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Abstract

In recent years, the challenges posed by massive datasets have led re-
searchers to explore aggregated representations, particularly interval-valued
data, within the framework of symbolic data analysis. Although most re-
cent research—apart from Samadi et al. (2024), who focused on the bivariate
case—has primarily addressed parameter estimation in univariate settings,
this paper extends these investigations to the general multivariate case for
the first time. We derive maximum likelihood (ML) estimators for the pa-
rameters and establish their asymptotic distributions. Additionally, we de-
velop a theoretical Bayesian framework, previously confined to the univari-
ate setting, and extend it to multivariate interval-valued data. We provide
a detailed exposition of the proposed estimators and conduct comparative
performance analyses. Finally, we validate the effectiveness of our estimators
through simulations and real-world data analysis.
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Resumen

En los dltimos afios, los desafios que plantean los conjuntos de datos ma-
sivos han llevado a los investigadores a explorar representaciones agregadas,
en particular datos intervélicos, en el marco del andlisis de datos simboli-
cos. Aunque la investigacion mas reciente —salvo Samadi et al. (2024),
quienes se centraron en el caso bivariado— ha abordado principalmente la
estimaciéon de parametros en contextos univariados, este trabajo extiende
por primera vez dichas investigaciones al caso multivariado general. Deriva-
mos estimadores de maxima verosimilitud (MV) para los parametros y es-
tablecemos sus distribuciones asintoticas. Ademaés, desarrollamos un marco
bayesiano tedrico, previamente restringido al entorno univariado, y lo ex-
tendemos a datos intervalicos multivariados. Presentamos una exposicién
detallada de los estimadores propuestos y realizamos andlisis comparativos
de desempeiio. Finalmente, validamos la efectividad de nuestros estimadores
mediante simulaciones y analisis de datos reales.

Palabras clave: Datos intervalicos; Estimacion bayesiana; Estimacién por
maxima verosimilitud; Pérdida Lo; Pérdida por entropia.

1. Introduction

Symbolic data analysis (Diday, 1988) is a prominent field within statistical
data analysis that focuses on understanding and modeling data represented in
distributional form, known as symbols. These symbols can encompass various
formats, including intervals, histograms, and other distributional representations.
The foundational concept of symbolic data analysis is rooted in considering the
symbol as the primary statistical unit of interest, necessitating inference at this
level (Billard & Diday, 2012). Unlike a classical random variable taking values
in RP, an interval-valued symbolic random variable is represented by an axis-
aligned hyper-rectangle in R? (a hypercube in the special case where all side lengths
are equal). Interval-valued data, as a special case of symbolic data, provide a
structured representation for information that inherently exists within intervals
rather than precise point values.

Examples abound across various fields, illustrating the versatility and applica-
bility of interval-valued data. At the same time, these data present non-standard
modeling challenges, since each symbol jointly encodes location and variability,
and standard multivariate tools designed for point-valued observations are not
directly applicable. In finance, for instance, stock prices are often depicted as
intervals to accommodate market fluctuations and volatility, providing analysts
with a range rather than a single price point. Similarly, environmental monitor-
ing utilizes intervals to report measurements like temperature or pollution levels,
acknowledging variations and errors inherent in the data collection process. In
medical diagnostics, interval-valued data emerge prominently, especially in sce-
narios where test results or patient parameters exhibit uncertainty and variability.
Blood pressure readings or cholesterol levels, for instance, may be communicated
as intervals rather than precise values, acknowledging the inherent uncertainty in
medical measurements. See e.g., Billard & Diday (2003), Billard & Diday (2012)
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and Billard (2011) for an extensive, detailed overview and examples of symbolic
data and their analysis, including interval-valued data. More recently, Zhu & Bil-
lard (2025) developed principal-component—based divisive clustering algorithms
for interval-valued data, further illustrating the growing methodological interest
in multivariate interval symbols beyond purely descriptive or aggregation—based
analyses.

Beyond these classical contributions, symbolic and distribution-valued data
analysis has undergone substantial development in recent decades. Foundational
work on principal component methods and clustering for interval-valued data and
histogram-valued data can be found in Lauro & Palumbo (2000), Irpino & Verde
(2006), and Arroyo & Maté (2009), while Bock & Diday (2012) and Billard &
Diday (2012) provide comprehensive treatments of symbolic data structures and
associated multivariate methods. More recently, Beranger et al. (2023) proposed
new model-based approaches for symbolic data, emphasizing likelihood-based and
distributional modeling for complex symbolic objects.

In parallel, there has been growing interest in specific symbolic structures be-
yond simple intervals. Recent work by Sadeghkhani (2025) develops likelihood-
based and Bayesian inference for multivariate triangular-valued data, and
Sadeghkhani & Sadeghkhani (2025) study boxplot symbolic data with applica-
tions in climatology. These contributions illustrate how symbolic representations
such as triangular distributions and five-number summaries can be modeled di-
rectly at the symbol level, further motivating flexible probabilistic frameworks for
interval-valued and related symbolic data. The present paper fits into this emerg-
ing line of research by focusing on multivariate interval-valued observations and
by providing analytically tractable likelihood and Bayesian procedures.

