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Abstract

This research addresses the challenge of estimating population variance
in surveys conducted over two-occasion (successive) sampling, particularly
when dealing with non-response. The study introduces a traditional esti-
mator and two new calibration-based estimators to mitigate the impact of
non-response. These calibration estimators are designed to improve the ac-
curacy and reliability of estimates derived from successive sampling surveys,
where non-sampling errors can significantly distort the data and the result-
ing population parameters. The study provides expressions for the proposed
estimators and analyzes their statistical properties. Simulation studies re-
veal that the calibration estimators outperform the traditional estimator in
terms of bias, mean squared error, and relative absolute bias, especially when
non-response rates are high.
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Resumen

Esta investigacion aborda el reto de estimar la varianza poblacional en
encuestas realizadas con muestreos sucesivos, en particular en el caso de
la falta de respuesta. El estudio introduce un estimador tradicional y dos
nuevos estimadores basados en calibracion para mitigar el impacto de la falta
de respuesta. Estos estimadores de calibracién estan disenados para mejo-
rar la precision y la fiabilidad de las estimaciones derivadas de encuestas con
muestreos sucesivos, donde los errores no muestrales pueden distorsionar sig-
nificativamente los datos y los parametros poblacionales resultantes. El es-
tudio proporciona expresiones para los estimadores propuestos y analiza sus
propiedades estadisticas. Estudios de simulacién revelan que los estimadores
de calibraciéon superan al estimador tradicional en términos de sesgo, error
cuadratico medio y sesgo absoluto relativo, especialmente cuando las tasas
de falta de respuesta son altas.

Palabras clave: Error cuadratico medio; Estimador de calibracion; Muestreo
en dos ocasiones; Respuesta no aleatoria.

1. Introduction

Estimating the variance of a population is of paramount significance in various
domains, from business to manufacturing, services, pharmaceuticals, medical sci-
ences, biology, and agriculture. In these real-world scenarios and applications, an
accurate determination of the dispersion (variance) of a population is vital for deci-
sion making and efficient resource allocation (Ahmed et al., 2016; Naz et al., 2020;
Muhammad et al., 2022). This highlights the importance and practical implications
of accurate estimation of population variance across various industries.

Variance estimators have wide-ranging practical applications in diverse fields.
In clinical trials, they help assess treatment variability and determine adequate
sample sizes, while in economics, they are essential for measuring market volatil-
ity and other key indicators to support informed decision-making. In agriculture,
variance estimation guides choices about crops and resource inputs by analyzing
yield variability. Security professionals use variance estimators to assess risks such
as cyber-attacks and natural disasters, and in forensic science, they support ev-
idence analysis by evaluating the variability in DNA or fingerprint data. These
applications highlight the critical importance of developing efficient and reliable
population variance estimators. This has inspired continued research efforts and
interest among scholars and statisticians, who strive to develop more efficient es-
timators for population variance and coefficient of variation. Several authors have
work extensively in this direction.

Singh & Homa (2013) explored effective rotation patterns in successive sam-
pling over two occasions, providing improved variance estimation methods that
accounted for repeated measures and correlation structures, enhancing efficiency
in survey data collected over time. Gupta & Shabbir (2016) developed vari-
ance estimators within two-phase sampling frameworks, incorporating auxiliary
information to reduce sampling errors and improve precision, particularly when
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second-phase samples are more informative. Shabbir & Gupta (2017) extended
these ideas to two-stage cluster sampling, proposing improved estimators that ef-
fectively used information from primary and secondary sampling units to better
estimate population variance. Khan & Ahmad (2017) presented efficient variance
estimators for two-phase sampling schemes, showing how to leverage additional
auxiliary variables to reduce estimator variance and bias under practical survey
conditions. Ozgiir & S. Cavus (2018) studied dual-frame estimators for population
variance, allowing for more robust estimation when data come from overlapping
survey frames, addressing under-coverage or duplication in sample surveys. Singh
& Jafa (2019) proposed improved variance estimators for two-phase sampling by
combining multiple sources of auxiliary data, achieving better efficiency and reduc-
ing mean squared error compared to conventional estimators. Shakeel & Shabbir
(2019) investigated ratio-type variance estimators in two-phase sampling, further
refining the use of auxiliary information to improve the estimation of population
variance. Kadilar & Cingi (2020) examined variance estimation in two-phase sam-
pling with partially defective or missing items, developing estimators robust to
non-response and item non-availability. Bhushan & Singh (2021) introduced im-
proved variance estimators in two-stage cluster sampling, offering enhancements
in survey efficiency by optimizing the use of auxiliary variables across both cluster
and element levels. Singh, Jafa & Goyal (2021) and Singh, Khalid & Kim (2021)
advanced improved variance estimation methods for two-phase sampling, and also
investigated imputation strategies to handle missing data, helping maintain esti-
mator efficiency under non-response and measurement errors. Muhammad et al.
(2022) developed generalized estimators for population variance using measur-
able and cost-effective auxiliary characteristics, aiming for practical applications in
resource-limited surveys. Zaman & Bulut (2023) explored robust calibration tech-
niques for estimating the population mean in stratified random sampling, focusing
on strategies to reduce the influence of outliers and improve estimator stability in
practical survey applications. Shahzad et al. (2023) developed calibrated estima-
tors for estimating the coefficient of variation within a double stratified random
sampling setting, demonstrating through theoretical and empirical results that
their methods offer substantial gains in efficiency and precision compared to con-
ventional estimators. Audu et al. (2025) and Audu, Lekganyane, Ishaq & Aremu
(2024) proposed calibration-based estimators under successive sampling and mail
surveys with non-response, applying new weighting schemes to improve the esti-
mation of population variance in the presence of measurement errors and missing
data. Ali et al. (2024) proposed improved variance estimators by applying trans-
formations to auxiliary variables under simple random sampling, demonstrating
through simulation studies that the transformed approach significantly reduces
the estimator’s bias and mean squared error. Pandey, Singh, Zaman, Al Mutairi
& Mustafa (2024) developed improved variance estimators in stratified successive
sampling frameworks by employing calibrated weights under non-response, show-
ing how such calibration can address both sampling and non-sampling errors while
increasing estimator efficiency. Pandey, Singh, Zaman, Mutairi & Mustafa (2024)
extended this line of work to define a general class of variance estimators under
stratified sampling, specifically targeting non-sampling errors through calibrated
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weights, providing flexible estimators that adapt to different survey error struc-
tures. Although many variance estimators have been proposed in the literature
as discussed above, they generally rely on the assumption of full response from
all sampled units, often within simple random sampling frameworks. However, in
practical survey applications, especially in successive sampling with repeated mea-
surements in which cost of taking sample is minimized, non-response is common
and introduces substantial non-sampling errors. As a result, estimators designed
under the assumption of complete response may perform poorly or become ineffi-
cient when faced with missing data.

The unbiased traditional estimator of population variance in the absence of
non-response under successive sampling can be defined as in Equation (1).

8*2 _ (u_l) 532;u+(m_1) 832;m (1)
y u+m—1 ’

where 52, = (u — nt Z; (ys f?u)z, o = (m— 1)~ l; (yi — Ym)2.

Despite the development of numerous estimators and methods in the previous
literature, many of these techniques assume a complete response from all sampling
units and have been studied in the context of simple random sampling. However,
this assumption may not hold true in real-world survey situations, where non-
response is a significant source of non-sampling error, particularly in successive
sampling designs due to the repetitive nature of the surveys over time. This raises
a crucial issue, as variance estimation techniques developed for complete response
data may no longer be valid or efficient when confronted with missing data due to
non-response. According to Little & Rubin (2019). Missing data can be classified
into three main categories: Missing Completely at Random (MCAR), Missing
at Random (MAR), and Missing Not at Random (MNAR). The study is based
specifically on MCAR.

