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Abstract

This research addresses the challenge of estimating population variance
in surveys conducted over two-occasion (successive) sampling, particularly
when dealing with non-response. The study introduces a traditional esti-
mator and two new calibration-based estimators to mitigate the impact of
non-response. These calibration estimators are designed to improve the ac-
curacy and reliability of estimates derived from successive sampling surveys,
where non-sampling errors can signi�cantly distort the data and the result-
ing population parameters. The study provides expressions for the proposed
estimators and analyzes their statistical properties. Simulation studies re-
veal that the calibration estimators outperform the traditional estimator in
terms of bias, mean squared error, and relative absolute bias, especially when
non-response rates are high.
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Resumen

Esta investigación aborda el reto de estimar la varianza poblacional en
encuestas realizadas con muestreos sucesivos, en particular en el caso de
la falta de respuesta. El estudio introduce un estimador tradicional y dos
nuevos estimadores basados en calibración para mitigar el impacto de la falta
de respuesta. Estos estimadores de calibración están diseñados para mejo-
rar la precisión y la �abilidad de las estimaciones derivadas de encuestas con
muestreos sucesivos, donde los errores no muestrales pueden distorsionar sig-
ni�cativamente los datos y los parámetros poblacionales resultantes. El es-
tudio proporciona expresiones para los estimadores propuestos y analiza sus
propiedades estadísticas. Estudios de simulación revelan que los estimadores
de calibración superan al estimador tradicional en términos de sesgo, error
cuadrático medio y sesgo absoluto relativo, especialmente cuando las tasas
de falta de respuesta son altas.

Palabras clave: Error cuadrático medio; Estimador de calibración; Muestreo
en dos ocasiones; Respuesta no aleatoria.

1. Introduction

Estimating the variance of a population is of paramount significance in various
domains, from business to manufacturing, services, pharmaceuticals, medical sci-
ences, biology, and agriculture. In these real-world scenarios and applications, an
accurate determination of the dispersion (variance) of a population is vital for deci-
sion making and efficient resource allocation (Ahmed et al., 2016; Naz et al., 2020;
Muhammad et al., 2022). This highlights the importance and practical implications
of accurate estimation of population variance across various industries.

Variance estimators have wide-ranging practical applications in diverse �elds.
In clinical trials, they help assess treatment variability and determine adequate
sample sizes, while in economics, they are essential for measuring market volatil-
ity and other key indicators to support informed decision-making. In agriculture,
variance estimation guides choices about crops and resource inputs by analyzing
yield variability. Security professionals use variance estimators to assess risks such
as cyber-attacks and natural disasters, and in forensic science, they support ev-
idence analysis by evaluating the variability in DNA or �ngerprint data. These
applications highlight the critical importance of developing e�cient and reliable
population variance estimators. This has inspired continued research e�orts and
interest among scholars and statisticians, who strive to develop more e�cient es-
timators for population variance and coe�cient of variation. Several authors have
work extensively in this direction.

Singh & Homa (2013) explored e�ective rotation patterns in successive sam-
pling over two occasions, providing improved variance estimation methods that
accounted for repeated measures and correlation structures, enhancing e�ciency
in survey data collected over time. Gupta & Shabbir (2016) developed vari-
ance estimators within two-phase sampling frameworks, incorporating auxiliary
information to reduce sampling errors and improve precision, particularly when
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second-phase samples are more informative. Shabbir & Gupta (2017) extended
these ideas to two-stage cluster sampling, proposing improved estimators that ef-
fectively used information from primary and secondary sampling units to better
estimate population variance. Khan & Ahmad (2017) presented e�cient variance
estimators for two-phase sampling schemes, showing how to leverage additional
auxiliary variables to reduce estimator variance and bias under practical survey
conditions. Özgür & �. Çavu³ (2018) studied dual-frame estimators for population
variance, allowing for more robust estimation when data come from overlapping
survey frames, addressing under-coverage or duplication in sample surveys. Singh
& Jafa (2019) proposed improved variance estimators for two-phase sampling by
combining multiple sources of auxiliary data, achieving better e�ciency and reduc-
ing mean squared error compared to conventional estimators. Shakeel & Shabbir
(2019) investigated ratio-type variance estimators in two-phase sampling, further
re�ning the use of auxiliary information to improve the estimation of population
variance. Kadilar & Cingi (2020) examined variance estimation in two-phase sam-
pling with partially defective or missing items, developing estimators robust to
non-response and item non-availability. Bhushan & Singh (2021) introduced im-
proved variance estimators in two-stage cluster sampling, o�ering enhancements
in survey e�ciency by optimizing the use of auxiliary variables across both cluster
and element levels. Singh, Jafa & Goyal (2021) and Singh, Khalid & Kim (2021)
advanced improved variance estimation methods for two-phase sampling, and also
investigated imputation strategies to handle missing data, helping maintain esti-
mator e�ciency under non-response and measurement errors. Muhammad et al.
(2022) developed generalized estimators for population variance using measur-
able and cost-e�ective auxiliary characteristics, aiming for practical applications in
resource-limited surveys. Zaman & Bulut (2023) explored robust calibration tech-
niques for estimating the population mean in strati�ed random sampling, focusing
on strategies to reduce the in�uence of outliers and improve estimator stability in
practical survey applications. Shahzad et al. (2023) developed calibrated estima-
tors for estimating the coe�cient of variation within a double strati�ed random
sampling setting, demonstrating through theoretical and empirical results that
their methods o�er substantial gains in e�ciency and precision compared to con-
ventional estimators. Audu et al. (2025) and Audu, Lekganyane, Ishaq & Aremu
(2024) proposed calibration-based estimators under successive sampling and mail
surveys with non-response, applying new weighting schemes to improve the esti-
mation of population variance in the presence of measurement errors and missing
data. Ali et al. (2024) proposed improved variance estimators by applying trans-
formations to auxiliary variables under simple random sampling, demonstrating
through simulation studies that the transformed approach signi�cantly reduces
the estimator's bias and mean squared error. Pandey, Singh, Zaman, Al Mutairi
& Mustafa (2024) developed improved variance estimators in strati�ed successive
sampling frameworks by employing calibrated weights under non-response, show-
ing how such calibration can address both sampling and non-sampling errors while
increasing estimator e�ciency. Pandey, Singh, Zaman, Mutairi & Mustafa (2024)
extended this line of work to de�ne a general class of variance estimators under
strati�ed sampling, speci�cally targeting non-sampling errors through calibrated
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weights, providing �exible estimators that adapt to di�erent survey error struc-
tures. Although many variance estimators have been proposed in the literature
as discussed above, they generally rely on the assumption of full response from
all sampled units, often within simple random sampling frameworks. However, in
practical survey applications, especially in successive sampling with repeated mea-
surements in which cost of taking sample is minimized, non-response is common
and introduces substantial non-sampling errors. As a result, estimators designed
under the assumption of complete response may perform poorly or become ine�-
cient when faced with missing data.

The unbiased traditional estimator of population variance in the absence of
non-response under successive sampling can be de�ned as in Equation (1).

s∗2y =
(u− 1) s2yu + (m− 1) s2ym

u+m− 1
, (1)

where s2yu = (u− 1)
−1

u∑
i=1

(
yi − Y u

)2
, s2ym = (m− 1)

−1
m∑
i=1

(
yi − Y m

)2
.

