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Abstract

In recent years, the challenges posed by massive datasets have led re-
searchers to explore aggregated representations, particularly interval-valued
data, within the framework of symbolic data analysis. Although most re-
cent research�apart from Samadi et al. (2024), who focused on the bivariate
case�has primarily addressed parameter estimation in univariate settings,
this paper extends these investigations to the general multivariate case for
the �rst time. We derive maximum likelihood (ML) estimators for the pa-
rameters and establish their asymptotic distributions. Additionally, we de-
velop a theoretical Bayesian framework, previously con�ned to the univari-
ate setting, and extend it to multivariate interval-valued data. We provide
a detailed exposition of the proposed estimators and conduct comparative
performance analyses. Finally, we validate the e�ectiveness of our estimators
through simulations and real-world data analysis.
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Resumen

En los últimos años, los desafíos que plantean los conjuntos de datos ma-
sivos han llevado a los investigadores a explorar representaciones agregadas,
en particular datos interválicos, en el marco del análisis de datos simbóli-
cos. Aunque la investigación más reciente �salvo Samadi et al. (2024),
quienes se centraron en el caso bivariado� ha abordado principalmente la
estimación de parámetros en contextos univariados, este trabajo extiende
por primera vez dichas investigaciones al caso multivariado general. Deriva-
mos estimadores de máxima verosimilitud (MV) para los parámetros y es-
tablecemos sus distribuciones asintóticas. Además, desarrollamos un marco
bayesiano teórico, previamente restringido al entorno univariado, y lo ex-
tendemos a datos interválicos multivariados. Presentamos una exposición
detallada de los estimadores propuestos y realizamos análisis comparativos
de desempeño. Finalmente, validamos la efectividad de nuestros estimadores
mediante simulaciones y análisis de datos reales.

Palabras clave: Datos interválicos; Estimación bayesiana; Estimación por
máxima verosimilitud; Pérdida L2; Pérdida por entropía.

1. Introduction

Symbolic data analysis (Diday, 1988) is a prominent �eld within statistical
data analysis that focuses on understanding and modeling data represented in
distributional form, known as symbols. These symbols can encompass various
formats, including intervals, histograms, and other distributional representations.
The foundational concept of symbolic data analysis is rooted in considering the
symbol as the primary statistical unit of interest, necessitating inference at this
level (Billard & Diday, 2012). Unlike a classical random variable taking values
in Rp, an interval-valued symbolic random variable is represented by an axis-
aligned hyper-rectangle in Rp (a hypercube in the special case where all side lengths
are equal). Interval-valued data, as a special case of symbolic data, provide a
structured representation for information that inherently exists within intervals
rather than precise point values.

Examples abound across various �elds, illustrating the versatility and applica-
bility of interval-valued data. At the same time, these data present non-standard
modeling challenges, since each symbol jointly encodes location and variability,
and standard multivariate tools designed for point-valued observations are not
directly applicable. In �nance, for instance, stock prices are often depicted as
intervals to accommodate market �uctuations and volatility, providing analysts
with a range rather than a single price point. Similarly, environmental monitor-
ing utilizes intervals to report measurements like temperature or pollution levels,
acknowledging variations and errors inherent in the data collection process. In
medical diagnostics, interval-valued data emerge prominently, especially in sce-
narios where test results or patient parameters exhibit uncertainty and variability.
Blood pressure readings or cholesterol levels, for instance, may be communicated
as intervals rather than precise values, acknowledging the inherent uncertainty in
medical measurements. See e.g., Billard & Diday (2003), Billard & Diday (2012)
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and Billard (2011) for an extensive, detailed overview and examples of symbolic
data and their analysis, including interval-valued data. More recently, Zhu & Bil-
lard (2025) developed principal�component�based divisive clustering algorithms
for interval-valued data, further illustrating the growing methodological interest
in multivariate interval symbols beyond purely descriptive or aggregation�based
analyses.

Beyond these classical contributions, symbolic and distribution-valued data
analysis has undergone substantial development in recent decades. Foundational
work on principal component methods and clustering for interval-valued data and
histogram-valued data can be found in Lauro & Palumbo (2000), Irpino & Verde
(2006), and Arroyo & Maté (2009), while Bock & Diday (2012) and Billard &
Diday (2012) provide comprehensive treatments of symbolic data structures and
associated multivariate methods. More recently, Beranger et al. (2023) proposed
new model-based approaches for symbolic data, emphasizing likelihood-based and
distributional modeling for complex symbolic objects.

In parallel, there has been growing interest in speci�c symbolic structures be-
yond simple intervals. Recent work by Sadeghkhani (2025) develops likelihood-
based and Bayesian inference for multivariate triangular-valued data, and
Sadeghkhani & Sadeghkhani (2025) study boxplot symbolic data with applica-
tions in climatology. These contributions illustrate how symbolic representations
such as triangular distributions and �ve-number summaries can be modeled di-
rectly at the symbol level, further motivating �exible probabilistic frameworks for
interval-valued and related symbolic data. The present paper �ts into this emerg-
ing line of research by focusing on multivariate interval-valued observations and
by providing analytically tractable likelihood and Bayesian procedures.

Thanks to advances in computational statistics, Bayesian methods provide a
natural way to combine prior information with interval-valued observations. How-
ever, fully Bayesian treatments of interval-valued data remain relatively scarce.
An important recent contribution is Xu & Qin (2024), who employ Je�reys' prior
and a Gibbs sampler to obtain posterior inference for interval-valued regression
models. Their approach relies on Markov chain Monte Carlo to approximate the
posterior distribution. In contrast, we propose a class of conjugate priors for the
parameters of a multivariate interval-valued model that lead to closed-form poste-
rior distributions. This avoids the need for Gibbs sampling, which is particularly
attractive in higher dimensions (large p), and yields Bayes estimators that can be
directly compared with the corresponding maximum likelihood (ML) estimators.
Our development also complements and extends the frequentist results of Samadi
et al. (2024) from the bivariate case (p = 2) to general p-variate interval-valued
data.

This paper is organized as follows: Section 2 introduces key de�nitions, formu-
lates the likelihood for p-variate interval-valued data, and derives the maximum
likelihood (ML) estimators together with related asymptotic properties. Section 3
develops a Bayesian framework by specifying priors, obtaining closed-form poste-
rior distributions and Bayes estimators, and showing that the resulting Bayesian
estimators dominate their ML counterparts under L2 loss for location and entropy-
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type loss for scale and dependence parameters. Section 4 reports simulation studies
assessing �nite-sample performance across several dimensions. Section 5 presents
real-data illustrations based on interval-valued datasets. Finally, Section 6 con-
cludes with a summary and directions for future work.

2. Multivariate Interval-Valued Likelihood Function

We begin this section with two de�nitions that will be used throughout the
paper.