This paper explores the development of new variance calibration estimators for
use in successive sampling surveys to address the challenges posed by random non-
response. These proposed estimators leverage information from both the matched
and unmatched sample of auxiliary variable to provide more reliable and efficient
variance estimates, even in the presence of non-response.

The paper is organized as follows: Section 1 discusses the background and
significance of the study, as well as the importance of the proposed methods It
introduces basic notations, sample structures, and random non-response mod-
els/probability functions. Section 2 presents a new conventional estimator of pop-
ulation variance in the presence of random non-response along with its variance.
Section 3 presents the procedure and results for calibration estimators. Section
4 compares the performance of the proposed calibration estimators with the pro-
posed conventional estimator of population variance numerically through simula-
tion studies. Finally, Section 5 provides the conclusion and offers some recommen-
dations based on the findings.
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1.1. Basic Notations and Definitions

Let U = {U1,Us,...,Un} be finite population of size N under study to be
sampled over two occasions. Let the study variable be denoted by Y and auxiliary
variable be denoted by X. Assume that random non-response occurs on Y and X
for both occasions.

On the first occasion, a preliminary simple random sampling without replace-
ment (SRSWOR) sample of size n is drawn from the population, where r3 units do
not respond. From the responding part of this sample, a subsample sample of size
m = nA is drawn from n using SRSWOR, where r; units do not respond. This
sample is matched or retained for the first occasion, and information on Y and
X is collected. Additionally, a fresh sample of size is drawn from the population
using SRSWOR at the second stage, and information on Y and X is collected
again, where r units do not respond.

Then, the following notations were used.
Y, X: are the means of the population under study for Y and X, respectively.
S2,S2: are the population variances of X and Y, respectively.

Yoror = (m—r) " 2y Yy = (u—13) " 3V yi: are the sample
means of Y based on the m — r; and u — ro, respectively.

1 - — 2
Sim—rl = (m - T - 1) Z?;lrl (yl - Ym*h) )
szu_rz = (u—7r9— 1)71 Z?;lrz (yZ - YU_T2)2: are the sample variances of Y

based on the m — r; and uw — 73, respectively.

ymfh = (m — 7”1)71 ZZZETI Lis

Xoypy = (u—19)"" >io)? x;: are the sample means of X based on the m —r;

and u — rg, respectively.

- - — 2
Simfn =(m—r—1)" S (@ = X))
5:26“_” =(u—rg—1)"" S (- yu,m)2: are the sample variances of X

based on the m — r; and uw — 73, respectively.

1.2. Probability Models for r;, r, and r;3

Let take r3 {r3 =0,1,2,...,n — 2} as the number of units in the sample S,, of
size n on which information on X and Y could not be collected due to random non-
response. Take r1 {r; =0,1,2,...,m — 2} as the number of units in the matched
sample S, of size m on which information on X and Y could not be collected
due to random non-response. Finally, consider ro {ro =0,1,2,...,u — 2} as the
number of units in the unmatched sample S, of size v on which information on
X and Y could not be collected due to random non-response. We assume that
0<r <(m-=2),0<ry < (u—2)and r3 = ry +72 . If p1,p2,ps are the
probabilities of non-response among the (m — 2), (u — 2) and (n — 2) are possible
values of non-responses respectively, then r1, ro and r3 have the following discrete
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probability distributions in Equations (2), (3) and (4), respectively.

m—ry (m — 2)' ry m—ry—2
= X =0,1,2,... -2 (2
p(rl) nq1+2p1 Tll(m—r1—2)!p1 q1 , T s Ly &y ,m ( )

U—T2 (U — 2)' ro U—Tro—2
= X , =0,1,2,...,u—2 3
p(re) ngs + 2pa  rol(u—ro — 2)!p2 2 "2 b 3)

n—r (’/L - 2)' r3 n—rz—2
= X =0,1,2,....,n—2 4
p(’l"g) ngs + 2p3 7"3! (TL s — 2)'p3 43 y T3 s Ly &y y ( )

2. Materials and Methods

2.1. New proposed Conventional Estimator of Population
Variance in the Presence of Non-Response

Motivated by the work of Singh et al. (2019) and Audu, Singh, Ishaq, Khare,
Singh & Adewara (2024), we proposed conventional estimator of population vari-
ance in the presence of random non-response under successive sampling as in Equa-
tion (5).

(u —To — 1) 532/(u—7‘2) + (m — 7"1) 532/('%—7‘1)

2 _
Sy(VR) = p— : (5)
where s? =1 uiz( i —Y )2 52 =1 mim( i —Y )2
y(u—r2) u—rz—1 £ Yi w) o Py(m—r1) m—ri—1 Yi mjo
= 1=

2.1.1. Properties of the Proposed Estimators SZ%NR)

Theorem 1. The proposed alternative estimator sZ%NR) 1s unbiased, that is
*2 _ Q2

E <sy(NR)) =55.

Proof.

T e X

where F,, is the expectation based on an unmatched sample and E,, is the expec-
tation based on the matched sample.
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Consider E, (522 ) in Equation (6), then Equation (7) is obtained:

(u—r2)
u—r U—"ro 2
E, (Z Y — o ( > yz) )
=1 =1

E <8*2 ):
w \ Py(u—r2) — ey —
' /r2u—’f‘1 u—r (7)
E, ((1 - u}m) YU ts 2 yy]>
_ i=1 itj=1
B u—rg—1 '

Equation (7) can be expressed in terms of population values as in Equation (8):

N, N
o <(1 - %) Zow¥? - 2 1“<u>¢a<u>y‘Y1‘Y3‘>
1FI)=

*2 i=1
Eu (Sy(u—m)) = U—Tg — 1 ) (8)
where a(,); = { (1): Zoihevi;iesj(u_rﬂ , ()i ~ binomial (u —ry, N71),
u—r Uu—ro u—ro—1
Bu (ayi) = *F*: Bu(awiaw;) = “F* 741 -
Simplify the right-hand side of Equation (8), Equation (9) is obtained:
2 L[ 1 X
Eu (Sy(uw)) x| XYy XYY
i=1 i#j=1 (9)

1 1 N 2 1 N ’ 2
=¥ <1+m>;yi —_1(;5?‘) =S5

Similarly, considering E,, (s;ﬁm_rl)) in Equation (6), then Equation (10) is ob-
tained:

mori o, . m—ry 2
En E Yi m—r Z Yi
E (8*2 ) _ i=1 i=1
m =

y(m—ry) m—r1—1 (10)
m—ry m—ry
En((1-52) T vi-7tm 2 wivs
N i=1 iFj=1
- m—r;—1

N N
Em ((1 - min) X amyY? — i 2 a(m)z‘am)jm?)
i=1 i#j=1

m—r;—1

*2 _
Em (Sy(m—m) =

7

(11)
]-a Zf le € S(m—rl)

0, otherwise , Q(myi ~ binomial (m —r1, N71),

where a(,,); = {

B (a(myi) = "F™%s Em (agmyia(m);) = “F™ % "FET
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Simplify the right-hand side of Equation (11), Equation (12) is obtained:
2 L[ L O
B (S5fner) = % | B2~ 7 2 ¥
1 1) Ko 1 N ’ 2
- N (1+N—1)Zyi T N—1 <21Yz> = Sy
1=

Substituting the results of E,, (s;%u_7_2)> and E,, (Sf/(m—h)) obtained in Equation

(9) and Equation (12) respectively into Equation (6), Theorem 1 is proved. O

(12)

Theorem 2. The variance of SZ%NR) is given in Equation (13):

2
u—ro—1
(nfrgfl)

var (sZ%NR)) = -
+ (m T1

1 _L)
uqs 22 N
A Sy (Bio—1),  (13)

i

3

w

|
=
~—  —
/
3

Q

=
4=
N

bS]

=
2|~
~——

N ==\ T -\ $
whereﬁrszﬁ,, /ffrs:%lZ(Y;_Y) (XZ_X) .

