for the fitted models.
Both models presented similar estimates for the precision parameter; however,
the estimates for 8y and 3; differ. The AIC and BIC values for the usual beta
regression are —790.43 and —781.59, respectively, and for the modal beta regression
they are —792.14 and —783.29, respectively. That is, the modal beta regression
model has lower values of AIC and BIC than the mean beta regression model.
However, it is important to note that these criteria are based on different likelihood
functions and the models are not nested, which limits the validity of a direct
comparison.

TABLE 6: Summary statistics for the variables; illiteracy data.

Variable Min 1st quartile Mode Median Mean 3rd quartile Max sd
Illiteracy rate  0.0107 0.0219 0.0240  0.0310  0.0369 0.0429 0.2054 0.0275
HDI 0.5380 0.6610 0.7040 0.6860 0.6843 0.7070 0.7850 0.0383

TABLE 7: Summary results for the fitted models; illiteracy data.

Model Parameter Estimate SE  Wald statistic p-value

Bo 4.3270  0.6938 6.2368 < 0.0001

Modal beta regression 51 —11.5189  1.0431 —11.0431 < 0.0001
1) 142.1481 17.3960 8.1713 < 0.0001

Bo 3.1337  0.5891 5.3192 < 0.0001

Mean beta regression 51 —9.4320  0.8762 —10.7645 < 0.0001
1) 142.2817  17.1956 8.2743 < 0.0001

Importantly, in the modal Beta regression model, the estimated coefficients
can be interpreted analogously to those in the mean Beta regression; however,
they pertain to the mode rather than the expected value. The mode corresponds
to the point of maximum concentration of the conditional distribution given the
predictors, thereby reflecting the most frequently observed outcome conditional on
the covariates.

Specifically, based on the results presented in Table 7, one aspect that can be
noted is that the parameter associated with HDI (3;) has a negative effect on the
illiteracy rate, that is, the higher the HDI, the lower the rate of illiteracy. This
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behavior is consistent with that observed in the scatterplot (Figure 10(b)). Under
the modal beta model, the estimated value of the most frequent illiteracy rate
is 11.8% for municipalities with an HDI equal to 0.55 (moderate) and 2.3% for
municipalities with an HDI equal to 0.7 (high).

Figure 11 shows the QQ-plots with generated bands for the randomized quan-
tile, standardized weighted, and Cox-Snell residuals for the fitted models. Figure
11 suggests that the modal beta regression model provides the best fit to the
observed data.
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FiGURE 11: QQ-plots of residuals for the modal (top) and mean (bottom) beta regression
models; illiteracy data.

5.2. Second Application

The second application considers the dataset from the Brazilian national high
school exam (ENEM) in 2017. This exam measures the knowledge acquired in
high school and is also used for admission into universities. The participants are
students who completed high school in 2017, took the exam, and were admitted
into the Federal University of Rio Grande do Norte (UFRN) in 2018.

The dataset has 2070 observations and 6 variables, described in Table 8. We
considered the percentage of correct answers in language, codes and its technologies
as the response variable, and the other variables are included as covariates in the
regression model. Figure 12 shows the histogram and boxplot of the dependent
variable, with the black dot representing the mode of the response. The skewness
coefficient of the response variable is —0.33, indicating light asymmetry on the
left.
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Table 9 shows summary statistics, including the standard deviation (SD), of
the response. The most frequent percentage of hits in language, codes and their
technologies among the participants that were admitted into the UFRN is 60%.
The rate ranges from 24.4% to 93.3%, with a standard deviation of 12.1%. Note
that only 25% of approved students obtained more than 70% of hits in the test.

TABLE 8: Description of the variables; ENEM data.

Variable (code) Description Categories
) § s o ) 1 - Male
Gender Participant’s gender 2 - Female
1 - White
2 - Asian
Ethnic Ethnic group of the participant 3 - Indigenous
4 - Brown
5 - Black
1 - Did not finish elementary school
2 - Finished elementary school but did not finish middle school
FE Education level of the participant’s father 3- F%n?shcd n?iddlc school but. did no‘t fmish high school
4 - Finished high school but did not finish college
5 - Finished college but did not finish graduate course
6 - Finished graduate course
ME Education level of the participant’s mother Same as for education level of the participant’s father
1 - Only in a public school
TS Type of school that the participant studied in high school 2 - Only in a private school

3 - Partly in a public school and partly in a private school

TABLE 9: Summary statistics of percentage of hits in language, codes and its technolo-
gies; ENEM data.

Min 1st quartile Mode Median Mean 3rd quartile  Max sd
0.2444 0.5333 0.6000 0.6222 0.6105 0.7056 0.9333 0.1211

For these data, we fitted the mean beta regression model (Y; ~ Beta(u;, ¢)
with log{p;/(1 — p;)}) and the modal beta regression model (Y; ~ MB(m;, ¢)
with log{m;/(1 —m;)}), for i = 1,...,2070. The covariates gender, ethnic group,
education level of the participant’s father and mother, and type of school are
represented as dummy variables in which the reference level is always the first
category of the variable.