Despite the development of numerous estimators and methods in the previous
literature, many of these techniques assume a complete response from all sampling
units and have been studied in the context of simple random sampling. However,
this assumption may not hold true in real-world survey situations, where non-
response is a signi�cant source of non-sampling error, particularly in successive
sampling designs due to the repetitive nature of the surveys over time. This raises
a crucial issue, as variance estimation techniques developed for complete response
data may no longer be valid or e�cient when confronted with missing data due to
non-response. According to Little & Rubin (2019). Missing data can be classi�ed
into three main categories: Missing Completely at Random (MCAR), Missing
at Random (MAR), and Missing Not at Random (MNAR). The study is based
speci�cally on MCAR.

This paper explores the development of new variance calibration estimators for
use in successive sampling surveys to address the challenges posed by random non-
response. These proposed estimators leverage information from both the matched
and unmatched sample of auxiliary variable to provide more reliable and e�cient
variance estimates, even in the presence of non-response.

The paper is organized as follows: Section 1 discusses the background and
signi�cance of the study, as well as the importance of the proposed methods It
introduces basic notations, sample structures, and random non-response mod-
els/probability functions. Section 2 presents a new conventional estimator of pop-
ulation variance in the presence of random non-response along with its variance.
Section 3 presents the procedure and results for calibration estimators. Section
4 compares the performance of the proposed calibration estimators with the pro-
posed conventional estimator of population variance numerically through simula-
tion studies. Finally, Section 5 provides the conclusion and o�ers some recommen-
dations based on the �ndings.
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1.1. Basic Notations and De�nitions

Let U = {U1, U2, . . . , UN} be �nite population of size N under study to be
sampled over two occasions. Let the study variable be denoted by Y and auxiliary
variable be denoted by X. Assume that random non-response occurs on Y and X
for both occasions.

On the �rst occasion, a preliminary simple random sampling without replace-
ment (SRSWOR) sample of size n is drawn from the population, where r3 units do
not respond. From the responding part of this sample, a subsample sample of size
m = nλ is drawn from n using SRSWOR, where r1 units do not respond. This
sample is matched or retained for the �rst occasion, and information on Y and
X is collected. Additionally, a fresh sample of size is drawn from the population
using SRSWOR at the second stage, and information on Y and X is collected
again, where r2 units do not respond.

Then, the following notations were used.

Y ,X: are the means of the population under study for Y and X, respectively.

S2
x, S

2
y : are the population variances of X and Y , respectively.

Y m−r2 = (m− r2)
−1∑m−r2

i=1 yi , Y u−r3 = (u− r3)
−1∑u−r3

i=1 yi: are the sample
means of Y based on the m− r1 and u− r2, respectively.

s2ym−r1
= (m− r1 − 1)

−1∑m−r1
i=1

(
yi − Y m−r1

)2
,

s2yu−r2
= (u− r2 − 1)

−1∑u−r2
i=1

(
yi − Y u−r2

)2
: are the sample variances of Y

based on the m− r1 and u− r2, respectively.

Xm−r1 = (m− r1)
−1∑m−r1

i=1 xi,

Xu−r2 = (u− r2)
−1∑u−r2

i=1 xi: are the sample means of X based on the m−r1
and u− r2, respectively.

s2xm−r1
= (m− r1 − 1)

−1∑m−r1
i=1

(
xi −Xm−r1

)2
,

s2xu−r2
= (u− r2 − 1)

−1∑u−r2
i=1

(
xi −Xu−r2

)2
: are the sample variances of X

based on the m− r1 and u− r2, respectively.

1.2. Probability Models for r1, r2 and r3

Let take r3 {r3 = 0, 1, 2, . . . , n− 2} as the number of units in the sample Sn of
size n on which information on X and Y could not be collected due to random non-
response. Take r1 {r1 = 0, 1, 2, . . . ,m− 2} as the number of units in the matched
sample Sm of size m on which information on X and Y could not be collected
due to random non-response. Finally, consider r2 {r2 = 0, 1, 2, . . . , u− 2} as the
number of units in the unmatched sample Su of size u on which information on
X and Y could not be collected due to random non-response. We assume that
0 ≤ r1 ≤ (m− 2), 0 ≤ r2 ≤ (u− 2) and r3 = r1 + r2 . If p1, p2, p3 are the
probabilities of non-response among the (m− 2), (u− 2) and (n− 2) are possible
values of non-responses respectively, then r1, r2 and r3 have the following discrete
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probability distributions in Equations (2), (3) and (4), respectively.

p (r1) =
m− r1

nq1 + 2p1
× (m− 2)!

r1! (m− r1 − 2)!
pr11 qm−r1−2

1 , r1 = 0, 1, 2, . . . ,m− 2 (2)

p (r2) =
u− r2

nq2 + 2p2
× (u− 2)!

r2! (u− r2 − 2)!
pr22 qu−r2−2

2 , r2 = 0, 1, 2, . . . , u− 2 (3)

p (r3) =
n− r3

nq3 + 2p3
× (n− 2)!

r3! (n− r3 − 2)!
pr33 qn−r3−2

3 , r3 = 0, 1, 2, . . . , n− 2 (4)

2. Materials and Methods

2.1. New proposed Conventional Estimator of Population

Variance in the Presence of Non-Response

Motivated by the work of Singh et al. (2019) and Audu, Singh, Ishaq, Khare,
Singh & Adewara (2024), we proposed conventional estimator of population vari-
ance in the presence of random non-response under successive sampling as in Equa-
tion (5).

s∗2y(NR) =
(u− r2 − 1) s2y(u−r2)

+ (m− r1) s
2
y(m−r1)

n− r3 − 1
, (5)

where s2y(u−r2)
= 1

u−r2−1

u−r2∑
i=1

(
yi − Y u

)2
, s2y(m−r1)

= 1
m−r1−1

m−r1∑
i=1

(
yi − Y m

)2
.

2.1.1. Properties of the Proposed Estimators s∗2y(NR)

Theorem 1. The proposed alternative estimator s∗2y(NR) is unbiased, that is

E
(
s∗2y(NR)

)
= S2

Y .

Proof .

E
(
s∗2y(NR)

)
=

(u− r2 − 1)Eu

(
s2y(u−r2)

)
+ (m− r1)Em

(
s2y(m−r1)

)
n− r3 − 1

, (6)

where Eu is the expectation based on an unmatched sample and Em is the expec-
tation based on the matched sample.
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Consider Eu

(
s∗2y(u−r2)

)
in Equation (6), then Equation (7) is obtained:

Eu

(
s∗2y(u−r2)

)
=

Eu

(
u−r∑
i=1

y2i − 1
u−r2

(
u−r2∑
i=1

yi

)2
)

u− r2 − 1

=

Eu

((
1− 1

u−r2

) u−r∑
i=1

y2i − 1
u−r2

u−r∑
i̸=j=1

yiyj

)
u− r2 − 1

.

(7)

Equation (7) can be expressed in terms of population values as in Equation (8):

Eu

(
s∗2y(u−r2)

)
=

Eu

((
1− 1

u−r2

) N∑
i=1

a(u)iY
2
i − 1

u−r2

N∑
i ̸=j=1

a(u)ia(u)jYiYj

)
u− r2 − 1

, (8)

where a(u)i =

{
1, if Yi ∈ S(u−r2)

0, otherwise
, a(u)i ∼ binomial

(
u− r2, N

−1
)
,

Eu

(
a(u)i

)
= u−r2

N , Eu

(
a(u)ia(u)j

)
= u−r2

N
u−r2−1
N−1 .