20 Moz i=1

Proof.

2 2
(u—1r9 — 1) vary, (si(u_rz)) + (m —ry)" var,, (sz(m_rl))

(n—rg—1)°

var (SZ%NR)) = . (14)

From the results of Singh et al. (2019), var, (si(u_m)) and var,, (si(m_h)) are
given in Equation (15) and Equation (16), respectively:

2 — 1 _ L) g —
var <sy(u7r2)) = (qu Tops N Sy (Bao — 1) (15)

ar (o) = (g — ) S5 B = 1. (16)

mg +2p N
Substitute Equation (15) and Equation (16) in Equation (14), Equation (13) is

obtained, hence, the proof. O
2.2. New Proposed Calibration Estimators

The conventional estimator proposed in Equation (8) can be formulated as in
Equation (17).

w—ro m—ry
* * Y 2 5 Y ’
Sy%NR) = E wi (¥ =Y (u-ry)) + E w3 (Y = Y (m-r)) " (17)
i=1 =1
% 1 * m—r
where wj = n—ra—1° W2 = (n_7-3—1)(ml—r1—1)'
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2.2.1. Proposed Calibration Estimator Based on Non-Linear Constraint
of Auxiliary Variable

The proposed calibrated estimator of population variance under random non-
response is given in Equation (18):

u—ro m—ry

* * RV 2 * v 2
Tynr) = Z Wi (Yi = Y (uery)) " + Z Wy (i = Y (m-ri)) (18)

i=1 i=1

where wj;, w;; are the new calibration weights to be obtained by minimizing the
chi-square distance defined in Equation (19) subject to given constraint.

: * —1 Us? * #)2 * —1 = * 12 *
min Z7 =271 30 (wi; —wi)” Jwien +270 Y (Wi —w3)” /wies;
=1 =1 (19)
uU—"ro . o 2 m—ry . 2 9
s.t. 2:1 wip (@ = X (uers)) + Zl w3 (25 = X (m—ry)) =%
1= 1=
To compute new calibrated weights wj;, ¢ =1,2,...,u—rpandwsj;, i =1,2,...,m—

r1, the Lagrange function L; of the formed in Equation (20) is defined:

P it w)’
o =1 2U}T(’0h
u—ro . 9
LGl * *\2 w*i T -X u—r
+ Zl (("'}272 — U}2) _ Al 2; ! ( ( 2)) (20)
P m—ry o :
o 2wapa + > wh; (@ — X(m_rl))2 - 5%
=1

Differentiate Equation (20) partially with respect to wj;, w3;, A1 and equates the
results to zeros, Equation (21), Equation (22) and Equation (23) are obtained,
respectively:

wi; = wi + Mwiey (xi — Y(u_m))z (21)
w3; = wh + Mwipa; (7 — Y(mﬂ«l))2 (22)
U—ro . - ) m—ry . o ) )
Yowh (= X)) + Y wii (@ = X(nor)” = 5% (23)
=1 i=1

Substitute both Equation (21) and Equation (22) in Equation (23) and solve for
A1, Equation (24) is obtained:

S% - Sz%NR)

M= — T — . @@
; wier; (T — Xuery)) + ; w32 (zi — X (m—ry))
U—"ro m—ry

where 532\ oy = 2 wi (2 = Xumrm) + 2 (i — X)) -

1=
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Substitute the expression for A; in Equation (21) and Equation (22), the ex-
pressions for wj;, w3, are obtained as in Equation (25) and Equation (26):

- 2
o1i (@ = Xury)” (8% = 532wm))
u—ro

P m—ry [
> wie (z — X(ufrg))4 + ; wpa; (v — X(mfm))4

* *
wh; =w; |1+

i=1
(25)
_ 2 N
. . ©P2i (xz - X(m—m)) (Sg( - Sr%NR))
woi = wy | 1+ u—ry 4 M= 4
_; wier (T — X(uery)) + ; wip2i (zi — X (m—ry))
(26)

Substitute the results of wj;, wj; in Equation (18), the proposed calibration esti-
mator becomes Equation (27):

2 ; 2 2
TV = sying)y t 01 (SX - SE(NR)) (27)
where
2 = 2 = 2 3 = 2 = 2

A 221 wieri (T8 — X(uory)) Wi =Y (uery)) + 221 wio2i (@i — X (m-r))” Wi =Y (m-r1))
bl = u—ro . 4 m—ri — 4 '

= wien (10 = Xuery) + X wien (@0 = Xnory)

1= 1=

The members of the proposed calibrated estimator 73 are obtained as below.

Case A: Setting ¢1; = 1 and ¢9; = 1 in 31 , the first member of T} denoted by
Ty, is obtained as in Equation (28):

T3y = syt + b (8% — st ) (28)
T e D e > e Ol U eV
where b1 = = pramres = .

_ m=ry _
igl wi‘(gci—X(u7T2))4+ i;l w;(g':i_X(m*Tl))4

Case B: Setting ¢1; = (w; —Y(u,m)fl and pg; = (w; —Y(m,n)f1 in by,
the second member of T} denoted by T, is obtained as in Equation (29):

* %2 7 2 *2
T75 = sy(ng) +b12 (SX - sm(NR)) ) (29)
u_ry o P _ 5
R Zl wy (yi*Y(u—rQ)) + _Zl wz(yi*Y(m—rl))
= i=
where b2 = = —

.;1 wT(L;Y(“*W))aL -;1 wg(mi*y(m*ﬁ)f

The MSE of T} denoted by MSE (T}) can be obtained using the function
defined in Equation (30):

MSE (T}) = ©,%,07, (30)
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where ©4is 122 matrix given as

aT1 6T1
61 = Osyinm | =52 ,5%2 =52 b= o3 inm) ¥2 =52 b= ’
(NR)* Sz(NR)=°”X> 1=61 (NR)* Y Sz (NR)TOX 1=P1
Y1 is the variance-covariance matrix of order 2 x 2 defined as
2 *2 *2
var (5* ) cov (5 s )
NR y(NR)Sz(NR .
T = ) v 2) y( 2) (NR) , ©T is the transpose of
* * *
cov sx(NR)sy(NR)) var ( 70y gy

O, and f; = ﬁl (X, - %) (v, - 1)/ ﬁl (x, - X)"

Simplifying Equation (30), M SE (T}) is obtained as in Equation (31):

MSE(Ty) = ® (S, (Bao — 1) + Sy (Boa — 1) — 215,52 (Baz — 1)), (31)

2 2
_ [u=ro—1 1 _ 1 m=ry—1 1 — L
where & = (n7T371) (uq2+2p2 N) + (nfrg,fl) (mq1+2p1 N) .