Thanks to advances in computational statistics, Bayesian methods provide a
natural way to combine prior information with interval-valued observations. How-
ever, fully Bayesian treatments of interval-valued data remain relatively scarce.
An important recent contribution is Xu & Qin (2024), who employ Jeffreys’ prior
and a Gibbs sampler to obtain posterior inference for interval-valued regression
models. Their approach relies on Markov chain Monte Carlo to approximate the
posterior distribution. In contrast, we propose a class of conjugate priors for the
parameters of a multivariate interval-valued model that lead to closed-form poste-
rior distributions. This avoids the need for Gibbs sampling, which is particularly
attractive in higher dimensions (large p), and yields Bayes estimators that can be
directly compared with the corresponding maximum likelihood (ML) estimators.
Our development also complements and extends the frequentist results of Samadi
et al. (2024) from the bivariate case (p = 2) to general p-variate interval-valued
data.

This paper is organized as follows: Section 2 introduces key definitions, formu-
lates the likelihood for p-variate interval-valued data, and derives the maximum
likelihood (ML) estimators together with related asymptotic properties. Section 3
develops a Bayesian framework by specifying priors, obtaining closed-form poste-
rior distributions and Bayes estimators, and showing that the resulting Bayesian
estimators dominate their ML counterparts under Lo loss for location and entropy-
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type loss for scale and dependence parameters. Section 4 reports simulation studies
assessing finite-sample performance across several dimensions. Section 5 presents
real-data illustrations based on interval-valued datasets. Finally, Section 6 con-
cludes with a summary and directions for future work.

2. Multivariate Interval-Valued Likelihood Function

We begin this section with two definitions that will be used throughout the
paper.

Definition 1 (Wishart Distribution). We say that A is distributed as a Wishart
distribution W,(m, V'), where A is a p x p positive definite symmetric matrix, m is
the degrees of freedom, and V is the scale matrix. The corresponding probability
density function (PDF) is given by

m—p—1
2

A
VIET,

Wy(A|m, V) =

52 =) P (—;tr(V_lA)) : (1)

where |- | denotes the determinant, tr(-) denotes the trace, and I',(-) is the multi-
variate generalization of the gamma function, given as

1—14

st = exp (—tr a=tyt a —
I = e >—/A>O p(—tr(A)) [A]*F dA, R(a) > (p—1)/2.

Note that in Equation (1), we must have m > p to ensure that the symmetric
matrix A is invertible. Furthermore, E[A] = mV.

Definition 2 (Inverse Wishart Distribution). If B = A™', then B follows the
inverse Wishart distribution ZW,(m,U), where the scale matrix is denoted as
U =V~ and its PDF is given by

UI# |B|- ™% 1 i
IW,(B U) = - ——tr(UB ) 2
Wp( |m7 ) 2?1-\p (%) eXp 2 I'( ) ( )

with E[B]=U/(m —p—1) for m > p+ 1.

The first step in studying interval-valued data is through descriptive statistics.
Bertrand & Goupil (2000) examined the univariate random interval, considering
X1i = [a14,b14], where ay; < by; for i = 1,...,n, under the assumption that points
are uniformly spread across the intervals. They derived the sample mean and
variance as X1 = (2n) "' 31 (a1,+bi), and S% = (3n) 71 Y07 (af4a1ib1i4b3;)—
n~1X;. Billard (2008) examined the sample covariance function by considering a
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second random variable Xo; = [ag;, ba;], where ag; < bgy;, resulting in
Sx,x, =(6n)7" Z(Z(au — X1)(ag2; — X2)
i—1
+ (a1; — X1)(b2i — Xa) + (b1; — X1)(ag; — Xa)

+ 2(@17; — Xl)(bgz — XQ)) .

If a;; = by; for each 4 = 1,...,n, it means that each interval X; collapses into
a single point rather than representing a range. This is essentially equivalent to
dealing with point-valued data rather than interval-valued data. Therefore, in this
case, the data can be treated as point-valued rather than interval-valued. Billard
(2008) and Samadi et al. (2024) expanded upon the uniform distribution assump-
tions proposed by Bertrand & Goupil (2000), extending the results to include
triangular and Pert distributions (Clark, 1962).

In order to construct the multivariate likelihood function of interval-valued
data based on the uniformly spread assumption, we consider X = (Xy,...,X,)
representing a p-variate random variable with interval-valued realizations Xi =
(X14,...,X,;), where X;; = [a;;,bj;] and a;; < b;; (intervals can be open or closed
at either end), for i = 1,...,n and j = 1,...,p, representing hyper-rectangles in
RP.