Simplify the right-hand side of Equation (8), Equation (9) is obtained:

Eu

(
s∗2y(u−r2)

)
= 1

N

(
N∑
i=1

Y 2
i − 1

N−1

N∑
i ̸=j=1

YiYj

)

= 1
N

((
1 + 1

N−1

) N∑
i=1

Y 2
i − 1

N−1

(
N∑
i=1

Yi

)2
)

= S2
Y .

(9)

Similarly, considering Em

(
s∗2y(m−r1)

)
in Equation (6), then Equation (10) is ob-

tained:

Em

(
s∗2y(m−r1)

)
=

Em

(
m−r1∑
i=1

y2
i− 1

m−r1

(
m−r1∑
i=1

yi

)2)
m−r1−1

=
Em

((
1− 1

m−r1

)m−r1∑
i=1

y2
i− 1

m−r3

m−r1∑
i̸=j=1

yiyj

)
m−r1−1

(10)

Em

(
s∗2y(m−r1)

)
=

Em

((
1− 1

m−r1

) N∑
i=1

a(m)iY
2
i − 1

m−r1

N∑
i̸=j=1

a(m)ia(m)jYiYj

)
m− r1 − 1

,

(11)

where a(m)i =

{
1, if Yi ∈ S(m−r1)

0, otherwise
, a(m)i ∼ binomial

(
m− r1, N

−1
)
,

Em

(
a(m)i

)
= m−r1

N , Em

(
a(m)ia(m)j

)
= m−r1

N × m−r1−1
N−1 .
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Simplify the right-hand side of Equation (11), Equation (12) is obtained:

Em

(
s∗2y(m−r1)

)
= 1

N

(
N∑
i=1

Y 2
i − 1

N−1

N∑
i ̸=j=1

YiYj

)

= 1
N

((
1 + 1

N−1

) N∑
i=1

Y 2
i − 1

N−1

(
N∑
i=1

Yi

)2
)

= S2
Y .

(12)

Substituting the results of Eu

(
s∗2y(u−r2)

)
and Em

(
s2y(m−r1)

)
obtained in Equation

(9) and Equation (12) respectively into Equation (6), Theorem 1 is proved.

Theorem 2. The variance of s∗2y(NR) is given in Equation (13):

var
(
s∗2y(NR)

)
=


(

u−r2−1
n−r3−1

)2 (
1

uq2+2p2
− 1

N

)
+
(

m−r1−1
n−r3−1

)2 (
1

mq1+2p1
− 1

N

)
S4

y (β40 − 1) , (13)

where βrs =
µrs

µ
r/2
20 µ

s/2
02

, , µrs =
1

N−1

N∑
i=1

(
Yi − Y

)r (
Xi −X

)s
.

Proof .

var
(
s∗2y(NR)

)
=

(u− r2 − 1)
2
varu

(
s2y(u−r2)

)
+ (m− r1)

2
varm

(
s2y(m−r1)

)
(n− r3 − 1)

2 . (14)

From the results of Singh et al. (2019), varu
(
s2y(u−r2)

)
and varm

(
s2y(m−r1)

)
are

given in Equation (15) and Equation (16), respectively:

var
(
s2y(u−r2)

)
=

(
1

uq2 + 2p2
− 1

N

)
S4
y (β40 − 1) (15)

var
(
s2y(m−r1)

)
=

(
1

mq1 + 2p1
− 1

N

)
S4
y (β40 − 1) . (16)

Substitute Equation (15) and Equation (16) in Equation (14), Equation (13) is
obtained, hence, the proof.

2.2. New Proposed Calibration Estimators

The conventional estimator proposed in Equation (8) can be formulated as in
Equation (17).

s∗2y(NR) =

u−r2∑
i=1

w∗
1

(
yi − Y (u−r2)

)2
+

m−r1∑
i=1

w∗
2

(
yi − Y (m−r1)

)2
, (17)

where w∗
1 = 1

n−r3−1 , w∗
2 = m−r1

(n−r3−1)(m−r1−1) .
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2.2.1. Proposed Calibration Estimator Based on Non-Linear Constraint

of Auxiliary Variable

The proposed calibrated estimator of population variance under random non-
response is given in Equation (18):

T ∗
1(NR) =

u−r2∑
i=1

ω∗
1i

(
yi − Y (u−r2)

)2
+

m−r1∑
i=1

ω∗
2i

(
yi − Y (m−r1)

)2
, (18)

where ω∗
1i, ω∗

2i are the new calibration weights to be obtained by minimizing the
chi-square distance de�ned in Equation (19) subject to given constraint.

min Z∗
1 = 2−1

u−r2∑
i=1

(ω∗
1i − w∗

1)
2
/w∗

1φ1i + 2−1
m−r1∑
i=1

(ω∗
2i − w∗

2)
2
/w∗

2φ2i

s.t.
u−r2∑
i=1

ω∗
1i

(
xi −X(u−r2)

)2
+

m−r1∑
i=1

ω∗
2i

(
xi −X(m−r1)

)2
= S2

X

 (19)

To compute new calibrated weights ω∗
1i, i = 1, 2, . . . , u−r2 and ω∗

2i, i = 1, 2, . . . ,m−
r1, the Lagrange function L1 of the formed in Equation (20) is de�ned:

L1 =

u−r2∑
i=1

(ω∗
1i − w∗

1)
2

2w∗
1φ1i

+

m−r1∑
i=1

(ω∗
2i − w∗

2)
2

2w∗
2φ2i

− λ1


u−r2∑
i=1

ω∗
1i

(
xi −X(u−r2)

)2
+

m−r1∑
i=1

ω∗
2i

(
xi −X(m−r1)

)2 − S2
X

 . (20)

Di�erentiate Equation (20) partially with respect to ω∗
1i, ω

∗
2i, λ1 and equates the

results to zeros, Equation (21), Equation (22) and Equation (23) are obtained,
respectively:

ω∗
1i = w∗

1 + λ1w
∗
1φ1i

(
xi −X(u−r2)

)2
(21)

ω∗
2i = w∗

2 + λ1w
∗
2φ2i

(
xi −X(m−r1)

)2
(22)

u−r2∑
i=1

ω∗
1i

(
xi −X(u−r2)

)2
+

m−r1∑
i=1

ω∗
2i

(
xi −X(m−r1)

)2
= S2

X . (23)

Substitute both Equation (21) and Equation (22) in Equation (23) and solve for
λ1, Equation (24) is obtained:

λ1 =
S2
X − s∗2x(NR)

u−r2∑
i=1

w∗
1φ1i

(
xi −X(u−r2)

)4
+

m−r1∑
i=1

w∗
2φ2i

(
xi −X(m−r1)

)4 (24)

where s∗2x(NR) =
u−r2∑
i=1

w∗
1

(
xi −X(u−r2)

)2
+

m−r1∑
i=1

w∗
2

(
xi −X(m−r1)

)2
.
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Substitute the expression for λ1 in Equation (21) and Equation (22), the ex-
pressions for ω∗

1i, ω∗
2i are obtained as in Equation (25) and Equation (26):

ω∗
1i = w∗

1

1 +
φ1i

(
xi −X(u−r2)

)2 (
S2
X − s∗2x(NR)

)
u−r2∑
i=1

w∗
1φ1i

(
xi −X(u−r2)

)4
+

m−r1∑
i=1

w∗
2φ2i

(
xi −X(m−r1)

)4

(25)

ω∗
2i = w∗

2

1 +
φ2i

(
xi −X(m−r1)

)2 (
S2
X − s∗2x(NR)

)
u−r2∑
i=1

w∗
1φ1i

(
xi −X(u−r2)

)4
+

m−r1∑
i=1

w∗
2φ2i

(
xi −X(m−r1)

)4
 .