2.2.2. Proposed Calibration Estimator Based on Linear Constraint of
Auxiliary Variable

The second proposed calibrated estimator of population variance under random
non-response is given in Equation (32):

U—ro m—ri

Tivmy = 9 @5 W= Youry) + D @5 (i~ Vinry)s  (32)

i=1 i=1

where w];, w3, are the new calibration weights to be obtained by minimizing the
chi-square distance Z3 defined in Equation (33).

: * __ o—1 e * %\ 2 * —1 = * *\2 *
min Z3 =2 21 (wi; —wi)™ Jwipn +270 X (w3 —w3)” /wips;
i= i=1

U—1"ro m—ri —

s.t. ”nr"ml < Z wi;T; + mm”h Z szxz) =X
(33)
To compute new calibrated weights @j;, i =1,2,...,u —rp and w3, 1 =1,2,...,
m—ry, the defined Lagrange function Lo of the formed in Equation (34) is defined:

U—ro m—ry

Ly = Z (@i—wi)” wy)® + Z (@3—w3)” w;)?
- :

2w 14 2w3 w2
i=
1 u— rz m—riy - (34)
— n—-rz—1 m—ry;—1 _
)\2 n—rs Z wlle m—ry Z w2zx’b X .

Differentiate Equation (34) partially with respect to wj;, @3,;, A2 and equates the
results to zeros, Equation (35), Equation (36) and Equation (37) are obtained,

respectively:
n—rsy—

* * 1 *
wy; = Wy + AWy P12 (35)

n—rs
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(n—r3—1)(m—-r—1)
(n—rsg)(m—r1)

u—ro
n—ry—1 1 m—r —1 1 —
(Z T+ — Z wmxz) = X. (37)
i=1

)\QwS(inl‘i (36)

* %
Wa = Wy +

n—rs
Substitute both Equation (35) and Equation (36) in Equation (37) and solve for
A2, Equation (38) is obtained:

= *

X —X(ns)

1 2 /u—rs ) 1 2m—ry ) ’
n—ra— * . m—-7r1— * .
(22) (2 wivna? + (2222) X wipsial

i=1 i=1

Ao = (38)

m—ry
* _ n—r3—1 mfrl—l %
where X (ypy = *2 E wlxz P, '51 wix; | .
i=

Substitute the expression for Ay in Equation (35) and Equation (36), the
expressions for wy;, ws;are obtained as in Equation (39) and Equation (40),
respectively.

P1iq (y - Y(NS))
1 uU—"ro 1 2m—ry
(n;isr; ) ( Z wi(plix? + (%) Z w§<p2ix§>

i=1 i=1

wy; =wi | 1+ (39)

(m—ry—1) (Y — Y?NR)) P2 T;

1 U—"ro 1 2m—ry
on = (52350 (15 wipnsat + (m55) S wioust
i= i=
(40)
Substitute the results of w?;, w3, in Equation (32), the second proposed calibra-
tion estimator becomes Equation (41):

* ok

Ty = sitvm + b (X = Xins)) (41)

u ’7‘2 . . 2 m—'r‘l—l m*"‘l . . P
_Zl wy <P1ixi(yify(u,—7~2)) RaT—— ‘ZI wQ@ziwi(yi*Y(m_rl))
i= i=

where 132 =

1 u—ro =

n—ry— o (m=r—

( n—rg ) > wf(ﬂhmi*f'( m—r1 ) Z w3 P2iT
i=1

The members of the proposed calibrated estimator 75 are obtained as below.

Case A: Setting ¢1; =1 and p9; = 1 in bo, the first member of T5 denoted by
Ty, is obtained as in Equation (42):

15 = SZ%NR) + b2y (Y - Y(NS)) ) (42)
. (HE? TUTxi(yi _?(“*"'2))2"’_ my;,:l{l m_gl w;%(yzﬂ—?(mﬂ-l))z
where b21 = = =

2MmM_T1

u—ry
n—rg—1 w2 (m=ri—1
( T )( E wi z? +( e Z wix?
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Case B: Setting 1, = x;l and g = x;l in 132, the second member of T3
denoted by T3, is obtained as in Equation (43):

T3, = syinm) + b2 (Y - Y(NS)) ) (43)
(%;2 WI (=Y (g )+ T mgl w3 (yi*7<mfm)2)
a1 uore e _1\2 T
(ﬁ)<1§1 wle_( mflrl ) igl wzmi>
The MSE of T3 denoted by MSE (Ty), can be obtained using the function
defined in Equation (44):

where b22 =

T
MSE (Ty) = 023505, (44)
where G4 is 1 X 2 matrix given as
o o1 T
2 = Os*2 . . X | . . )
VNI fgx2 =82, X (nry =X ba=B2 N fgx2 =52, X (npy=X, bo=P2
Yo is the variance-covariance matrix of order 2 x 2 defined as
var (sZ%NR)> cov (SZ%NR)Y?NR))
Yo = . ) . , ©7 is the transpose of Oy
*
Ccov (X(NR)Sy(NR) var X(NR)

N 5 N
and o= Y X; (Y, -Y)"/ > X2
i=1 i=1
Simplifying Equation (44), M SE (Ty) is obtained as in Equation (45):
MSE (T3) = ® (53 (Bao — 1) + 8355 (Boa — 1) — 2525555 (Boz — 1)) . (45)
Proposition 1. For practical purposes, the estimate of MSE (TZ’;), 1,7 = 1,2

-

denoted by MSE (T;}), 1,7 = 1,2 is as given in Equation (46).

MSE (T;;) = ((T40 — 1) SZ?NR) + 822‘7 (T04 — 1) SZ‘%NR) — QBZJSZ?NR)S;%NR) (TQQ — 1)) 5
(46)
where
T _ ﬂT‘S
rs — N DI 27
ish il
U—ro . r _ s m—=ri — r [— s
Y W= Yury) (@ X)) X = Yn-ry) (@i = Xmory)
/}‘1‘3 — =1 + =1
U—Te m—r

3. Results and Discussion

3.1. Efficiency Comparisons

To assess the performance of the proposed estimators 175, i, = 1,2, with
respect to 322, absolute relative bias (ARB), mean square error (MSE) and per-
centage relative efficiency (PRE) of the estimators were computed using Equation

(47), Equation (48) and Equation (49), respectively:
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E|® - 52|
ARB(®) = — " (47)
MSE (@) = E (¢ - 52)° (48)
PRE (@) = E (s;? - 52)° (E (@ - 5‘5)2)71 x 100 (49)

M
where ® is any estimator considered in the study, E (® — S2) = M~ Y (®; — S7)
j=1

2\2 -1 < 2\ 2
andE(<I>fSy) =M Z(CDJ-*Sy).
j=1

Simulation studies were conducted to evaluate the superiority of the proposed
estimators compared to other estimators considered in the present study. For this
purpose, 3 different populations of size N = 1000 were generated. The data for
study and auxiliary variables were generated using the distributions defined in
Table 1. The nature of the data generated was presented in the 1. A sample of
sizes 50, 100 and 200 were selected 1000 times using successful sampling without
replacement method from each population generated for computations of ARBs,
MSEs and PREs of the estimators under consideration. The probabilities of non-
respondents for matched and unmatched samples units considered in the study are
p1 = {0.1,0.2,0.3} and ps = {0.1,0.2,0.3}, respectively.