De�nition 1 (Wishart Distribution). We say that A is distributed as a Wishart
distribution Wp(m,V ), where A is a p×p positive de�nite symmetric matrix, m is
the degrees of freedom, and V is the scale matrix. The corresponding probability
density function (PDF) is given by

Wp(A | m,V ) =
|A|

m−p−1
2

2
mp
2 |V |m2 Γp

(
m
2

) exp(−1

2
tr(V −1A)

)
, (1)

where | · | denotes the determinant, tr(·) denotes the trace, and Γp(·) is the multi-
variate generalization of the gamma function, given as

Γp(z) = π
p(p−1)

4

p∏
i=1

Γ(z+
1− i

2
) =

∫
A>0

exp (−tr(A)) |A|a−
p+1
2 dA ,ℜ(a) > (p−1)/2.

Note that in Equation (1), we must have m ≥ p to ensure that the symmetric
matrix A is invertible. Furthermore, E[A] = mV .

De�nition 2 (Inverse Wishart Distribution). If B = A−1, then B follows the
inverse Wishart distribution IWp(m,U), where the scale matrix is denoted as
U = V −1, and its PDF is given by

IWp(B | m,U) =
|U |m2 |B|−

m+p+1
2

2
mp
2 Γp

(
m
2

) exp

(
−1

2
tr(UB−1)

)
, (2)

with E[B] = U/(m− p− 1) for m > p+ 1.

The �rst step in studying interval-valued data is through descriptive statistics.
Bertrand & Goupil (2000) examined the univariate random interval, considering
X1i = [a1i, b1i], where a1i < b1i for i = 1, . . . , n, under the assumption that points
are uniformly spread across the intervals. They derived the sample mean and
variance as X̄1 = (2n)−1

∑n
i=1(a1i+bi), and S

2
X1

= (3n)−1
∑n

i=1(a
2
1i+a1ib1i+b

2
1i)−

n−1X̄1. Billard (2008) examined the sample covariance function by considering a
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second random variable X2i = [a2i, b2i], where a2i < b2i, resulting in

SX1X2
=(6n)−1

n∑
i=1

(
2(a1i − X̄1)(a2i − X̄2)

+ (a1i − X̄1)(b2i − X̄2) + (b1i − X̄1)(a2i − X̄2)

+ 2(a1i − X̄1)(b2i − X̄2)
)
.

If a1i = b1i for each i = 1, . . . , n, it means that each interval X1i collapses into
a single point rather than representing a range. This is essentially equivalent to
dealing with point-valued data rather than interval-valued data. Therefore, in this
case, the data can be treated as point-valued rather than interval-valued. Billard
(2008) and Samadi et al. (2024) expanded upon the uniform distribution assump-
tions proposed by Bertrand & Goupil (2000), extending the results to include
triangular and Pert distributions (Clark, 1962).

In order to construct the multivariate likelihood function of interval-valued
data based on the uniformly spread assumption, we consider X = (X1, . . . , Xp)
representing a p-variate random variable with interval-valued realizations Xi =
(X1i, . . . ,Xpi), where Xji = [aji, bji] and aji ≤ bji (intervals can be open or closed
at either end), for i = 1, . . . , n and j = 1, . . . , p, representing hyper-rectangles in
Rp.

Given that each variable has aggregated observed values over an interval, it is
necessary to consider the internal distribution of those values within the interval.
Adapting from Le-Rademacher & Billard (2011), there exists a one-to-one corre-
spondence between Xi = (X1i, . . . , Xpi) and Θ = (Θ1,Θ2)

⊤, where Θ1 and Θ2

represent the mean and the variance-covariance matrix of the internal distribution
and can be obtained by

Θi1 =
1

2
(a1i + b1i, . . . , api + bpi)

⊤
, (3)

Θi2 =
1

12
diag((b1i − a1i)

2, . . . , (bpi − a1i)
2) +

1

12

∑
j ̸=k

(bji − aji)(bki − aki) . (4)

It is worth mentioning that Equation (4) represents a matrix with diagonal ele-
ments Θx1

i2 ,Θ
x2
i2 , . . . ,Θ

xp

i2 and o�-diagonal elements Θxjxk

i2 for j ̸= k.

SinceXi is a random variable, the corresponding parameterΘ varies and takes
di�erent values. Suppose the PDF ofXi, denoted by f

Xi
i (xi;Θ) and consequently

can be expressed as a joint density of Θ = (Θ1,Θ2)
⊤ given by

Θi1 = (Θx1
i1 , . . . ,Θ

xp

i1 )
⊤ ∼ Np(µ,Σ) , (5)

Θi2 =


Θx1

i2 Θx1x2
i2 · · · Θ

x1xp−1

i2 Θ
x1xp

i2

Θx2x1
i2 Θx2

i2 · · · Θ
x2xp−1

i2 Θ
x2xp

i2
...

...
. . .

...
...

Θ
xp−1x1

i2 Θ
xp−1x2

i2 · · · Θ
xp−1

i2 Θ
xp−1xp

i2

Θ
xpx1

i2 Θ
xpx2

i2 · · · Θ
xpxp−1

i2 Θ
xp

i2

 ∼ Wp(m,Λ) . (6)

Next, we establish the likelihood function based on intervals.
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2.1. ML Estimators and Related Properties

Let S =
∑n

i=1(Θi1 − Θ̄1)(Θi1 − Θ̄1)
⊤, where Θ̄ is the mean vector of param-

eters Θi1 for i = 1, . . . , n, given by Θ̄1 = (Θ̄1, . . . , Θ̄n)
⊤.

Provided that {Θi1}ni=1 are independent and identically distributed (iid) and
independent of iid {Θi2}ni=1, then the likelihood functions from equations (5) and
(6) are given respectively by

L1 =L1(µ,Σ | Θ11, . . . ,Θn1) = |Σ|−n
2 exp

(
−1

2

n∑
i=1

(θi1− µ)⊤Σ−1(θi1− µ)

)

= |Σ|−n
2 exp

(
−1

2
tr(SΣ−1)− n

2
(θ̄1 − µ)⊤(θ̄1 − µ)

)
, (7)

L2 =L2(Λ | Θ12, . . . ,Θn2) = |Λ|−nm
2 exp

(
−1

2
tr(

n∑
i=1

θi2∆
−1)

)
. (8)

The ML estimators of unknown vector µ, and matrices Σ and Λ are presented in
the following theorem.