(26)
Substitute the results of ω∗

1i, ω∗
2i in Equation (18), the proposed calibration esti-

mator becomes Equation (27):

T ∗
1 = s∗2y(NR) + b̂1

(
S2
X − s∗2x(NR)

)
(27)

where

b̂1 =

u−r2∑
i=1

w∗
1φ1i

(
xi −X(u−r2)

)2 (
yi − Y (u−r2)

)2
+

m−r1∑
i=1

w∗
2φ2i

(
xi −X(m−r1)

)2 (
yi − Y (m−r1)

)2
u−r2∑
i=1

w∗
1φ1i

(
xi −X(u−r2)

)4
+

m−r1∑
i=1

w∗
2φ2i

(
xi −X(m−r1)

)4 .

The members of the proposed calibrated estimator T ∗
1 are obtained as below.

Case A: Setting φ1i = 1 and φ2i = 1 in b̂1 , the �rst member of T ∗
1 denoted by

T ∗
11 is obtained as in Equation (28):

T ∗
11 = s∗2y(NR) + b̂11

(
S2
X − s∗2x(NR)

)
(28)

where b̂11 =

u−r2∑
i=1

w∗
1(xi−X(u−r2))

2
(yi−Y (u−r2))

2
+

m−r1∑
i=1

w∗
2(xi−X(m−r1))

2
(yi−Y (m−r1))

2

u−r2∑
i=1

w∗
1(xi−X(u−r2))

4
+

m−r1∑
i=1

w∗
2(xi−X(m−r1))

4
.

Case B: Setting φ1i =
(
xi −X(u−r2)

)−1
and φ2i =

(
xi −X(m−r1)

)−1
in b̂1,

the second member of T ∗
1 denoted by T ∗

12 is obtained as in Equation (29):

T ∗
12 = s∗2y(NR) + b̂12

(
S2
X − s∗2x(NR)

)
, (29)

where b̂12 =

u−r2∑
i=1

w∗
1(yi−Y (u−r2))

2
+

m−r1∑
i=1

w∗
2(yi−Y (m−r1))

2

u−r2∑
i=1

w∗
1(xi−X(u−r2))

2
+

m−r1∑
i=1

w∗
2(xi−X(m−r1))

2
.

The MSE of T ∗
1 denoted by MSE (T ∗

1 ) can be obtained using the function
de�ned in Equation (30):

MSE (T ∗
1 ) = Θ1Σ1Θ

T
1 , (30)
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where Θ1is 1x2 matrix given as

Θ1 =

(
∂T∗

1

∂s∗2
y(NR)

∣∣∣∣
s∗2
y(NR)

=S2
Y

, s∗2
x(NR)

=S2
X

, b̂1=β1

∂T∗
1

∂s∗2
x(NR)

∣∣∣∣
s∗2
y(NR)

=S2
Y

, s∗2
x(NR)

=S2
X

, b̂1=β1

)
,

Σ1 is the variance-covariance matrix of order 2× 2 de�ned as

Σ1 =

 var
(
s∗2y(NR)

)
cov

(
s∗2y(NR)s

∗2
x(NR)

)
cov

(
s∗2x(NR)s

∗2
y(NR)

)
var
(
s∗2x(NR)

) , ΘT
1 is the transpose of

Θ1 and β1 =
N∑
i=1

(
Xi −X

)2 (
Yi − Y

)2
/

N∑
i=1

(
Xi −X

)4
.

Simplifying Equation (30), MSE (T ∗
1 ) is obtained as in Equation (31):

MSE (T ∗
1 ) = Φ

(
S4
y (β40 − 1) + β2

1S
4
x (β04 − 1)− 2β1S

2
yS

2
x (β22 − 1)

)
, (31)

where Φ =
(

u−r2−1
n−r3−1

)2 (
1

uq2+2p2
− 1

N

)
+
(

m−r1−1
n−r3−1

)2 (
1

mq1+2p1
− 1

N

)
.

2.2.2. Proposed Calibration Estimator Based on Linear Constraint of

Auxiliary Variable

The second proposed calibrated estimator of population variance under random
non-response is given in Equation (32):

T ∗
2(NR) =

u−r2∑
i=1

ϖ∗
1i

(
yi − Y (u−r2)

)2
+

m−r1∑
i=1

ϖ∗
2i

(
yi − Y (m−r1)

)2
, (32)

where ϖ∗
1i, ϖ∗

2i are the new calibration weights to be obtained by minimizing the
chi-square distance Z∗

2 de�ned in Equation (33).

min Z∗
2 = 2−1

u−r2∑
i=1

(ϖ∗
1i − w∗

1)
2
/w∗

1φ1i + 2−1
m−r1∑
i=1

(ϖ∗
2i − w∗

2)
2
/w∗

2φ2i

s.t. n−r3−1
n−r3

(
u−r2∑
i=1

ϖ∗
1ixi +

m−r1−1
m−r1

m−r1∑
i=1

ϖ∗
2ixi

)
= X


(33)

To compute new calibrated weights ϖ∗
1i, i = 1, 2, . . . , u− r2 and ϖ∗

2i, i = 1, 2, . . . ,
m−r1, the de�ned Lagrange function L2 of the formed in Equation (34) is de�ned:

L2 =
u−r2∑
i=1

(ϖ∗
1i−w∗

1 )
2

2w∗
1φ1i

+
m−r1∑
i=1

(ϖ∗
2i−w∗

2 )
2

2w∗
2φ2i

−λ2

(
n−r3−1
n−r3

(
u−r2∑
i=1

ϖ∗
1ixi +

m−r1−1
m−r1

m−r1∑
i=1

ϖ∗
2ixi

)
−X

)
.

(34)

Di�erentiate Equation (34) partially with respect to ϖ∗
1i, ϖ

∗
2i, λ2 and equates the

results to zeros, Equation (35), Equation (36) and Equation (37) are obtained,
respectively:

ϖ∗
1i = w∗

1 +
n− r3 − 1

n− r3
λ2w

∗
1φ1ix1 (35)
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ϖ∗
2i = w∗

2 +
(n− r3 − 1) (m− r1 − 1)

(n− r3) (m− r1)
λ2w

∗
2φ2ixi (36)

n− r3 − 1

n− r3

(
u−r2∑
i=1

ϖ∗
1ixi +

m− r1 − 1

m− r1

m−r1∑
i=1

ϖ∗
2ixi

)
= X. (37)

Substitute both Equation (35) and Equation (36) in Equation (37) and solve for
λ2, Equation (38) is obtained:

λ2 =
X −X

∗
(NS)(

n−r3−1
n−r3

)2(u−r2∑
i=1

w∗
1φ1ix2

i +
(

m−r1−1
m−r1

)2 m−r1∑
i=1

w∗
2φ2ix2

i

) , (38)

where X
∗
(NR) =

n−r3−1
n−r3

(
u−r2∑
i=1

w∗
1xi +

m−r1−1
m−r1

m−r1∑
i=1

w∗
2xi

)
.