TABLE 1: Distributions of Populations used for Empirical Study

Population Auxiliary Variable Study variable
I f(X)=3%, a=1,b=10 Yi = X; +e,
11 F(X)=2de 7, A=1 e~ N(0,1)
111 =1 257175 o=
f(X) - ’W x2 e 2, a=1

X~Uniform(1,10) X~Exponential{1) X~Chi-Square(1)

o 200 800 1000 0 200 00 1000 © 200 800 1000

Wdex  index Index

Population | Population Il Population Il

002 4 6 8 W02

6 &8 10 01234567 0246 810 s

x x

FI1cURrE 1: Please write your figure caption here.
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25> 47 = 1,2, using Population I when

TasLe 2: ARB, MSE and PRE of s)yp) and T}

n = 50.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.0802  0.6398 100 0.0973  0.6090 100
Tl*l(NR) 0.0530  0.2814  227.3952  0.0891  0.5103  119.3349
TI*Q(NR) 0.0535  0.2860 223.7363  0.0867  0.4836  125.9230
T2*1(NR> 0.0628 0.4018 159.2360 0.0901  0.5227 116.5126
T2*2(NR) 0.0601  0.3737 171.2178 0.0882  0.5011  121.5402
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.1280  0.9042 100 0.1264  1.3311 100
Tl*l(NR) 0.0523  0.1507 599.8423  0.0785  0.5841  227.8836
T;‘Z(Nm 0.0492  0.1337 676.0332 0.0816  0.6413  207.5565
T2*1(NR) 0.0610  0.2050 441.1529  0.1056  1.0116  131.5779
T;2(NR) 0.0475  0.1247  725.3194  0.1028  0.9699  137.2397
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.1449  2.1230 100 0.2273  4.9408 100
Tl*l(NR) 0.0943 0.8311 255.4364  0.1305 1.6625  297.1881
TI*Z(NR,) 0.0961  0.8576  247.5566  0.1290  1.6501  299.4162
T2"1(NR> 0.0935 0.8353 254.1708  0.1352  1.7485  282.5665
T2*2(NR) 0.0978  0.8710 243.7396  0.1319  1.6907 292.2344
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.1213  1.4660 100 0.1560  2.3646 100
Tl*l(NR) 0.0682 0.4614 317.7615 0.0968 0.8733  270.7665
T1*2(NR) 0.0691  0.4772 307.1784  0.0982  0.8965  263.7591
T2*1(NR) 0.0848  0.7423 197.4976  0.0984 0.9026  261.9897
TQ*Q(NR) 0.0804 0.6804 215.4533  0.0986  0.8792  268.9348
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YRl

TaBLE 3: ARB, MSE and PRE of s;?NR) and T35, 4,7 = 1,2, using Population I when

n = 100.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.0918 0.7131 100 0.0969 0.8616 100
Tl*l(NR) 0.0585  0.2839  251.1535  0.0625  0.3642  236.5754
TI*Q(NR) 0.0586  0.2878  247.7660  0.0632  0.3701  232.7938
T2*1(NR> 0.0712  0.4306 165.6015 0.0691  0.4429  194.5246
T2*2(NR) 0.0679  0.3915 182.1384  0.0647  0.3938  218.7850
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.1115  1.2000 100 0.0856  0.6442 100
Tl*l(NR) 0.0774  0.6000 200.0002 0.0563 0.2854 225.7144
T;‘Z(Nm 0.0790  0.6253 191.9167  0.0571  0.2922  220.4387
T2*1(NR) 0.0764  0.5920 202.6987  0.0650  0.3746  171.9638
T;z(NR) 0.0761  0.5779  207.6284  0.0623  0.3445 186.9936
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.0991  0.8716 100 0.1355  1.5911 100
Tl*l(NR) 0.0669  0.4058 214.7917  0.0885  0.6940 229.2513
TI*Z(NR,) 0.0677  0.4219  206.6075  0.0906  0.7257  219.2455
T2"1(NR> 0.0696  0.4263 204.4619  0.0911 0.7423  214.3567
T2*2(NR) 0.0668  0.3963 219.9274  0.0879  0.6907 230.3607
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.0880  0.6667 100 0.1067  1.0501 100
Tl*l(NR) 0.0570  0.2859  233.2094  0.0672  0.4141 253.5671
T1*2(NR) 0.0580  0.2928  227.6905 0.0682  0.4280 245.3531
T2*1(NR) 0.0650  0.3697  180.3550  0.0715  0.4744  221.3569
TQ*Q(NR) 0.0621  0.3418 195.0366  0.0682  0.4284  245.1342
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25> 47 = 1,2, using Population I when

TasLe 4: ARB, MSE and PRE of s)yp) and T}

n = 200.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.0550  0.2567 100 0.0620  0.3180 100
Tl*l(NR) 0.0385  0.1278  200.7808  0.0400 0.1322  240.6176
T1*2(NR) 0.0390 0.1314 195.2919  0.0402  0.1337  237.8629
T2*1(NR> 0.0387  0.1267 202.5197  0.0407 0.1385  229.6608
T2*2(NR) 0.0384 0.1260 203.7248  0.0406 0.1379  230.5964
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.0650  0.3748 100 0.0566  0.2949 100
Tl*l(NR) 0.0411  0.1501  249.6727 0.0356  0.1179  250.0917
T;‘Z(Nm 0.0418  0.1552 241.5234  0.0359  0.1201  245.5379
T2*1(NR) 0.0415  0.1565 239.5143  0.0363  0.1213  243.0318
T;z(NR) 0.0412  0.1517 247.1184 0.0359 0.1185 248.8769
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.0582  0.3185 100 0.0641  0.3693 100
Tl*l(NR) 0.0386  0.1360 234.1134  0.0399  0.1413  261.3181
TI*Z(NR,) 0.0390  0.1397  227.9544  0.0401  0.1437 257.0726
T2"1(NR> 0.0391  0.1418 224.6057 0.0414 0.1526 242.0196
T2*2(NR) 0.0395 0.1437 221.5554  0.0407 0.1467 251.8384
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.0559  0.3214 100 0.0614  0.3046 100
Tl*l(NR) 0.0372  0.1438 223.5358 0.0375 0.1178  258.5044
T1*2(NR) 0.0375  0.1458  220.4009  0.0377  0.1197 254.3790
T2*1(NR) 0.0371  0.1430 224.7829  0.0397  0.1300  234.3559
TQ*Q(NR) 0.0372  0.1435 224.0330 0.0385  0.1225  248.5923
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TaBLE 5: ARB, MSE and PRE of 52?1\71%) and T7;, 4,5 = 1,2, using Population II when