Theorem 1. The ML estimators of parameters µ, and matrices Σ and Λ are
given by

µ̂ML = Θ̄1 , (9)

Σ̂
ML

=
S

n
, (10)

Λ̂
ML

=

∑n
i=1 Θi2

nm
. (11)

Proof . Considering the likelihood function L1 in (7), and taking the derivative
of L1 with respect to µ and setting it to zero gives

∂L1

∂µ
=

∂

∂µ

(
−n
2
(θ̄1 − µ)⊤(θ̄1 − µ)

)
= −n

2

∂

∂µ

(
θ̄
⊤
1 θ̄1 − 2θ̄

⊤
1 µ+ µ⊤µ

)
= n(θ̄1 − µ) = 0 ,

and solving for µ gives Equation (9).

Analogously, by taking the derivative of L1 with respect to Σ and setting it to
zero, we have

∂L1

∂Σ
=

∂

∂Σ

(
−1

2
tr(SΣ−1)

)
= −1

2

∂

∂Σ

(
tr(SΣ−1)

)
= 0 ,

solving for Σ gives Equation (10).

Revista Colombiana de Estadística - Theoretical Statistics 49 (2026) 161�183



Inference for Multivariate Interval Data 167

In order to �nd the ML estimator Λ, having the likelihood function L2 in (8)
and taking derivative of it with respect to Λ and setting it to zero gives

∂L2

∂Λ
= −nm

2
|Λ|−nm

2 −1 exp

(
−1

2
tr

(
n∑

i=1

θi2∆
−1

))
= 0.

Solving for Λ yields Equation (11). This completes the proof.

2.2. Asymptotic Properties of ML Estimators

Theorem 2. Consider Sym(p), the set of p × p real symmetric matrices, and
let P(p) ⊆ Sym(p) represent the subset consisting of symmetric positive-de�nite
matrices that forms a convex regular cone. Setting ω = (µ,Σ) ∈ Ω = Rp × P(p),
then

√
n(ω̂ − ω) d−→ Nm(0m, I

−1(ω)) ,

with

Iij(ω) =

[
∂µ

∂ωi

]⊤
Σ−1 ∂µ

∂ωj
+

1

2
tr

(
Σ−1 ∂µ

∂ωi
Σ−1 ∂µ

∂ωj

)
,

and m = dim(Ω) = p(p+ 3)/2.

Proof . The symmetric semi-positive �sher information matrix (eg., Amari (2016))
is given by I(ω) = V[∇ logNm(Θ1 | µ,Σ)], where is a PDF of p-varaite normal
with mean vector E[Θ] = µ, V[Θ] = Σ, and V(·) is the variance-covariance ma-
trix. As discussed in Nielsen (2023), the �sher information matrix can be written
as follows

I(ω) = Cov [∇ logNm(Θ1 | µ,Σ),Σ)]

= E
[
h∇ logNm(Θ1 | µ,Σ))∇ logNm(Θ1 | µ,Σ))⊤

]
= −E

[
∇2 logNm(Θ1 | µ,Σ))

]
For multivariate distributions parameterized by an m-dimensional vector ψ =
(ψ1, . . . , ψp, ψp+1, . . . , ψm) ∈ Rm, with µ = (ψ1, . . . , ψp) and Σ(ψ) = vech(ψp+1,
. . . , ψm), where vech(·) refers to the vech operator. Then we have I(ω) = [Iij(ω)],
with

Iij(ω) =

[
∂µ

∂ωi

]⊤
Σ−1 ∂µ

∂ωj
+

1

2
tr

(
Σ−1 ∂µ

∂ωi
Σ−1 ∂µ

∂ωj

)
.

see Skovgaard (1984), and Barachant et al. (2013) for more information.
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Proposition 1. It can be checked that for p = 1 and p = 2, the Fisher information
matrices are simpli�ed to the following.

I(ω) =

[
1/σ2 0

0 1/σ4

]
, with ω = (µ, σ2) ,

I(ω) =

[
A2×2 02×3

03×2 B2×2

]
, with ω = (µ1, µ2, σ

2
1 , σ

2
2 , ρ) ,

and symmetric matrices are given by

A =

[ −1
(1−ρ2)σ2

1

ρ
(1−ρ2)σ1σ2

ρ
(1−ρ2)σ1σ2

1
(ρ2−1)σ2

2

]
, B =


−ρ2+1
(ρ2−1)2

ρ
(1−ρ2)σ1

ρ
(1−ρ2)σ2

ρ
(1−ρ2)σ1

2−ρ2

(ρ2−1)σ2
1

ρ2

(ρ2−1)σ1σ2

ρ
(1−ρ2)σ2

ρ2

(1−ρ2)σ1σ2

2−ρ2

(ρ2−1)σ2
2

 .

3. Bayesian Set Up

We begin by proposing prior distributions on the parameters and subsequently
derive the posterior distribution based on the given likelihood functions (7) and
(8) corresponding to models (5) and (6), respectively.

Consider the following priors on parameters µ,Σ in (5) and Λ in (6) as below

π(µ,Σ) ∝ |Σ|−
p+2
2 , (12)

π(Λ) ∝ |Λ|−
p+1
2 . (13)

Let Θ =
{
(Θi1,Θi2)

⊤}n
i=1

, and suppose that priors (12) and (13) are inde-
pendent. Thus, we have

π(µ,Σ,Λ) ∝ |Σ|−
p+2
2 |Λ|−

p+1
2 . (14)

The posterior distribution of µ,Σ,Λ can then be written as

π(µ,Σ,Λ | Θ) ∝L1(µ,Σ | Θ11, . . . ,Θ1n)L2(Λ | Θ12, . . . ,Θn2)π(µ,Σ,Λ)

∝|Σ|−
n+p+2

2 |Λ|−
nm+p+2

2

exp

(
−1

2
tr(SΣ−1)− n

2

n∑
i=1

(θi1 − µ)⊤Σ−1(θi1 − µ)

)

× exp

(
−1

2
tr(

n∑
i=1

θi2Λ
−1)

)
.

(15)

The following lemma provides the full conditional posterior distributions asso-
ciated with the posterior distribution in (15).
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Lemma 1. Full conditional distributions associated with the posterior distribution
in (15) are given by

µ | Σ,Θ1 ∼ Np(Θ̄1,Σ/n) , (16)

Σ | µ,Θ1 ∼ IWp(n+ 1, (Θ̄1 − µ)(Θ̄1 − µ)⊤/n) , (17)

Λ | Θ2 ∼ IWp(nm,

n∑
i=1

Θi2) . (18)

Proof . The proof is straightforward and hence is omitted.

3.1. Loss Functions

The most common loss function for estimating vector µ using µ̂ is L2 loss,
||µ − µ̂||2, while the common loss function in the matrix form is the entropy loss
(Stein, 1956)

L(B, B̂) = tr
(
B̂B−1

)
− log

∣∣∣B̂B−1
∣∣∣− p , (19)

where B is a p × p symmetric matrix. The Bayesian estimator for the matrix
estimator is the posterior mean.