The significant variables at the 5% significance level by the Wald test in both
models were: FatherEduc, MotherEduc, and TypeSchool. Excluding the covari-
ates that did not show any statistical significance, we obtained the following final
models:

log (1 MM ) = Bo + BeFE2; + B7FE3; + BsFE4; + BoFEs; + B10FEe; + f11MEsg;
— g
+p12ME3; 4+ B13MEy; + 14MEs5; 4+ 815 MEg; + 816 TS2; + B17TS3;,
and
.
log (ﬁ) = Bo + BeFE2; + B7FE3; + BsFE4; + BoFEs; + B1o0FEg; + 11 MEg;
—my

+B12ME3; + B13MEy; + 14MEs5; + 815 MEg; + 816 TS2; + B17TS3;.
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Ficure 12: Histogram and boxplot of the percentage of hits in language, codes and its
technologies; ENEM data.

Tables 10 and 11 show the estimates, standard errors, Wald test statistics,
and corresponding p-values for each regression coefficient for both models. The
coefficient estimates for both models are similar, as expected, because the response
variable for the modal beta model is nearly symmetrical. The AIC and BIC values
for the mean beta regression are —3115.55 and —3036.66, respectively, and for the
modal beta regression they are —3115.66 and —3036.76, respectively. However, it
is important to note that these criteria are based on different likelihood functions
and the models are not nested, which limits the validity of a direct comparison.

TABLE 10: Coeflicients estimates for the mean beta regression model; ENEM data.

Covariate: level Parameter Estimate SE Wald statistic  p-value
Intercept Bo 0.1683  0.0535 3.1483 0.0016
FEo; B 0.0438  0.0496 0.8834 0.3770
FE3; B 0.0946  0.0494 1.9166 0.0553
FEy; Bs 0.1688  0.0412 4.0931 0.0000
FEs5; Bo 0.2893  0.0468 6.1788 0.0000
FEg; B1o 0.3025  0.0503 6.0134 0.0000
MEo; B11 —0.0089 0.0679 —0.1304 0.8963
MEs; B2 —0.0294 0.0651 —0.4526 0.6509
MEy; B1s 0.0461 0.0592 0.7783 0.4364
MEs; B1a 0.1449  0.0628 2.3076 0.0210
MEg; B1s 0.1675  0.0643 2.6067 0.0091
TSo; Bis 0.0608  0.0236 2.5755 0.0100
TS3; Bi7 0.0253  0.0564 0.4492 0.6533
Precision 10) 17.1509  0.5190 - -

Figure 13 shows the QQ-plots with generated bands for each residual and fitted
model. All residuals are within the generated bands for both models, indicating
that the models are well adjusted. Considering the modal beta regression model,
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it is estimated that the most frequent percentage of correct answers of an indi-
vidual who studied in a private school and their parents finished college is 68.1%,
considering a significance level of 5%.

TABLE 11: Coefficients estimates for the modal beta regression model; ENEM data.

Covariate: level Parameter Estimate SE Wald statistic  p-value
Intercept Bo 0.1905  0.0607 3.1365 0.0017
FEo; Be 0.0498  0.0564 0.8821 0.3777
FEs; Br 0.1075  0.0562 1.9123 0.0558
FEy4; Bs 0.1925  0.0470 4.0998 0.0000
FEs; Bo 0.3321 0.0536 6.1955 0.0000
FEg; B1o 0.3475  0.0578 6.0154 0.0000
ME,; B11 —0.0104 0.0773 —0.1347 0.8929
MEj3; B2 —0.0343 0.0740 —0.4639 0.6427
MEy; B13 0.0520  0.0674 0.7710 0.4407
MEs; B1a 0.1658  0.0716 2.3166 0.0205
MEs; B1s 0.1922  0.0734 2.6191 0.0088
TSo; B16 0.0701 0.0272 2.5804 0.0099
TS3; Bi7 0.0303  0.0647 0.4686 0.6394
Precision 10) 15.1508  0.5190 - -
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FIGURE 13: QQ-plots of residuals for the modal (top) and mean (bottom) beta regression
models; ENEM data.
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6. Concluding Remarks

In this work, we studied the parameterization of the beta distribution proposed
by Zhou et al. (2020), which considers the mode in the regression structure and
a precision parameter. Some properties of this distribution were presented and
parameter estimation was conducted through the maximum likelihood approach.
Assuming the response variable follows a modal beta distribution, we studied the
modal beta regression model proposed by Zhou et al. (2020). We performed more
comprehensive simulation studies to evaluate the maximum likelihood estimators
and concluded that the estimators of the modal beta regression model exhibited
good properties in symmetric and asymmetric data. In addition, we evaluated
the performance of the mean and modal beta regressions in data with outliers
using a procedure adapted from Bayes et al. (2012), in which three patterns of
disturbance in the response variable were considered. The Monte Carlo simulation
results showed that the modal beta regression model, in most scenarios, performed
better than the mean beta regression model, especially when we evaluated the
parameter associated with the covariate. Furthermore, three different residuals
were proposed for this class of models, as well as the construction of confidence
bands for them. The numerical evidence showed that the three residuals presented
a good performance. Additionally, in the case where the data come from the mean
beta distribution and the modal beta regression is fitted, the residuals detected
misspecification for asymmetry on the right or left. However, when the data are
symmetrical, the models are equivalent, so there is no case of misspecification.

We also presented and discussed two applications in real data. Our analysis
illustrated that in the case of symmetrical data, the modal approach is as suitable
as the mean approach, and with asymmetrical data (and in the presence of outliers)
the modal beta regression model presented a more adequate fit.

In future work, we want to extend the model to consider cases of varying
precision by including a regression structure in the precision parameter.
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