n = 50.
p1 =0.1,p2 =0.1 p1 =0.1,p2 =0.2
Estimators MAPE MSEs PREs MAPE MSEs PREs
Si(NR) 0.2432 0.0976 100 0.2292 0.0648 100
Tl*l(NR) 0.2156 0.0767 127.2418  0.1610 0.0320 202.7316
T1*2<NR) 0.2073 0.0709 137.6908 0.1114 0.0153 423.6120
T2*1<NR) 0.1079 0.0192 507.8410  0.1651 0.0336 192.8433
T2*2(NR) 1.4220 3.3349 2.9257 4.9257 29.9208 0.2165
p1 =0.1,p2 = 0.3 p1 =02,p2 =0.1
Estimators MAPE MSEs PREs MAPE MSEs PREs
si(NR) 100.0000 2.3009 100 0.2576 0.1441 100
T1*1<NR) 2981.408 0.0772 2981.408  0.1574 0.0547 263.6959
T1*2<NR) 2806.148 0.0820 2806.148  0.1620 0.0641 224.7197
T2*1(NR) 995.2102 0.2312 995.2102  0.3253 0.2686 53.6636
T2*2<NR) 0.0530 218.5032 1.0530 2.8354 36.7168 0.3926
p1 =0.2,p2 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE MSEs PREs MAPE MSEs PREs
512;(NR) 0.2625 0.1629 100 0.4291 0.3396 100
Tl*l(NR) 0.2098 0.1217 133.8399  0.2771 0.1389 244.5466
T1*2<NR) 0.2259 0.1250 130.2719  0.2955 0.1593 213.1932
T2*1<NR) 0.4058 0.3684 44.2137 0.6597 0.8136 41.7449
T2*2<NR) 5.9883 74.8749 0.2175 9.3561  159.8159 0.2125
p1=0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE MSEs PREs MAPE MSEs PREs
Si(NR) 0.2669 0.2875 100 0.2709 0.1679 100
T1*1<NR) 0.1623 0.0876 328.3237  0.2058 0.1020 164.5798
T1*2(NR) 0.1891 0.1249 230.2593  0.2403 0.1410 119.0900
T2*1(NR) 0.3466 1.1174 25.7344 0.5070 0.6291 26.6889
T2*2<NR) 4.1803 93.5518 0.3074 7.5446  135.9564 0.1235
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TaBLE 6: ARB, MSE and PRE of 52?1\71%) and T35, 4,j = 1,2, using Population II when

n = 100.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.1500  0.0437 100 0.1971  0.0826 100
Tl*l(NR) 0.1083  0.0213 205.1354 0.1223  0.0324 255.3149
TI*Q(NR) 0.1245 0.0298 146.6409 0.1543  0.0513 160.9716
T2*1(NR> 0.1391 0.0422 103.4282 0.1621 0.0619 133.4819
T2*2(NR) 0.1742  0.0636  68.6216 0.2057  0.0950  86.9949
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.2171  0.0795 100 0.2261  0.0999 100
Tl*l(NR) 0.1332  0.0312 254.7296  0.1452  0.0406 246.2596
T;‘Z(Nm 0.1681  0.0498 159.8051 0.1932  0.0723 138.1073
T2*1(NR) 0.2177  0.0826  96.3240 0.2224  0.0981 101.8897
T;2(NR) 0.2861  0.1343  59.1660 0.2999  0.1797  55.5879
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.1931  0.0590 100 0.1994  0.0802 100
Tl*l(NR) 0.1268  0.0307 192.1558  0.1383  0.0416  192.6723
Tl*z(NR) 0.1449  0.0386 152.8956  0.1723  0.0591  135.8495
T2"1(NR> 0.1650  0.0502 117.4567 0.1801  0.0656  122.2772
T2*2(NR) 0.2168 0.0839  70.3826 0.2371  0.1057  75.8969
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.2238  0.0932 100 0.2113  0.0933 100
Tl*l(NR) 0.1359  0.0393 237.3015 0.1536  0.0470  198.2505
T1*2(NR) 0.1572  0.0527 176.9367 0.1718  0.0592  157.6750
T2*1(NR) 0.1865 0.0730 127.6986  0.1862  0.0713  130.8113
TQ*Q(NR) 0.2344 0.1061  87.8530 0.2367  0.1076  86.7026

Revista Colombiana de Estadistica - Applied Statistics 49 (2026) 185-211



204 Ran Vijay Kumar Singh & Ahmed Audu

TaBLE 7: ARB, MSE and PRE of 52?1\71%) and T7;, 4,5 = 1,2, using Population II when

n = 200.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.1278  0.0431 100 0.1329  0.0500 100
Tl*l(NR) 0.0717  0.0139  309.5852  0.0870  0.0228  218.7593
TI*Q(NR) 0.0779  0.0168  256.0251  0.0918  0.0256  195.3060
T2*1(NR> 0.1057  0.0331 130.1570  0.1401 0.0604  82.6849
T2*2(NR) 0.0814  0.0179 240.3696  0.1120 0.0372 134.4824
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.1634  0.0736 100 0.1487  0.0651 100
Tl*l(NR) 0.0876  0.0254 289.9308 0.0916  0.0274 237.1616
T;‘Z(Nm 0.1006  0.0354 207.7972 0.1132  0.0425 153.2436
T2*1(NR) 0.1142  0.0496  148.4646  0.1247  0.0519  125.5623
T;z(NR) 0.1205 0.0583  126.2820 0.1339  0.0612  106.2925
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.1508  0.0635 100 0.1606  0.0761 100
Tl*l(NR) 0.0810  0.0201  316.1914  0.0890  0.0254  299.4094
TI*Z(NR,) 0.0965 0.0314 202.2671  0.1105 0.0410 185.6101
T2"1(NR> 0.1106  0.0453 140.2840 0.1188  0.0481 158.1644
T2*2(NR) 0.1153  0.0508 124.9049 0.1296  0.0580 131.1980
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.1521  0.0659 100 0.1407  0.0545 100
Tl*l(NR) 0.0819  0.0206 320.6563  0.0865  0.0247  220.6680
T1*2(NR) 0.0931  0.0286 230.5833  0.1102  0.0404 134.9909
T2*1(NR) 0.1075  0.0436  151.0586  0.1223  0.0514 106.0156
TQ*Q(NR) 0.1127  0.0491 134.2650 0.1315 0.0616  88.4742
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TaBLE 8: ARB, MSE and PRE of SZ%NR) and T7;, 4,7 = 1,2, using Population III when

n = 50.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.2439  0.1085 100 0.2292  0.0740 100
Tl*l(NR) 0.1916  0.0672 161.5436  0.1768  0.0492  150.4066
TI*Q(NR) 0.2110  0.0839 129.2394  0.1830  0.0570  129.8940
T2*1(NR> 0.2308 0.1048 103.5182 0.1952  0.0718 102.8036
T2*2(NR) 0.2725 0.1553  69.8746 0.2395 0.1127  65.6300
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.2559  0.1284 100 0.2695 0.1604 100
Tl*l(NR) 0.2011 0.0820 156.5610 0.2152  0.0946  169.5440
T;‘Z(Nm 0.2177  0.0964 133.3257 0.2389  0.1181 135.8137
T2*1(NR) 0.2406  0.1199 107.0633  0.2601  0.1456  110.2101
T;z(NR) 0.2782  0.1677  76.5753 0.2960  0.1971 81.4192
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.2261  0.0946 100 0.2305  0.0751 100
Tl*l(NR) 0.1728  0.0563 167.8582  0.1780  0.0487 154.3194
Tl*z(NR) 0.1917  0.0705 134.2646  0.1883  0.0565  133.0603
T2"1(NR> 0.2076  0.0849 111.3676  0.2051  0.0720 104.3385
T2*2(NR) 0.2411  0.1183  79.9777 0.2428  0.1090  68.8530
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.2447  0.1121 100 0.2553  0.1407 100
Tl*l(NR) 0.1903  0.0738 151.8855 0.2020 0.0828  169.9543
T1*2(NR) 0.2082 0.0872 128.6194 0.2180 0.1006  139.8041
T2*1(NR) 0.2300 0.1110 100.9811 0.2396  0.1267 111.0382
TQ*Q(NR) 0.2691  0.1604  69.9307 0.2805 0.1761 79.9029
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TaBLE 9: ARB, MSE and PRE of SZ%NR) and 17}, 4,7 = 1,2, using Population III when