The corresponding risk function to loss function (19) is given by

R(B̂,B) = E
[
L(B̂,B)

]
. (20)

Theorem 3. Consider model 5, 6, and the prior (14). The The Bayes estimators
of parameters µ (with respect to L2 loss), Σ, and Λ (with respect to entropy loss
function in 19) are given by

µ̂ = Θ̄1 , (21)

Σ̂ =
S

n− p
, (22)

Λ̂ =

∑n
i=1 Θi2

nm− p− 1
. (23)

Proof . Given that Bayes estimators are the expectations of corresponding marginal
distributions, and with the posterior distributions available in (15), we integrate
over Σ and Λ, µ and Λ, and eventually over Σ and µ, yielding

µ | Θ ∼ Tp(Θ̄1,
S

n+ p+ 1
, n+ 1− p) , (24)

Σ | Θ ∼ IWp(n+ 1,S) ,

Λ | Θ ∼ IWp(nm,

n∑
i=1

Θi2) ,
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where Tp(m,A, ν) in (24) represents a multivariate Student's t-distribution with
mean vectorm, variance matrix A, and ν degrees of freedom with an expectation
of m. Completing the proof involves using the expectation of the inverse Wishart
distribution, as given in De�nition 2.

Theorem 4. Under the assumptions of Theorem 3, the Bayes estimators of the
parameters Σ and Λ obtained in equations (22) and (23) dominate the ML esti-
mators (10) and (11) obtained in Theorem 1 under entropy loss function (19).

Proof . Let ∆Σ and ∆Λ denote the di�erence in risk functions of the Bayes and
ML estimators for Σ and Λ, respectively. It can be easily seen that

∆Σ = E
[
L(Σ̂

ML
,Σ)− L(Σ̂,Σ)

]
= log

n

n− 1
. (25)

Similarly, one can show that

∆Λ =
nm

nm− p− 1
. (26)

Both equations (25) and (26) con�rm that the di�erence in risk functions is posi-
tive. This completes the proof.

As with any Bayesian procedure, it is important to acknowledge that posterior
inferences may exhibit some sensitivity to the choice of prior distributions; in this
work we focus on the objective, conjugate priors in (12)�(13) that yield closed-form
posteriors, and a more systematic prior-sensitivity study is left for future research.

3.2. Special Cases

3.2.1. Univariate Case

When p = 1, Equations (5) and (6) imply that {Θi1}ni=1 are IID from N (µ, σ2)
and are independent of {Θi2}ni=1, which are IID from an exponential distribu-
tion E(λ) (equivalently W1(2, 2λ)). Furthermore, as shown by Le-Rademacher &
Billard (2011), the ML estimators of parameters µ, σ2, and λ are given by

µ̂ML = Θ̄1 , σ̂2ML =

n∑
i=1

(Θi1 − Θ̄1)
2/n λ̂ML =

∑n
i=1 Θi2

n
.

The corresponding posterior distribution (15) in this case is π(µ, σ, λ) ∝ σ−3λ−1,
which is also Je�rey's prior studied by Xu & Qin (2024). Therefore, the conditional
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posterior distributions from equations (16), (17), and (18) are reduced respectively
to the following

µ | Θ, σ2, γ ∼N (Θ̄1, σ
2/n) ,

σ2 | Θ, µ, λ ∼IG(n+ 1

2
,

n∑
i=1

(Θi2 − µ)2/2) ,

λ | Θ, µ, σ2 ∼IG(n,
n∑

i=2

Θi2) .

Moreover, the Bayes estimators can also be retrieved from Theorem (3), with p = 1
as below

µ̂ = Θ̄1 , σ̂2 =

∑n
i=1(Θi1 − Θ̄1)

2

n− 1
, λ̂ =

∑n
i=1 Θi2

n
.

Unlike Xu & Qin (2024), we have proposed closed-form Bayesian estimators for
the parameters, making the Gibbs sampler method they employed unnecessary.

3.2.2. Bivariate Case

In this case {Θx1,x2

i1 }ni=1 are iid from N2(µ1, µ2, σ
2
1 , σ

2
2 , ρ) (which is correspond-

ing µ = (µ1, µ2)
⊤, and Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
in 5) is independent of {Θx1,x2

i2 }ni=1 are

iid from W2(m,Λ =
(
λ11 λ12

λ12 λ22

)
).

Therefore the conditional posterior distributions are obtained using (16), (17)
and (18) with p = 2. In order to obtain the ML estimators of the parameters, lets
rewrite the likelihood functions (7) and (8) in this case as follows.

L1 =(2πσ1σ2)
−n exp

(∑
i=1n

(θx1
i1 − µ1)

2/σ2
1 + θx2

i1 − µ2)
2/σ2

2

)
− 2

ρ

σ1σ2
θx1
i1 − µ1)θ

x2
i1 − µ2)/σ

2
2 , (27)

L2 =
(λ11λ22 − λ12)

2n2−mnπ−n/2

(Γ(m/2)Γ((m− 1)/2))n

n∏
i=1

(θx1
i2 θ

x2
i2 − θx1x2

i2 )m/2−1

exp

(
− λ11λ22
(λ11λ22 − λ212)

(∑n
i=1 θ

x1
i2

λ11
+

∑n
i=1 θ

x2
i2

λ22
− 2λ12
λ11λ22

n∑
i=1

θx1x2
i2

))
.

(28)

Taking derivatives with respect to parameters of µi, σi for i = 1, 2, and ρ
from log of likelihood functions (27) and (28) (see Samadi et al. (2024) for details)
results to following ML estimators.
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µ̂ML
i = Θ̄xi

i , σ̂2ML
i =

n∑
i=1

(Θx1
i1 − µi)

2/n , for i = 1, 2 ,

ρ̂ML =

∑n
i=1(Θ

xi
i1 − µ1)(Θ

x2
i1 − µ2)√∑n

i=1(Θ
x1
i1 − µ1)2

∑n
i=1(Θ

x1
i1 − µ2)2

,

λ̂ML
ii =

∑n
i=1 Θ

xi
i2

nm
, for i = 1, 2 , λ̂ML

12 =

∑n
i=1 Θ

x1x2
i2

nm
,

which corresponds to Theorem 3 with p = 2.

4. Simulation Results

In the simulation, three scenarios are considered to generate samples of n from
the random variables Θi1 and Θi2, as described in equations (5) and (6). In the
�rst scenario (I), samples are generated from univariate distributions, where each
random variable Θi1 and Θi2 was independently sampled from N (µ = 2, σ2 = 5),
and E(λ = 2), respectively.