Substitute the expression for λ2 in Equation (35) and Equation (36), the
expressions for ϖ∗

1i, ϖ∗
2iare obtained as in Equation (39) and Equation (40),

respectively.

ϖ∗
1i = w∗

1

1 +
φ1ixi

(
X −X

∗
(NS)

)
(

n−r3−1
n−r3

)(u−r2∑
i=1

w∗
1φ1ix2

i +
(

m−r1−1
m−r1

)2 m−r1∑
i=1

w∗
2φ2ix2

i

)
 (39)

ϖ∗
2i = w∗

2

1 +
(m− r1 − 1)

(
X −X

∗
(NR)

)
φ2ixi

(m− r1)
(

n−r3−1
n−r3

)(u−r2∑
i=1

w∗
1φ1ix2

i +
(

m−r1−1
m−r1

)2 m−r1∑
i=1

w∗
2φ2ix2

i

)
 .

(40)
Substitute the results of ϖ∗

1i, ϖ∗
2i in Equation (32), the second proposed calibra-

tion estimator becomes Equation (41):

T ∗
2 = s∗2y(NR) + b̂2

(
X −X

∗
(NS)

)
, (41)

where b̂2 =

(
u−r2∑
i=1

w∗
1φ1ixi(yi−Y (u−r2))

2
+

m−r1−1
m−r1

m−r1∑
i=1

w∗
2φ2ixi(yi−Y (m−r1))

2

)
(

n−r3−1
n−r3

)(u−r2∑
i=1

w∗
1φ1ix2

i+
(

m−r1−1
m−r1

)2 m−r1∑
i=1

w∗
2φ2ix2

i

) .

The members of the proposed calibrated estimator T ∗
2 are obtained as below.

Case A: Setting φ1i = 1 and φ2i = 1 in b̂2, the �rst member of T ∗
2 denoted by

T ∗
21 is obtained as in Equation (42):

T ∗
21 = s∗2y(NR) + b̂21

(
X −X

∗
(NS)

)
, (42)

where b̂21 =

(
u−r2∑
i=1

w∗
1xi(yi−Y (u−r2))

2
+

m−r1−1
m−r1

m−r1∑
i=1

w∗
2xi(yi−Y (m−r1))

2

)
(

n−r3−1
n−r3

)(u−r2∑
i=1

w∗
1x

2
i+
(

m−r1−1
m−r1

)2 m−r1∑
i=1

w∗
2x

2
i

) .
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Case B: Setting φ1i = x−1
i and φ2i = x−1

i in b̂2, the second member of T ∗
2

denoted by T ∗
22 is obtained as in Equation (43):

T ∗
22 = s∗2y(NR) + b̂22

(
X −X

∗
(NS)

)
, (43)

where b̂22 =

(
u−r2∑
i=1

w∗
1(yi−Y (u−r2))

2
+

m−r1−1
m−r1

m−r1∑
i=1

w∗
2(yi−Y (m−r1))

2

)
(

n−r3−1
n−r3

)(u−r2∑
i=1

w∗
1xi+

(
m−r1−1
m−r1

)2 m−r1∑
i=1

w∗
2xi

) .

The MSE of T ∗
2 denoted by MSE (T ∗

2 ), can be obtained using the function
de�ned in Equation (44):

MSE (T ∗
2 ) = Θ2Σ2Θ

T
2 , (44)

where Θ2 is 1× 2 matrix given as

Θ2 =

(
∂T∗

2

∂s∗2
y(NR)

∣∣∣∣
s∗2
y(NR)

=S2
Y , X

∗
(NR)=X, b̂2=β2

∂T∗
2

∂X
∗
(NR)

∣∣∣∣
s∗2
y(NR)

=S2
Y , X

∗
(NR)=X, b̂2=β2

)
,

Σ2 is the variance-covariance matrix of order 2× 2 de�ned as

Σ2 =

 var
(
s∗2y(NR)

)
cov

(
s∗2y(NR)X

∗
(NR)

)
cov

(
X

∗
(NR)s

∗2
y(NR)

)
var
(
X

∗
(NR)

) , ΘT
2 is the transpose of Θ2

and β2 =
N∑
i=1

Xi

(
Yi − Y

)2
/

N∑
i=1

X2
i .

Simplifying Equation (44), MSE (T ∗
2 ) is obtained as in Equation (45):

MSE (T ∗
2 ) = Φ

(
S4
y (β40 − 1) + β2

2S
4
x (β04 − 1)− 2β2S

2
yS

2
x (β22 − 1)

)
. (45)

Proposition 1. For practical purposes, the estimate of MSE
(
T ∗
ij

)
, i, j = 1, 2

denoted by ̂MSE
(
T ∗
ij

)
, i, j = 1, 2 is as given in Equation (46).

̂MSE
(
T ∗
ij

)
= Φ

(
(τ40 − 1) s∗4y(NR) + b̂2ij (τ04 − 1) s∗4x(NR) − 2b̂ijs

∗2
y(NR)s

∗2
x(NR) (τ22 − 1)

)
,

(46)

where

τrs =
µ̂rs

µ̂
r/2
20 µ̂

s/2
02

,

µ̂rs =

u−r2∑
i=1

(
yi − Y (u−r2)

)r (
xi −X(u−r2)

)s
u− r2

+

m−r1∑
i=1

(
yi − Y (m−r1)

)r (
xi −X(m−r1)

)s
m− r1

.

3. Results and Discussion

3.1. E�ciency Comparisons

To assess the performance of the proposed estimators T ∗
ij , i, j = 1, 2, with

respect to s∗2y , absolute relative bias (ARB), mean square error (MSE) and per-
centage relative e�ciency (PRE) of the estimators were computed using Equation
(47), Equation (48) and Equation (49), respectively:

Revista Colombiana de Estadística - Applied Statistics 49 (2026) 185�211



198 Ran Vijay Kumar Singh & Ahmed Audu

ARB (Φ) =
E
∣∣Φ− S2

y

∣∣
S2
y

(47)

MSE (Φ) = E
(
Φ− S2

y

)2
(48)

PRE (Φ) = E
(
s∗2y − S2

y

)2 (
E
(
Φ− S2

y

)2)−1

× 100 (49)

where Φ is any estimator considered in the study, E
(
Φ− S2

y

)
= M−1

M∑
j=1

(
Φj − S2

y

)
and E

(
Φ− S2

y

)2
= M−1

M∑
j=1

(
Φj − S2

y

)2
.

Simulation studies were conducted to evaluate the superiority of the proposed
estimators compared to other estimators considered in the present study. For this
purpose, 3 di�erent populations of size N = 1000 were generated. The data for
study and auxiliary variables were generated using the distributions de�ned in
Table 1. The nature of the data generated was presented in the 1. A sample of
sizes 50, 100 and 200 were selected 1000 times using successful sampling without
replacement method from each population generated for computations of ARBs,
MSEs and PREs of the estimators under consideration. The probabilities of non-
respondents for matched and unmatched samples units considered in the study are
p1 = {0.1, 0.2, 0.3} and p2 = {0.1, 0.2, 0.3}, respectively.