n = 100.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.1322  0.0479 100 0.1408  0.0589 100
Tl*l(NR) 0.0887  0.0264 181.6291  0.0911  0.0277 212.9202
T;‘Q(NR) 0.0942  0.0308 155.5489  0.1086  0.0420  140.2293
T2*1(NR> 0.1182  0.0448 107.0453  0.1249  0.0550 107.0917
T2*2(NR) 0.1298  0.0521  91.9876 0.1330  0.0607  97.0463
p1 =0.1,p2 = 0.3 p1 =0.2,p2 = 0.
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.1547  0.0718 100 0.1604  0.0795 100
Tl*l(NR) 0.0960 0.0318 225.7351  0.0954  0.0334  237.9292
T1*2(NR) 0.1097 0.0422 170.1261  0.1187  0.0504 157.7815
T2*1(NR) 0.1254  0.0556  129.2922  0.1325  0.0627 126.8241
TQ*Q(NR) 0.1382  0.0668 107.4516  0.1410  0.0720 110.4175
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.1480  0.0649 100 0.1496  0.0715 100
Tl*l(NR) 0.0936  0.0301  215.3302  0.0924  0.0320  223.7469
TI*Z(NR,) 0.1080  0.0410 158.3456  0.1156  0.0486  147.1165
T2*1(NR> 0.1210  0.0520 124.6625 0.1273  0.0584 122.3421
T2"2(NR> 0.1349  0.0635 102.1417 0.1367  0.0690 103.6230
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.1426  0.0583 100 0.1452  0.0672 100
Tl*l(NR) 0.0898  0.0270 215.7295 0.0911  0.0284 236.5713
T1*2(NR) 0.1061  0.0397 146.8732  0.1108  0.0459  146.4742
TQ*I(NR) 0.1196  0.0504 115.6705 0.1245 0.0559  120.2409
TQ"Q(NR) 0.1315  0.0602  96.8707 0.1334  0.0647 103.8840
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TaBLE 10: ARB, MSE and PRE of s;?NR) and T3, 4,j = 1,2, using Population III when

n = 200.
p1 =0.1,p2 = 0.1 p1 =0.1,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
SE(NR) 0.2027  0.0684 100 0.2173  0.0906 100
Tl*l(NR) 0.1433  0.0342 199.9614  0.1510 0.0436  207.5062
TI*Q(NR) 0.1625  0.0455 150.4815 0.1739  0.0606  149.3966
T2*1(NR> 0.1806  0.0586 116.6720 0.1912  0.0747 121.1966
T2*2(NR) 0.2131  0.0839  81.4849 0.2285 0.1075  84.2310
p1 =0.1,p2 = 0.3 p1 =0.2,p2 =0.1
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
Si(NR) 0.2485  0.1206 100 0.2548  0.1523 100
Tl*l(NR) 0.1730  0.0559 215.6917  0.1859  0.0703 216.8571
T;‘Z(Nm 0.1915 0.0699 172.6250 0.2014 0.0876  173.8465
T2*1(NR) 0.2120 0.0892 135.1360 0.2212  0.1085  140.3732
T;2(NR) 0.2425 0.1162 103.8149  0.2516  0.1442 105.6212
p1 =0.2,p3 =0.2 p1 =0.2,p2 =0.3
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(NR) 0.2287  0.0948 100 0.2425  0.1286 100
Tl*l(NR) 0.1579  0.0474  200.1013  0.1692  0.0609 211.1896
TI*Z(NR,) 0.1768  0.0607 156.1066  0.1908  0.0782  164.5179
T2"1(NR> 0.1964  0.0772 122.7543  0.2062  0.0948 135.5730
T2*2(NR) 0.2294 0.1024  92.5996 0.2377  0.1215  105.8429
p1 =0.3,p2 =0.1 p1=03,p2 =0.2
Estimators MAPE  MSEs PREs MAPE  MSEs PREs
si(wm 0.2371  0.1042 100 0.2486  0.1391 100
Tl*l(NR) 0.1649  0.0519 200.9405 0.1766  0.0657 211.4741
T1*2(NR) 0.1830  0.0655 159.1759  0.1970 0.0836  166.2947
T2*1(NR) 0.2037  0.0846 123.1905 0.2156  0.1029  135.1205
TQ*Q(NR) 0.2345 0.1100  94.7302 0.2437  0.1301  106.9428
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From the empirical results, the following were observed.

1. Tables 1 - 10 showed the results of the ARB, MSE and PRE of the proposed
conventional estimator SZ%N R) and that of proposed calibration estimators
Ti’;( NR)’ 1,7 = 1,2 of population variance under successive sampling in the

situation when both the study and auxiliary variables are characterized with

random non-response. The performances evaluation of the estimators using

ARB, MSE and PRE under the equal and unequal probabilities of non-

responses on the matched and unmatched samples are presented in Tables 1

to 10. The probabilities of non-responses on the matched samples are taken

as p1 = 0.1,0.2,0.3 while the probabilities of non-responses on the matched
samples are taken as ps = 0.1,0.2,0.3.

2. Tables 2, 3 and 4 showed that the results of ARB, MSE and PRE of the
population I for the proposed conventional estimator s*ZNR and that of
proposed calibration estimators Ti’;( NR)’ i,7 = 1, 2 for different probabilities
of non-responses on matched (first occasion) and unmatched sample (second
occasion). ARB, MSE and PRE of the estimators were computed for the
values of p; = 0.1,0.2,0.3 and po = 0.1,0.2,0.3. The results revealed that
the proposed calibration estimators T (NR)» ©J = 1,2 have minimum ARB,
minimum MSE and higher PRE compared to the proposed conventional
estimator SZ%N R) in all cases.

3. Tables 5, 6 and 7 showed that the results of ARB, MSE and PRE of the
population II for the proposed conventional estimator sZQNR and that of
proposed calibration estimators Ti’; (NR)’ 1,7 = 1,2 for different probabilities
of non-responses on matched (first occasion) and unmatched sample (second
occasion). ARB, MSE and PRE of the estimators were computed for the
values of p; = 0.1,0.2,0.3 and p, = 0.1,0.2,0.3. The results revealed that
the proposed calibration estimators QE(NR), i,j = 1,2 have minimum ARB,
minimum MSE and higher PRE compared to the proposed conventional es-

timator SZ%N R)- However, proposed calibration estimators T2*1( N R)’T2*2( NR)

compared to SZ%NR) performed below the standard in some cases when
n = 50 , T2*1(NR) performed below the standard for p; = 0.1,p, = 0.1
and p; = 0.1, p2 = 0.2 when n = 100, T2*2(NR) performed below the standard
for p; = 0.1,ps = 0.2 when n = 100 while T2*1(NR) performed below the
standard for p; = 0.1, ps = 0.2 when n = 200.

4. Tables 8, 9 and 10 showed that the results of ARB, MSE and PRE of the
population III for the proposed conventional estimator 3*2N gy and that of
proposed calibration estimators T;;( NR)> 1,7 = 1,2 for different probabilities
of non-responses on matched (first occasion) and unmatched sample (second
occasion). ARB, MSE and PRE of the estimators were computed for the
values of p; = 0.1,0.2,0.3 and p = 0.1,0.2,0.3. The results revealed that
the proposed calibration estimators T1*1( NR) T1*2( NR) have minimum ARB,
minimum MSE and higher PRE compared to the proposed conventional
estimator SZ%N R) in all cases while T;l( NR)’ T2*2( NR) performed below the
standard.
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4. Conclusions

The methodological advancements proposed in this research seek to improve the
reliability and validity of population parameter estimates in successive sampling
surveys, where non-sampling errors can significantly impact the quality of data and
inference. Analytical expressions for the proposed estimators are derived, allowing
for the quantification of their statistical properties and performance. Simulation
studies demonstrate the superior performance of the proposed conventional and
calibration estimators, especially in situations where non-response is substantial.
The proposed methods have the potential to enhance the quality and efficiency of
estimation in successive sampling surveys, thus improving the accuracy of infer-
ences drawn from such surveys.