In the second scenario (II), bivariate distributions were employed, generating
samples where the random variables Θi1 and Θi2 are independently sampled from
N2(( 24 ) , (

4 3
3 9 )), and W2(m = 3,Λ = ( 2 1

1 5 )). Finally, in the third scenario (III),
trivariate distributions were utilized, resulting in samples where the random vari-
ables Θi1 and Θi2 are sampled from N3(µ,Σ), and W3(m = 3,Λ), with

µ =

24
6

 , Σ =

 1 1.4 0.6

1.4 4 1.5

0.6 1.5 9

 , Λ =

2 1 1

1 5 2

1 2 3

 .
These scenarios allow us to compare behavior and performance of the proposed
Bayesian and ML parameter estimators for di�erent dimensions.

For each simulation within each scenario, sample sizes of n = 25, 50, 200, and
500, with 10 000 iterations, are conducted. The estimated parameters using The-
orems 1 and 3, associated with the ML and Bayes estimators, are tabulated in
Tables 1, 2, and 3, corresponding to dimensions p = 1, p = 2, and p = 3 (scenarios
I, II, and III).

According to Table 1 both methods yield similar estimates for µ across sample
sizes, while Bayesian estimation tends to produce slightly higher estimates for σ2

and λ compared to MLE, with standard deviations also presented.

In Table 2, representing a simulation with p = 2, both ML and Bayesian estima-
tions exhibit consistency across various parameters and sample sizes. Analogous
to Table 1, both methods yield similar estimates for µ1 and µ2, irrespective of sam-
ple size, with consistent standard deviations. However, for σ2

1 , σ
2
2 , σ12, λ11, λ22,

and λ12, Bayesian estimation tends to produce slightly higher estimates compared
to ML, accompanied by corresponding standard deviations. This trend persists
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across di�erent sample sizes, highlighting the robustness of Bayesian estimation in
this scenario.

On the other hand, in Table 3, re�ecting scenario III, we observe similar trends
to those seen in simulation II (Table 2). Bayesian estimation consistently yields
slightly higher parameter estimates compared to ML across various parameters
and sample sizes.

Table 1: Simulation scenario I (univariate interval-valued model with Θi1 ∼ N (µ =
2, σ2 = 5) and Θi2 ∼ E(λ = 2)): Monte Carlo means (with standard
deviations in parentheses) of ML and Bayes estimators for sample sizes
n ∈ {25, 50, 200, 500}.

Parameter MLE Bayesian

n = 25

µ 2.006555 (SD: 0.4395082) 2.006555 (SD: 0.4395082)

σ2 4.824011 (SD: 1.396871) 5.025011 (SD: 1.455074)

λ 2.006947 (SD: 0.3253547) 2.061932 (SD: 0.3342685)

n = 50

µ 2.000126 (SD: 0.3111599) 2.000126 (SD: 0.3111599)

σ2 4.912915 (SD: 0.9940378) 5.013179 (SD: 1.014324)

λ 2.001979 (SD: 0.2297495) 2.029032 (SD: 0.2328543)

n = 200

µ 1.997678 (SD: 0.1580845) 1.997678 (SD: 0.1580845)

σ2 4.973424 (SD: 0.4938952) 4.998416 (SD: 0.4963771)

λ 1.999907 (SD: 0.1159792) 2.006596 (SD: 0.116367)

n = 500

µ 1.998748 (SD: 0.09948847) 1.998748 (SD: 0.09948847)

σ2 4.990833 (SD: 0.3125381) .000835 (SD: 0.3131644)

λ 2.000496 (SD: 0.07324693) 2.003167 (SD: 0.07334472)
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Table 2: Simulation scenario II (bivariate interval-valued model with Θi1 ∼
N2((2, 4)

⊤,Σ) and Θi2 ∼ W2(m = 3,Λ) as speci�ed in Section 4): Monte
Carlo means (with standard deviations in parentheses) of ML and Bayes esti-
mators for sample sizes n ∈ {25, 50, 200, 500}.

Parameter MLE Bayesian

n = 25

µ1 1.998343 (SD: 0.3971383) 1.998343 (SD: 0.3971383)

µ2 3.998895 (SD: 0.5914762) 3.998895 (SD: 0.5914762)

σ2
1 3.854855 (SD: 1.116438) 4.19006 (SD: 1.213519)

σ2
2 8.67281 (SD: 2.542278) 9.426968 (SD: 2.763346)

σ12 2.898315 (SD: 1.320275) 3.150342 (SD: 1.435081)

λ11 2.001881 (SD: 0.324576) 2.085292 (SD: 0.3381)

λ22 4.989752 (SD: 0.811227) 5.197658 (SD: 0.8450281)

λ12 1.003482 (SD: 0.3770854) 1.045294 (SD: 0.3927973)

n = 50

µ1 1.997207 (SD: 0.2815495) 1.997207 (SD: 0.2815495)

µ2 3.995872 (SD: 0.4210236) 3.995872 (SD: 0.4210236)

σ2
1 3.923179 (SD: 0.7913848) 4.086645 (SD: 0.8243592)

σ2
2 8.821342 (SD: 1.775198) 9.188898 (SD: 1.849164)

σ12 2.945679 (SD: 0.9464634) 3.068416 (SD: 0.9858993)

λ11 1.999832 (SD: 0.2306271) 2.040645 (SD: 0.2353338)

λ22 4.998042 (SD: 0.5803669) 5.100043 (SD: 0.5922111)

λ12 1.002067 (SD: 0.2672165) 1.022517 (SD: 0.2726699)

n = 200

µ1 2.001589 (SD: 0.1427427) 2.001589 (SD: 0.1427427)

µ2 3.999514 (SD: 0.2126366) 3.999514 (SD: 0.2126366)

σ2
1 3.979203 (SD: 0.3944584) 4.019397 (SD: 0.3984429)

σ2
2 8.944955 (SD: 0.8901909) 9.035308 (SD: 0.8991827)

σ12 2.975505 (SD: 0.4695272) 3.005561 (SD: 0.4742699)

λ11 1.998426 (SD: 0.1153766) 2.008469 (SD: 0.1159564)

λ22 4.996518 (SD: 0.2876331) 5.021626 (SD: 0.2890785)

λ12 0.9984405 (SD: 0.1352488) 1.003458 (SD: 0.1359284)

n = 500

µ1 2.000842 (SD: 0.09020568) 2.000842 (SD: 0.09020568)

µ2 4.00109 (SD: 0.1340408) 4.00109 (SD: 0.1340408)

σ2
1 3.993712 (SD: 0.2534548) 4.009751 (SD: 0.2544727)

σ2
2 8.982588 (SD: 0.5689367) 9.018663 (SD: 0.5712216)

σ12 2.996848 (SD: 0.3020145) 3.008884 (SD: 0.3032274)

λ11 1.998547 (SD: 0.07260435) 2.002552 (SD: 0.07274985)

λ22 5.000131 (SD: 0.1804525) 5.010151 (SD: 0.1808142)

λ12 0.9986841 (SD: 0.08520831) 1.000685 (SD: 0.08537907)
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Table 3: Simulation scenario III (trivariate interval-valued model with Θi1 ∼ N3(µ,Σ)
and Θi2 ∼ W3(m = 3,Λ) as speci�ed in Section 4): Monte Carlo means (with
standard deviations in parentheses) of ML and Bayes estimators for sample
sizes n ∈ {25, 50, 200, 500}.