Table 1: Distributions of Populations used for Empirical Study

Population Auxiliary Variable Study variable

I f (X) = 1
b−a

, a = 1, b = 10 Yi = Xi + εi,

II f (X) = λe−λx, λ = 1 ε ∼ N (0, 1)

III f (X) = 1

2α
∣∣∣α/2

x
α
2
−1e−

x
2 , α = 1

Figure 1: Please write your �gure caption here.
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Table 2: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population I when

n = 50.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0802 0.6398 100 0.0973 0.6090 100

T ∗
11(NR)

0.0530 0.2814 227.3952 0.0891 0.5103 119.3349

T ∗
12(NR)

0.0535 0.2860 223.7363 0.0867 0.4836 125.9230

T ∗
21(NR)

0.0628 0.4018 159.2360 0.0901 0.5227 116.5126

T ∗
22(NR)

0.0601 0.3737 171.2178 0.0882 0.5011 121.5402

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1280 0.9042 100 0.1264 1.3311 100

T ∗
11(NR)

0.0523 0.1507 599.8423 0.0785 0.5841 227.8836

T ∗
12(NR)

0.0492 0.1337 676.0332 0.0816 0.6413 207.5565

T ∗
21(NR)

0.0610 0.2050 441.1529 0.1056 1.0116 131.5779

T ∗
22(NR)

0.0475 0.1247 725.3194 0.1028 0.9699 137.2397

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1449 2.1230 100 0.2273 4.9408 100

T ∗
11(NR)

0.0943 0.8311 255.4364 0.1305 1.6625 297.1881

T ∗
12(NR)

0.0961 0.8576 247.5566 0.1290 1.6501 299.4162

T ∗
21(NR)

0.0935 0.8353 254.1708 0.1352 1.7485 282.5665

T ∗
22(NR)

0.0978 0.8710 243.7396 0.1319 1.6907 292.2344

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1213 1.4660 100 0.1560 2.3646 100

T ∗
11(NR)

0.0682 0.4614 317.7615 0.0968 0.8733 270.7665

T ∗
12(NR)

0.0691 0.4772 307.1784 0.0982 0.8965 263.7591

T ∗
21(NR)

0.0848 0.7423 197.4976 0.0984 0.9026 261.9897

T ∗
22(NR)

0.0804 0.6804 215.4533 0.0986 0.8792 268.9348
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Table 3: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population I when

n = 100.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0918 0.7131 100 0.0969 0.8616 100

T ∗
11(NR)

0.0585 0.2839 251.1535 0.0625 0.3642 236.5754

T ∗
12(NR)

0.0586 0.2878 247.7660 0.0632 0.3701 232.7938

T ∗
21(NR)

0.0712 0.4306 165.6015 0.0691 0.4429 194.5246

T ∗
22(NR)

0.0679 0.3915 182.1384 0.0647 0.3938 218.7850

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1115 1.2000 100 0.0856 0.6442 100

T ∗
11(NR)

0.0774 0.6000 200.0002 0.0563 0.2854 225.7144

T ∗
12(NR)

0.0790 0.6253 191.9167 0.0571 0.2922 220.4387

T ∗
21(NR)

0.0764 0.5920 202.6987 0.0650 0.3746 171.9638

T ∗
22(NR)

0.0761 0.5779 207.6284 0.0623 0.3445 186.9936

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0991 0.8716 100 0.1355 1.5911 100

T ∗
11(NR)

0.0669 0.4058 214.7917 0.0885 0.6940 229.2513

T ∗
12(NR)

0.0677 0.4219 206.6075 0.0906 0.7257 219.2455

T ∗
21(NR)

0.0696 0.4263 204.4619 0.0911 0.7423 214.3567

T ∗
22(NR)

0.0668 0.3963 219.9274 0.0879 0.6907 230.3607

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0880 0.6667 100 0.1067 1.0501 100

T ∗
11(NR)

0.0570 0.2859 233.2094 0.0672 0.4141 253.5671

T ∗
12(NR)

0.0580 0.2928 227.6905 0.0682 0.4280 245.3531

T ∗
21(NR)

0.0650 0.3697 180.3550 0.0715 0.4744 221.3569

T ∗
22(NR)

0.0621 0.3418 195.0366 0.0682 0.4284 245.1342
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Table 4: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population I when

n = 200.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0550 0.2567 100 0.0620 0.3180 100

T ∗
11(NR)

0.0385 0.1278 200.7808 0.0400 0.1322 240.6176

T ∗
12(NR)

0.0390 0.1314 195.2919 0.0402 0.1337 237.8629

T ∗
21(NR)

0.0387 0.1267 202.5197 0.0407 0.1385 229.6608

T ∗
22(NR)

0.0384 0.1260 203.7248 0.0406 0.1379 230.5964

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0650 0.3748 100 0.0566 0.2949 100

T ∗
11(NR)

0.0411 0.1501 249.6727 0.0356 0.1179 250.0917

T ∗
12(NR)

0.0418 0.1552 241.5234 0.0359 0.1201 245.5379

T ∗
21(NR)

0.0415 0.1565 239.5143 0.0363 0.1213 243.0318

T ∗
22(NR)

0.0412 0.1517 247.1184 0.0359 0.1185 248.8769

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0582 0.3185 100 0.0641 0.3693 100

T ∗
11(NR)

0.0386 0.1360 234.1134 0.0399 0.1413 261.3181

T ∗
12(NR)

0.0390 0.1397 227.9544 0.0401 0.1437 257.0726

T ∗
21(NR)

0.0391 0.1418 224.6057 0.0414 0.1526 242.0196

T ∗
22(NR)

0.0395 0.1437 221.5554 0.0407 0.1467 251.8384

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.0559 0.3214 100 0.0614 0.3046 100

T ∗
11(NR)

0.0372 0.1438 223.5358 0.0375 0.1178 258.5044

T ∗
12(NR)

0.0375 0.1458 220.4009 0.0377 0.1197 254.3790

T ∗
21(NR)

0.0371 0.1430 224.7829 0.0397 0.1300 234.3559

T ∗
22(NR)

0.0372 0.1435 224.0330 0.0385 0.1225 248.5923
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Table 5: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population II when

n = 50.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2432 0.0976 100 0.2292 0.0648 100

T ∗
11(NR)

0.2156 0.0767 127.2418 0.1610 0.0320 202.7316

T ∗
12(NR)

0.2073 0.0709 137.6908 0.1114 0.0153 423.6120

T ∗
21(NR)

0.1079 0.0192 507.8410 0.1651 0.0336 192.8433

T ∗
22(NR)

1.4220 3.3349 2.9257 4.9257 29.9208 0.2165

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

100.0000 2.3009 100 0.2576 0.1441 100

T ∗
11(NR)

2981.408 0.0772 2981.408 0.1574 0.0547 263.6959

T ∗
12(NR)

2806.148 0.0820 2806.148 0.1620 0.0641 224.7197

T ∗
21(NR)

995.2102 0.2312 995.2102 0.3253 0.2686 53.6636

T ∗
22(NR)

0.0530 218.5032 1.0530 2.8354 36.7168 0.3926

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2625 0.1629 100 0.4291 0.3396 100

T ∗
11(NR)

0.2098 0.1217 133.8399 0.2771 0.1389 244.5466

T ∗
12(NR)

0.2259 0.1250 130.2719 0.2955 0.1593 213.1932

T ∗
21(NR)

0.4058 0.3684 44.2137 0.6597 0.8136 41.7449

T ∗
22(NR)

5.9883 74.8749 0.2175 9.3561 159.8159 0.2125

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2669 0.2875 100 0.2709 0.1679 100

T ∗
11(NR)

0.1623 0.0876 328.3237 0.2058 0.1020 164.5798

T ∗
12(NR)

0.1891 0.1249 230.2593 0.2403 0.1410 119.0900

T ∗
21(NR)