From the discussion above, it can be concluded that the proposed calibration
estimators 77" (N R)’ 12 N Rildemonstrated high level of efficiency in estimating the
population varlance when the variable of interest and auxiliary variable are char-
acterized by non-response under successive sampling scheme. We may therefore
recommend the estimators to statisticians and survey users for use in practical sit-
uations described in the introduction section. The proposed traditional estimator
SZ%N R) is also recommended for use in practical situations when only information
on the study variable is available.

The present study is limited to the development of conventional and calibration
estimators of population variance in the presence of random non-response. The
study can be extended and improved using ratio, exponential, logarithmic and
two-step calibration transformations/techniques.

[Received: March 2025 — Accepted: October 2025]

References

Ahmed, A., Adewara, A. A. & Singh, R. V. K. (2016), ‘Class of ratio estima-
tors with known functions of auxiliary variable for estimating finite population
variance’, Asian Journal of Mathematics and Computer Research 12(1), 63-70.

Ali, H., Asim, S. M., Jjaz, M., Zaman, T. & Iftikhar, S. (2024), ‘Improvement in
variance estimation using transformed auxiliary variable under simple random
sampling’, Scientific Reports 14(1), 8117.

Audu, A., Ishag, O. O., Singh, R. V. K. & Yunusa, M. A. (2025), ‘Logarithmic-
Type Estimators of Population coefficient of variation under successive sampling
in the presence of non-response and measurement errors’, Revista Investigacion
Operacional 46(4), 535-554.

Audu, A., Lekganyane, M., Ishaq, O. O. & Aremu, K. O. (2024), ‘Two-Steps
Calibrated Designed Weighted Estimators of Finite Population Variance for a
Mailed Survey Design Characterized by Non-response’, Revista Colombiana de
FEstadistica - Theoretical Statistics 47(2), 193-210.

Revista Colombiana de Estadistica - Applied Statistics 49 (2026) 185-211



210 Ran Vijay Kumar Singh & Ahmed Audu

Audu, A., Singh, R. V. K., Ishaq, O. O., Khare, S., Singh, R. & Adewara, A. A.
(2024), ‘On the estimation of finite population variance for a mail survey design
in the presence of non-response using new conventional and calibrated estima-
tors’, Communications in Statistics - Theory and Methods 53(3), 848-864.

Bhushan, A. & Singh, H. P. (2021), ‘Improved estimation of population variance in
two-stage cluster sampling’, Journal of Statistical Theory and Practice 15(2), 1—
21.

Gupta, S. & Shabbir, J. (2016), ‘Estimation of population variance in two-phase
sampling’, Communications in Statistics - Theory and Methods 45(10), 3013—
3024.

Kadilar, C. & Cingi, H. (2020), ‘Variance estimation in two-phase sampling with
partially defective items’, Communications in Statistics - Simulation and Com-
putation 49(2), 305-319.

Khan, M. G.and Khan, S. U. & Ahmad, N. (2017), ‘Efficient estimators of popu-
lation variance in two-phase sampling’, Communications in Statistics - Theory
and Methods 46(24), 12324-12338.

Little, R. J. A. & Rubin, D. B. (2019), Statistical Analysis with Missing Data,
John Wiley, New York.

Muhammad, 1., Zakari, Y. & Audu, A. (2022), ‘Generalized estimators for finite
population variance using measurable and affordable auxiliary character’, Asian
Res. J. Math 18(1), 14-30.

Naz, F., Abid, M., Nawaz, T. & Pang, T. (2020), ‘Enhancing efficiency of ratio-type
estimators of population variance by a combination of information on robust
location measures’, Scientia Iranica 27(4), 2040-2056.

Ozgiir, E. M. & S. Cavus, O. (2018), ‘Dual-frame estimators for population vari-
ance’, Hacettepe Journal of Mathematics and Statistics 47(5), 1221-1235.

Pandey, M. K., Singh, G. N.;, Zaman, T., Al Mutairi, A. & Mustafa, M. S. (2024),
‘Improved estimation of population variance in stratified successive sampling
using calibrated weights under non-response’, Heliyon 10(6).

Pandey, M. K., Singh, G. N., Zaman, T., Mutairi, A. A. & Mustafa, M. S.
(2024), ‘A general class of improved population variance estimators under non-
sampling errors using calibrated weights in stratified sampling’, Scientific Re-
ports 14(1), 2948.

Shabbir, J. & Gupta, S. (2017), ‘Estimation of population variance in two-
stage cluster sampling’, Communications in Statistics - Theory and Methods
46(19), 9614-9624.

Shahzad, U., Ahmad, I., Garcia-Luengo, A. V., Zaman, T., Al-Noor, N. H. & Ku-
mar, A. (2023), ‘Estimation of coefficient of variation using calibrated estimators
in double stratified random sampling’, Mathematics 11(1), 252.

Revista Colombiana de Estadistica - Applied Statistics 49 (2026) 185-211



New Calibration Estimators of Population Variance 211

Shakeel, M. & Shabbir, J. (2019), ‘Estimation of population variance in two-phase
sampling using auxiliary information’, Communications in Statistics - Simula-
tion and Computation 48(7), 2017-2031.

Singh, G. N., Bhattacharyya, D. & Bandyopadhyay, A. (2019), ‘Formulation of
logarithmic type estimators to estimate population mean in successive sampling
in presence of random non-response and measurement errors’, Commaunications
in Statistics - Simulation and Computation 51(3), 901-923.

Singh, G. N. & Homa, F. (2013), ‘Effective rotation patterns in successive sampling
over two occasions’; Journal of Statistical Theory and Practice 7(1), 146-155.

Singh, G. N., Khalid, M. & Kim, J. M. (2021), ‘Some imputation methods to
deal with the problems of missing data in two-occasion successive sampling’,
Communications in Statistics - Simulation and Computation 50(2), 557-580.

Singh, H. P. & Jafa, R. (2019), ‘Improved estimation of population variance
in two-phase sampling’, Communications in Statistics - Theory and Methods
48(12), 2884-2902.

Singh, H. P., Jafa, R. & Goyal, S. (2021), ‘Improved estimation of population
variance using auxiliary information in two-phase sampling’, Communications
in Statistics - Simulation and Computation 91(9), 1729-1750.

Zaman, T. & Bulut, H. (2023), ‘Robust calibration for estimating the
population mean using stratified random sampling’, Scientia Iranica
https://doi.org/10.24200/SCL.2023.61344.5815

Revista Colombiana de Estadistica - Applied Statistics 49 (2026) 185-211



	1 Introduction
	1.1 Basic Notations and Definitions
	1.2 Probability Models for r1, r2 and r3 

	2 Materials and Methods
	2.1 New proposed Conventional Estimator of Population Variance in the Presence of Non-Response
	2.1.1 Properties of the Proposed Estimators sy(NR)*2

	2.2 New Proposed Calibration Estimators
	2.2.1 Proposed Calibration Estimator Based on Non-Linear Constraint of Auxiliary Variable
	2.2.2 Proposed Calibration Estimator Based on Linear Constraint of Auxiliary Variable


	3 Results and Discussion
	3.1 Efficiency Comparisons

	4 Conclusions