Parameter MLE Bayesian

n = 25

µ1 2.001857 (SD: 0.1996053) 2.001857 (SD: 0.1996053)

µ2 4.000511 (SD: 0.3989019) 4.000511 (SD: 0.3989019)

µ3 6.00609 (SD: 0.5932688) 6.00609 (SD: 0.5932688)

σ2
1 0.9618643 (SD: 0.2764356) 1.093028 (SD: 0.3141314)

σ2
2 3.851198 (SD: 1.113989) 4.376362 (SD: 1.265897)

σ2
3 8.655308 (SD: 2.536946) 9.835577 (SD: 2.882893)

σ12 1.348785 (SD: 0.4805106) 1.53271 (SD: 0.5460348)

σ13 0.5855684 (SD: 0.5996525) 0.6654186 (SD: 0.6814233)

σ23 1.449337 (SD: 1.20976) 1.646974 (SD: 1.374727)

λ11 2.004908 (SD: 0.3292506) 2.11786 (SD: 0.3478)

λ12 1.002803 (SD: 0.3870634) 1.059299 (SD: 0.4088698)

λ13 1.002417 (SD: 0.3094444) 1.058891 (SD: 0.3268779)

λ22 5.010742 (SD: 0.8130529) 5.293038 (SD: 0.8588587)

λ23 2.004597 (SD: 0.5016901) 2.117532 (SD: 0.5299543)

λ33 2.999371 (SD: 0.4971395) 3.16835 (SD: 0.5251473)

Table 4: Simulation scenario III (continued): same trivariate interval-valued model as
in Table 3; Monte Carlo means (with standard deviations in parentheses) of
ML and Bayes estimators for n = 50.

Parameter MLE Bayesian

n = 50

µ1 2.001289 (SD: 0.1414633) 2.001289 (SD: 0.1414633)

µ2 4.006495 (SD: 0.2821739) 4.006495 (SD: 0.2821739)

µ3 6.009829 (SD: 0.4182362) 6.009829 (SD: 0.4182362)

σ2
1 0.9788372 (SD: 0.1987836) 1.041316 (SD: 0.2114719)

σ2
2 3.91668 (SD: 0.7861622) 4.16668 (SD: 0.8363427)

σ2
3 8.81281 (SD: 1.784628) 9.37533 (SD: 1.89854)

σ12 1.371165 (SD: 0.3410975) 1.458686 (SD: 0.3628697)

σ13 0.5826238 (SD: 0.4231293) 0.6198126 (SD: 0.4501376)

σ23 1.456099 (SD: 0.8677798) 1.549041 (SD: 0.9231701)

λ11 1.999239 (SD: 0.2297266) 2.054012 (SD: 0.2360205)

λ12 0.9989928 (SD: 0.2741133) 1.026362 (SD: 0.2816232)

λ13 0.9996421 (SD: 0.2188311) 1.02703 (SD: 0.2248265)

λ22 5.000366 (SD: 0.5758727) 5.137362 (SD: 0.59165)

λ23 1.999313 (SD: 0.354906) 2.054089 (SD: 0.3646294)

λ33 2.996561 (SD: 0.3473413) 3.078658 (SD: 0.3568575)
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Table 5: Simulation scenario III (continued): same trivariate interval-valued model as
in Table 3; Monte Carlo means (with standard deviations in parentheses) of
ML and Bayes estimators for n = 200.

Parameter MLE Bayesian

n = 200

µ1 1.999994 (SD: 0.07056982) 1.999994 (SD: 0.07056982)

µ2 4.000806 (SD: 0.142892) 4.000806 (SD: 0.142892)

µ3 6.003733 (SD: 0.2112991) 6.003733 (SD: 0.2112991)

σ2
1 0.9941807 (SD: 0.09982312) 1.009321 (SD: 0.1013433)

σ2
2 3.981968 (SD: 0.3995839) 4.042607 (SD: 0.4056689)

σ2
3 8.967562 (SD: 0.8961266) 9.104123 (SD: 0.9097732)

σ12 1.392808 (SD: 0.1736081) 1.414019 (SD: 0.1762519)

σ13 0.5962916 (SD: 0.2150788) 0.6053722 (SD: 0.2183541)

σ23 1.490207 (SD: 0.436213) 1.5129 (SD: 0.4428558)

λ11 1.999746 (SD: 0.1159753) 2.013167 (SD: 0.1167536)

λ12 0.9999034 (SD: 0.1359524) 1.006614 (SD: 0.1368648)

λ13 0.9997189 (SD: 0.1086336) 1.006428 (SD: 0.1093627)

λ22 4.997789 (SD: 0.2901505) 5.031331 (SD: 0.2920978)

λ23 1.998484 (SD: 0.1780972) 2.011896 (SD: 0.1792925)

λ33 2.999204 (SD: 0.1738039) 3.019332 (SD: 0.1749704)

Table 6: Simulation scenario III (continued): same trivariate interval-valued model as
in Table 3; Monte Carlo means (with standard deviations in parentheses) of
ML and Bayes estimators for n = 500.

Parameter MLE Bayesian

n = 500

µ1 1.999996 (SD: 0.04464038) 1.999996 (SD: 0.04464038)

µ2 3.999947 (SD: 0.08934335) 3.999947 (SD: 0.08934335)

µ3 5.999125 (SD: 0.1331876) 5.999125 (SD: 0.1331876)

σ2
1 0.9984463 (SD: 0.0627888) 1.004473 (SD: 0.06316781)

σ2
2 3.992415 (SD: 0.2512253) 4.016514 (SD: 0.2527417)

σ2
3 8.990107 (SD: 0.5671697) 9.044374 (SD: 0.5705933)

σ12 1.397712 (SD: 0.1085339) 1.406149 (SD: 0.109189)

σ13 0.5989173 (SD: 0.136427) 0.6025325 (SD: 0.1372505)

σ23 1.499177 (SD: 0.2751862) 1.508226 (SD: 0.2768472)

λ11 1.999446 (SD: 0.0730402) 2.004792 (SD: 0.07323549)

λ12 0.9997517 (SD: 0.08515412) 1.002425 (SD: 0.08538181)

λ13 0.999939 (SD: 0.06844347) 1.002613 (SD: 0.06862647)

λ22 4.999755 (SD: 0.1830031) 5.013123 (SD: 0.1834924)

λ23 1.999826 (SD: 0.112514) 2.005173 (SD: 0.1128148)

λ33 3.000691 (SD: 0.1095989) 3.008714 (SD: 0.109892)
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5. Real Data

Example 1 (Medical dataset). The data presented in Table 7 represent the range
of pulse rate over a day (X1), the range of systolic blood pressure over the same
day (X2), and the range of diastolic blood pressure over the same day (X3). These
observations were gathered from a sample of 59 patients, each su�ering from var-
ious illnesses, out of a yearly hospitalized population of 3000. This data was used
by Gil et al. (2007).