0.3466 1.1174 25.7344 0.5070 0.6291 26.6889

T ∗
22(NR)

4.1803 93.5518 0.3074 7.5446 135.9564 0.1235
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Table 6: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population II when

n = 100.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1500 0.0437 100 0.1971 0.0826 100

T ∗
11(NR)

0.1083 0.0213 205.1354 0.1223 0.0324 255.3149

T ∗
12(NR)

0.1245 0.0298 146.6409 0.1543 0.0513 160.9716

T ∗
21(NR)

0.1391 0.0422 103.4282 0.1621 0.0619 133.4819

T ∗
22(NR)

0.1742 0.0636 68.6216 0.2057 0.0950 86.9949

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2171 0.0795 100 0.2261 0.0999 100

T ∗
11(NR)

0.1332 0.0312 254.7296 0.1452 0.0406 246.2596

T ∗
12(NR)

0.1681 0.0498 159.8051 0.1932 0.0723 138.1073

T ∗
21(NR)

0.2177 0.0826 96.3240 0.2224 0.0981 101.8897

T ∗
22(NR)

0.2861 0.1343 59.1660 0.2999 0.1797 55.5879

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1931 0.0590 100 0.1994 0.0802 100

T ∗
11(NR)

0.1268 0.0307 192.1558 0.1383 0.0416 192.6723

T ∗
12(NR)

0.1449 0.0386 152.8956 0.1723 0.0591 135.8495

T ∗
21(NR)

0.1650 0.0502 117.4567 0.1801 0.0656 122.2772

T ∗
22(NR)

0.2168 0.0839 70.3826 0.2371 0.1057 75.8969

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2238 0.0932 100 0.2113 0.0933 100

T ∗
11(NR)

0.1359 0.0393 237.3015 0.1536 0.0470 198.2505

T ∗
12(NR)

0.1572 0.0527 176.9367 0.1718 0.0592 157.6750

T ∗
21(NR)

0.1865 0.0730 127.6986 0.1862 0.0713 130.8113

T ∗
22(NR)

0.2344 0.1061 87.8530 0.2367 0.1076 86.7026
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Table 7: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population II when

n = 200.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1278 0.0431 100 0.1329 0.0500 100

T ∗
11(NR)

0.0717 0.0139 309.5852 0.0870 0.0228 218.7593

T ∗
12(NR)

0.0779 0.0168 256.0251 0.0918 0.0256 195.3060

T ∗
21(NR)

0.1057 0.0331 130.1570 0.1401 0.0604 82.6849

T ∗
22(NR)

0.0814 0.0179 240.3696 0.1120 0.0372 134.4824

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1634 0.0736 100 0.1487 0.0651 100

T ∗
11(NR)

0.0876 0.0254 289.9308 0.0916 0.0274 237.1616

T ∗
12(NR)

0.1006 0.0354 207.7972 0.1132 0.0425 153.2436

T ∗
21(NR)

0.1142 0.0496 148.4646 0.1247 0.0519 125.5623

T ∗
22(NR)

0.1205 0.0583 126.2820 0.1339 0.0612 106.2925

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1508 0.0635 100 0.1606 0.0761 100

T ∗
11(NR)

0.0810 0.0201 316.1914 0.0890 0.0254 299.4094

T ∗
12(NR)

0.0965 0.0314 202.2671 0.1105 0.0410 185.6101

T ∗
21(NR)

0.1106 0.0453 140.2840 0.1188 0.0481 158.1644

T ∗
22(NR)

0.1153 0.0508 124.9049 0.1296 0.0580 131.1980

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1521 0.0659 100 0.1407 0.0545 100

T ∗
11(NR)

0.0819 0.0206 320.6563 0.0865 0.0247 220.6680

T ∗
12(NR)

0.0931 0.0286 230.5833 0.1102 0.0404 134.9909

T ∗
21(NR)

0.1075 0.0436 151.0586 0.1223 0.0514 106.0156

T ∗
22(NR)

0.1127 0.0491 134.2650 0.1315 0.0616 88.4742
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Table 8: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population III when

n = 50.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2439 0.1085 100 0.2292 0.0740 100

T ∗
11(NR)

0.1916 0.0672 161.5436 0.1768 0.0492 150.4066

T ∗
12(NR)

0.2110 0.0839 129.2394 0.1830 0.0570 129.8940

T ∗
21(NR)

0.2308 0.1048 103.5182 0.1952 0.0718 102.8036

T ∗
22(NR)

0.2725 0.1553 69.8746 0.2395 0.1127 65.6300

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2559 0.1284 100 0.2695 0.1604 100

T ∗
11(NR)

0.2011 0.0820 156.5610 0.2152 0.0946 169.5440

T ∗
12(NR)

0.2177 0.0964 133.3257 0.2389 0.1181 135.8137

T ∗
21(NR)

0.2406 0.1199 107.0633 0.2601 0.1456 110.2101

T ∗
22(NR)

0.2782 0.1677 76.5753 0.2960 0.1971 81.4192

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2261 0.0946 100 0.2305 0.0751 100

T ∗
11(NR)

0.1728 0.0563 167.8582 0.1780 0.0487 154.3194

T ∗
12(NR)

0.1917 0.0705 134.2646 0.1883 0.0565 133.0603

T ∗
21(NR)

0.2076 0.0849 111.3676 0.2051 0.0720 104.3385

T ∗
22(NR)

0.2411 0.1183 79.9777 0.2428 0.1090 68.8530

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2447 0.1121 100 0.2553 0.1407 100

T ∗
11(NR)

0.1903 0.0738 151.8855 0.2020 0.0828 169.9543

T ∗
12(NR)

0.2082 0.0872 128.6194 0.2180 0.1006 139.8041

T ∗
21(NR)

0.2300 0.1110 100.9811 0.2396 0.1267 111.0382

T ∗
22(NR)

0.2691 0.1604 69.9307 0.2805 0.1761 79.9029
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Table 9: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population III when

n = 100.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1322 0.0479 100 0.1408 0.0589 100

T ∗
11(NR)

0.0887 0.0264 181.6291 0.0911 0.0277 212.9202

T ∗
12(NR)

0.0942 0.0308 155.5489 0.1086 0.0420 140.2293

T ∗
21(NR)

0.1182 0.0448 107.0453 0.1249 0.0550 107.0917

T ∗
22(NR)

0.1298 0.0521 91.9876 0.1330 0.0607 97.0463

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.‘

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1547 0.0718 100 0.1604 0.0795 100

T ∗
11(NR)

0.0960 0.0318 225.7351 0.0954 0.0334 237.9292

T ∗
12(NR)

0.1097 0.0422 170.1261 0.1187 0.0504 157.7815

T ∗
21(NR)

0.1254 0.0556 129.2922 0.1325 0.0627 126.8241

T ∗
22(NR)

0.1382 0.0668 107.4516 0.1410 0.0720 110.4175

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1480 0.0649 100 0.1496 0.0715 100

T ∗
11(NR)

0.0936 0.0301 215.3302 0.0924 0.0320 223.7469

T ∗
12(NR)

0.1080 0.0410 158.3456 0.1156 0.0486 147.1165

T ∗
21(NR)

0.1210 0.0520 124.6625 0.1273 0.0584 122.3421

T ∗
22(NR)

0.1349 0.0635 102.1417 0.1367 0.0690 103.6230

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.1426 0.0583 100 0.1452 0.0672 100