Table 7: Data on the ranges of pulse rate (X1), systolic (X2), and diastolic (X3) blood
pressure.

X1 X2 X3 X1 X2 X3

58�90 118�173 63�102 52�78 119�212 47�93

47�68 104�161 71�118 55�84 122�178 73�105

32�114 131�186 58�113 61�101 127�189 74�125

61�110 105�157 62�118 65�92 113�213 52�112

62�89 120�179 59�94 38�66 141�205 69�133

63�119 101�194 48�116 48�73 99�169 53�109

51�95 109�174 60�119 59�98 126�191 60�98

49�78 128�210 76�125 59�87 99�201 55�121

43�67 94�145 47�104 49�82 88�221 37�94

55�102 148�201 88�130 48�77 113�183 55�85

64�107 111�192 52�96 56�133 94�176 56�121

54�84 116�201 74�133 37�75 102�156 50�94

47�95 102�167 39�84 61�94 103�159 52�95

56�90 104�161 55�98 44�110 102�185 63�118

44�108 106�167 45�95 46�83 111�199 57�113

63�109 112�162 62�116 52�98 130�180 64�121

62�95 136�201 67�122 56�84 103�161 55�97

48�107 90�177 52�104 54�92 125�192 59�101

26�109 116�168 58�109 53�120 97�182 54�104

61�108 98�157 50�111 49�88 124�226 57�101

54�78 98�160 47�108 75�124 120�180 59�90

53�103 97�154 60�107 58�99 100�161 54�104

47�86 87�150 47�86 59�78 159�214 99�127

70�132 141�256 77�158 55�89 138�221 70�118

63�115 108�147 62�107 55�80 87�152 50�95

47�83 115�196 65�117 70�105 120�188 53�105

56�103 99�172 42�86 40�80 95�166 54�100

71�121 113�176 57�95 56�97 92�173 45�107

68�91 114�186 46�103 37�86 83�140 45�91

62�100 145�210 100�136

Despite Θx3
i1 being slightly deviant from the normality assumption, overall,

having p-values 0.14, and 0.08 using Mardia's test or the Shapiro-Wilk test (see
Korkmaz et al. (2014)) indicates that there is no signi�cant evidence against mul-
tivariate normality of Θi1 = (Θx1

i1 ,Θ
x2
i1 ,Θ

x3
i1 )

⊤. As a means to verify whether

Θi2 =

 Θx1
i2 Θx1x2

i2 Θx1x3
i2

Θx1x2
i2 Θx2

i2 Θx2X3
i2

Θx1x3
i2 Θx2X3

i2 ΘX3
i2


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is consistent with being drawn from a Wishart distribution, we follow Algorithm
1 with n = 59, p = 3, degrees of freedom, df = n− p+ 1 = 57, and ML estimator
of Λ from Table 8.

Algorithm 1 Goodness-of-Fit Test for Wishart Distribution

1: Input: Observed matrices {O1, O2, ..., On}, Wishart parameters df and Λ̂
2: Output: Test statistic and p-value
3: Simulate n Wishart-distributed matrices {S1, S2, ..., Sn} with parameters df

and Λ̂
4: for i = 1 to n do
5: Compute the sample covariance matrix Ci of Oi

6: Reshape Ci into a vector vi
7: end for
8: Reshape each Si into a vector ui
9: Perform a statistical test to compare the distributions of {v1, v2, ..., vn} and

{u1, u2, ..., un} (Chi-squared test)
10: Compute the test statistic and p-value
11: return p-value

Having returned p-value=0.2 does not reject the assumption that Θi2 is from
a Wishart distribution.

The ML and Bayesian estimators for mean vector µ, variance covariance matrix
Σ, and scale matrix Λ are presented in Table 8.

Table 8: ML and Bayesian estimates of µ, Σ, and Λ for the trivariate medical interval-
valued dataset in Table 7 (ranges of pulse rate, systolic and diastolic blood
pressure; n = 59 patients).

Parameter MLE Bayesian

µ

 74.5169

146.7034

83.4491

  74.5169

146.7034

83.4491


Σ

116.08446 27.03893 18.16188

27.03893 329.96711 149.77729

18.16188 149.77729 157.47199

 122.30327 28.48744 19.13484

28.48744 347.64392 157.80107

19.13484 157.80107 165.90799


Λ

2.7849 4.1862 3.033

4.1862 7.5626 5.1744

3.0329 5.1744 3.7496

 2.7883 4.1912 3.036

4.1912 7.5716 5.1806

3.0365 5.1806 3.754



Example 2. (Car dataset)

The data in Table 9 provides measurements for 8 di�erent car models. These
measurements include four variables: X1 represents the price of the car in thou-
sands of euros, X2 denotes the maximum velocity, X3 indicates the acceleration
time required to reach a given speed, and X4 represents the cylinder capacity of
the car. These variables are utilized as per Billard & Diday (2012).
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Table 9: Cars Data.

Car Model X1 X2 X3 X4

Aston Martin [260.5, 460.0] [298, 306] [4.7, 5.0] [5935, 5935]

Audi A6 [68.2, 140.3] [216, 250] [6.7, 9.7] [1781, 4172]

Audi A8 [123.8, 171.4] [232, 250] [5.4, 10.1] [2771, 4172]

BMW 7 [104.9, 276.8] [228, 240] [7.0, 8.6] [2793, 5397]

Ferrari [240.3, 391.7] [295, 298] [4.5, 5.2] [3586, 5474]

Honda NSR [205.2, 215.2] [260, 270] [5.7, 6.5] [2977, 3179]

Mercedes C [55.9, 115.2] [210, 250] [5.2, 11.0] [1998, 3199]

Porsche [147.7, 246.4] [280, 305] [4.2, 5.2] [3387, 3600]

One can easily verify that there is no evidence to rejectΘi1 = (Θx1
i1 ,Θ

x2
i1 ,Θ

x3
i1 ,Θ

x4
i1 )

⊤

as a multivariate normal. Due to the small sample size, checking whether

Θi2 =


Θx1

i2 Θx1x2
i2 Θx1x3

i2 Θx1x4
i2

Θx1x2
i2 Θx2

i2 Θx2X3
i2 Θx2x4

i2

Θx1x3
i2 Θx2X3

i2 ΘX3
i2 ΘX3X4

i2

ΘX1X4
i2 ΘX2X4

i2 ΘX3X4
i2 ΘX4

i2


follows a Wishart distribution is quite challenging. However, we attempt to mod-
ify Algorithm 1 to incorporate bootstrapping by resampling from the observed
matrices with replacement to generate additional samples. This can be seen in
Algorithm 2, with n = 8, B = 100, p = 4, and df = 5.

The results (p-value = 0.33) con�rms that we can Wishart distribution as-
sumption is not violated. In Table 9 one can �nd the ML and Bayesian estimation
of the parameters in this example.

Table 10: ML and Bayesian estimates of µ, Σ, and Λ for the four-dimensional car
interval-valued dataset in Table 9 (n = 8 car models; price, maximum veloc-
ity, acceleration time, and cylinder capacity).

Parameter MLE Bayesian

µ


201.4687

261.75

6.5437

3772.25



201.4687

261.75

6.5437

3772.25



Σ


8040.986 2268.914 −109.7983 81444.44

2268.914 852.37 −42.7609 19997.9

−109.798 −42.7609 2.191 −903.314

81444.44 19997.906 −903.314 1002110.312




16081.973 4537.8281 −219.596 162888.88

4537.828 1704.75 −85.521 39995.81

−219.59 −85.521 4.3830 −1806.628

162888.884 39995.8125 −1806.62812 2004220.625



Λ


235.613 25.751 2.774 2222.525

25.751 8.38 0.99 414.185

2.774 0.99 0.145 55.38

2222.525 414.185 55.38 40736.7



269.271 29.43 3.17 2540.02

29.43 9.576 1.131 473.35

3.17 1.131 0.165 63.3

2540.03 473.354 63.3 46556.228



Observation 1. As can be seen from Example 2, when dealing with a scenario
where the sample size is small (n = 8) and the dimensionality of the data is rela-
tively large compared to the sample size (p = 4), it is common to observe signi�cant
divergence between the ML and Bayesian estimators. This discrepancy arises due
to several factors. Firstly, in general, the limited amount of data can lead to sparse
representations in the high-dimensional space, making it challenging for the ML
method to accurately estimate parameters. On the other hand, Bayesian estima-
tion o�ers advantages in this context. By incorporating prior information about

Revista Colombiana de Estadística - Theoretical Statistics 49 (2026) 161�183



180 Ali Sadeghkhani, Abdolnasser Sadeghkhani & Abdulkadir Hussein

Algorithm 2 Goodness-of-Fit Test for Wishart Distribution with Bootstrapping

1: Input: Observed matrices {O1, O2, ..., On}, Wishart parameters df and Λ̂,
Bootstrap iterations B

2: Output: Test statistic and p-value
3: for b = 1 to B do
4: Randomly sample n matrices with replacement from {O1, O2, ..., On} to ob-

tain {Ob1, Ob2, ..., Obn}
5: Simulate n Wishart-distributed matrices {Sb1, Sb2, ..., Sbn} with parameters

df and Λ̂
6: for i = 1 to n do
7: Compute the sample covariance matrix Cbi of Obi

8: Reshape Cbi into a vector vbi
9: end for
10: Reshape each Sbi into a vector ubi
11: Perform a statistical test to compare the distributions of {vb1, vb2, ..., vbn}

and {ub1, ub2, ..., ubn} (Chi-squared test)
12: Compute the test statistic and p-value for the bth bootstrap iteration
13: end for
14: Compute the test statistic and p-value based on the distribution of the boot-

strap test statistics
15: return p-value

the parameters, Bayesian estimation can provide regularization and help stabi-
lize parameter estimates, particularly when the sample size is small. Moreover,
Bayesian methods allow for the integration of domain knowledge and uncertainty
quanti�cation, which can improve the robustness of the estimates. Overall, this
divergence underscores the superiority of Bayesian estimation over MLE in scenar-
ios with small sample sizes and high dimensionality, highlighting the importance
of adopting Bayesian approaches when dealing with such data constraints, while
ML relies on large sample theory and can have problems in smaller samples.

6. Concluding remarks

So far, we have assumed that values within intervals are uniformly distributed.
Hence, the ML and Bayesian estimators of the parameters µ, Σ, and Λ from
Theorems 1 and 3, can be expressed in terms of aji and bji for i = 1, . . . , n and
j = 1, . . . , p, using equations (3) and (4).

Additionally, there are other cases where we might assume that the internal dis-
tribution follows other distributions such as the triangular or Pert distribution.
Interested readers are referred to Samadi et al. (2024) for more information.

Note that in all aforementioned cases, we maintain the assumption that Θ1

and Θ2, the mean and the variance-covariance matrix are multivariate normal
and Wishart distributed.
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Alternatively, some researchers have recently considered (e.g., Brito & Duarte Silva
(2012); Lin et al. (2022); and Beranger et al. (2023)) the skew-normal distribution
as a generalization when the normality assumption is not met. In the univariate
case, p = 1, a Box-Cox transformation

Θ
∗xj

i1 =

{
(Θ

x1
i1 )κ1−1

κ1
if κ1 ̸= 0

log(Θx1
i1 ) if κ1 = 0

,

or a power transformation

Θ∗x1
i2 =

{
(Θx1

i2 )
κ2 if κ2 ̸= 0

log(Θx1
i2 ) if κ2 = 0

,

were suggested by Xu & Qin (2024) to convert Θx1

ik , for k = 1, 2, and i = 1, . . . , n,
intoΘ∗x1

ik (which is normal for k = 1, and exponential for k = 2). Parameters κk for
k = 1, 2 vary between (−3, 3), and their optimal values can be found numerically.

In conclusion, this paper comprehensively explored both Bayesian and frequen-
tist approaches for handling multivariate interval-valued data. From a theoretical
perspective, we derived ML and Bayesian estimators for the underlying mean vec-
tor and covariance structures, established some asymptotic properties of the ML
estimators, and compared the procedures under L2 loss for location parameters
and entropy-type losses for scale and dependence parameters. The study involved
investigating some asymptotic properties of the ML estimators and comparing
ML methods with Bayesian methods in terms of the risk function associated with
L2 loss and entropy losses. From an applied perspective, we assessed the �nite-
sample performance of the proposed estimators and examined how the Bayesian
and ML approaches behave in realistic data-analytic settings. Through extensive
simulation studies, we demonstrated the performance of the proposed estimators
and illustrated their applicability to real interval-valued datasets. Overall, our
�ndings underscore the signi�cance of leveraging both Bayesian and frequentist
methodologies in addressing the complexities of multivariate interval-valued data,
providing valuable insights for future research and practical applications in various
domains, particularly in areas where interval-valued and symbolic data naturally
arise as aggregated summaries of underlying measurements.
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