T ∗
11(NR)

0.0898 0.0270 215.7295 0.0911 0.0284 236.5713

T ∗
12(NR)

0.1061 0.0397 146.8732 0.1108 0.0459 146.4742

T ∗
21(NR)

0.1196 0.0504 115.6705 0.1245 0.0559 120.2409

T ∗
22(NR)

0.1315 0.0602 96.8707 0.1334 0.0647 103.8840
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Table 10: ARB, MSE and PRE of s∗2y(NR) and T ∗
ij , i, j = 1, 2, using Population III when

n = 200.

p1 = 0.1, p2 = 0.1 p1 = 0.1, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2027 0.0684 100 0.2173 0.0906 100

T ∗
11(NR)

0.1433 0.0342 199.9614 0.1510 0.0436 207.5062

T ∗
12(NR)

0.1625 0.0455 150.4815 0.1739 0.0606 149.3966

T ∗
21(NR)

0.1806 0.0586 116.6720 0.1912 0.0747 121.1966

T ∗
22(NR)

0.2131 0.0839 81.4849 0.2285 0.1075 84.2310

p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.1

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2485 0.1206 100 0.2548 0.1523 100

T ∗
11(NR)

0.1730 0.0559 215.6917 0.1859 0.0703 216.8571

T ∗
12(NR)

0.1915 0.0699 172.6250 0.2014 0.0876 173.8465

T ∗
21(NR)

0.2120 0.0892 135.1360 0.2212 0.1085 140.3732

T ∗
22(NR)

0.2425 0.1162 103.8149 0.2516 0.1442 105.6212

p1 = 0.2, p2 = 0.2 p1 = 0.2, p2 = 0.3

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2287 0.0948 100 0.2425 0.1286 100

T ∗
11(NR)

0.1579 0.0474 200.1013 0.1692 0.0609 211.1896

T ∗
12(NR)

0.1768 0.0607 156.1066 0.1908 0.0782 164.5179

T ∗
21(NR)

0.1964 0.0772 122.7543 0.2062 0.0948 135.5730

T ∗
22(NR)

0.2294 0.1024 92.5996 0.2377 0.1215 105.8429

p1 = 0.3, p2 = 0.1 p1 = 0.3, p2 = 0.2

Estimators MAPE MSEs PREs MAPE MSEs PREs

s2
y(NR)

0.2371 0.1042 100 0.2486 0.1391 100

T ∗
11(NR)

0.1649 0.0519 200.9405 0.1766 0.0657 211.4741

T ∗
12(NR)

0.1830 0.0655 159.1759 0.1970 0.0836 166.2947

T ∗
21(NR)

0.2037 0.0846 123.1905 0.2156 0.1029 135.1205

T ∗
22(NR)

0.2345 0.1100 94.7302 0.2437 0.1301 106.9428
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From the empirical results, the following were observed.

1. Tables 1 - 10 showed the results of the ARB, MSE and PRE of the proposed
conventional estimator s∗2y(NR) and that of proposed calibration estimators
T ∗
ij(NR), i, j = 1, 2 of population variance under successive sampling in the

situation when both the study and auxiliary variables are characterized with
random non-response. The performances evaluation of the estimators using
ARB, MSE and PRE under the equal and unequal probabilities of non-
responses on the matched and unmatched samples are presented in Tables 1
to 10. The probabilities of non-responses on the matched samples are taken
as p1 = 0.1, 0.2, 0.3 while the probabilities of non-responses on the matched
samples are taken as p2 = 0.1, 0.2, 0.3.

2. Tables 2, 3 and 4 showed that the results of ARB, MSE and PRE of the
population I for the proposed conventional estimator s∗2y(NR) and that of
proposed calibration estimators T ∗

ij(NR), i, j = 1, 2 for di�erent probabilities
of non-responses on matched (�rst occasion) and unmatched sample (second
occasion). ARB, MSE and PRE of the estimators were computed for the
values of p1 = 0.1, 0.2, 0.3 and p2 = 0.1, 0.2, 0.3. The results revealed that
the proposed calibration estimators T ∗

ij(NR), i, j = 1, 2 have minimum ARB,
minimum MSE and higher PRE compared to the proposed conventional
estimator s∗2y(NR) in all cases.

3. Tables 5, 6 and 7 showed that the results of ARB, MSE and PRE of the
population II for the proposed conventional estimator s∗2y(NR) and that of
proposed calibration estimators T ∗

ij(NR), i, j = 1, 2 for di�erent probabilities
of non-responses on matched (�rst occasion) and unmatched sample (second
occasion). ARB, MSE and PRE of the estimators were computed for the
values of p1 = 0.1, 0.2, 0.3 and p2 = 0.1, 0.2, 0.3. The results revealed that
the proposed calibration estimators T ∗

ij(NR), i, j = 1, 2 have minimum ARB,
minimum MSE and higher PRE compared to the proposed conventional es-
timator s∗2y(NR). However, proposed calibration estimators T ∗

21(NR), T
∗
22(NR)

compared to s∗2y(NR) performed below the standard in some cases when
n = 50 , T ∗

21(NR) performed below the standard for p1 = 0.1, p2 = 0.1
and p1 = 0.1, p2 = 0.2 when n = 100, T ∗

22(NR) performed below the standard
for p1 = 0.1, p2 = 0.2 when n = 100 while T ∗

21(NR) performed below the
standard for p1 = 0.1, p2 = 0.2 when n = 200.

4. Tables 8, 9 and 10 showed that the results of ARB, MSE and PRE of the
population III for the proposed conventional estimator s∗2y(NR) and that of
proposed calibration estimators T ∗

ij(NR), i, j = 1, 2 for di�erent probabilities
of non-responses on matched (�rst occasion) and unmatched sample (second
occasion). ARB, MSE and PRE of the estimators were computed for the
values of p1 = 0.1, 0.2, 0.3 and p2 = 0.1, 0.2, 0.3. The results revealed that
the proposed calibration estimators T ∗

11(NR), T
∗
12(NR) have minimum ARB,

minimum MSE and higher PRE compared to the proposed conventional
estimator s∗2y(NR) in all cases while T ∗

21(NR), T
∗
22(NR) performed below the

standard.
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4. Conclusions

The methodological advancements proposed in this research seek to improve the
reliability and validity of population parameter estimates in successive sampling
surveys, where non-sampling errors can signi�cantly impact the quality of data and
inference. Analytical expressions for the proposed estimators are derived, allowing
for the quanti�cation of their statistical properties and performance. Simulation
studies demonstrate the superior performance of the proposed conventional and
calibration estimators, especially in situations where non-response is substantial.
The proposed methods have the potential to enhance the quality and e�ciency of
estimation in successive sampling surveys, thus improving the accuracy of infer-
ences drawn from such surveys.

From the discussion above, it can be concluded that the proposed calibration
estimators T ∗

11(NR), T ∗
12(NR) demonstrated high level of e�ciency in estimating the

population variance when the variable of interest and auxiliary variable are char-
acterized by non-response under successive sampling scheme. We may therefore
recommend the estimators to statisticians and survey users for use in practical sit-
uations described in the introduction section. The proposed traditional estimator
s∗2y(NR) is also recommended for use in practical situations when only information
on the study variable is available.

The present study is limited to the development of conventional and calibration
estimators of population variance in the presence of random non-response. The
study can be extended and improved using ratio, exponential, logarithmic and
two-step calibration transformations/techniques.[
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