Given that each variable has aggregated observed values over an interval, it is
necessary to consider the internal distribution of those values within the interval.
Adapting from Le-Rademacher & Billard (2011), there exists a one-to-one corre-
spondence between X; = (X1;,...,X,i) and © = (01,0,)", where ©; and O,
represent the mean and the variance-covariance matrix of the internal distribution
and can be obtained by

1

0, =§(a1i+b1i,---7api+bpi)—r ; (3)
1 . 1

O, :ﬁdlag((bli — CLH)Q, RN (bm — a11)2) + E ;(bﬂ — aji)(bki — aki) . (4)

It is worth mentioning that Equation (4) represents a matrix with diagonal ele-
ments O, 072, ...,0:) and off-diagonal elements O35 " for j # k.

Since X ; is a random variable, the corresponding parameter © varies and takes
different values. Suppose the PDF of X;, denoted by fiX i(x;; ©) and consequently
can be expressed as a joint density of @ = (©;,0,) " given by

_ x1 TpN\T
O, = (eilv""@il) NNp(Hax), (5)
Tl T1T2 T1Tp—1 T1Tp
®i2 @iz e ®i2 ®i2
xr2T1 T2 T2Tp—1 T2Tp
@iz @iZ U ®i2 @m
O = : : : : ~Wy(m,A).  (6)
Tp—1T1 Tp—1T2 Tp—1 Tp—1Tp
9i2 @1'2 T 91‘2 91‘2
:EpéL’l CEPCEQ IT—'Ipfl Ip
®i2 @i2 T ®i2 @i2

Next, we establish the likelihood function based on intervals.
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2.1. ML Estimators and Related Properties

Let S=3Y" (©;1 — 0,)(0;; —_@1)T, where (:2 is the mean vector of param-
eters @;; for i = 1,...,n, given by @ = (64,...,0,)".

Provided that {@;1}}_; are independent and identically distributed (iid) and
independent of iid {®;2}?_;, then the likelihood functions from equations (5) and
(6) are given respectively by

. I, 14
Li =L1(pt, 2] O11,...,0,1) = |23 exp (—22(011—H)T2 1(921—u)>
i=1

— [ exp (5082 ) - 561~ 061 - ) | @

nm I -
LQ :LQ(A | @12,...7(")”2) = |A|_TeXp <—2tr(2012A 1)) . (8)

i=1

The ML estimators of unknown vector w, and matrices 3 and A are presented in
the following theorem.

Theorem 1. The ML estimators of parameters p, and matrices ¥ and A are
given by

pM =0y, (9)
~ ML S
_2 1
— (10)
AME L 2im Oz (11)

Proof. Considering the likelihood function L; in (7), and taking the derivative
of Ly with respect to p and setting it to zero gives

OLi _ 9 ( mg _ nT(@, —
om0 (AT =T T
——55(9191—291#&‘# N)
=n(@; —p) =0,

and solving for u gives Equation (9).

Analogously, by taking the derivative of Ly with respect to ¥ and setting it to
zero, we have

9~ 9x \ 2
10
=55 (0

o _ 0 (—1tr(521)>

s§z7h) =0,

solving for ¥ gives Equation (10).
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In order to find the ML estimator A, having the likelihood function Lo in (8)
and taking derivative of it with respect to A and setting it to zero gives

OLy _ nm o nm 1 " Al B
A= 3 A eXp( 2“<;"ﬂA =0

Solving for A yields Equation (11). This completes the proof.

2.2. Asymptotic Properties of ML Estimators
Theorem 2. Consider Sym(p), the set of p X p real symmetric matrices, and
let P(p) C Sym(p) represent the subset consisting of symmetric positive-definite

matrices that forms a convex regular cone. Setting w = (u,X) € Q = RP x P(p),
then

\/E(QA} — W) i> Nm(O’va_l(w)) )

with

o’ B 1 B) )
Iij(w) = { “] 1Py <21652185),
T J

and m = dim(Q2) = p(p + 3)/2.

Proof. The symmetric semi-positive fisher information matrix (eg., Amari (2016))
is given by I(w) = V[V1ogN,, (01 | p, X)], where is a PDF of p-varaite normal
with mean vector E[O] = u, V[O] = X, and V(+) is the variance-covariance ma-
trix. As discussed in Nielsen (2023), the fisher information matrix can be written
as follows

I(UJ) = Cov [v 1OgM7L(®1 ‘ 122 2)7 2)]
=E [hV10g N (01 | 1, %)) VIog Nip (61 | 1, %)) ']
=—-F [V2 log N (©1 | N)E))]

For multivariate distributions parameterized by an m-dimensional vector @ =

(wl, A 7wpa ¢p+1, e 7’(/)m) (S Rm, with M= (¢17 - 7¢p) and E(’l/i) = VeCh(¢p+1,
.., ¥m), where vech(-) refers to the vech operator. Then we have I(w) = [I;;(w)],

with

I 70 TV S TR
I”(w) B [&uj ¥ 87(41]+ Qtr ¥ &uzz 6wj ’

see Skovgaard (1984), and Barachant et al. (2013) for more information. O
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Proposition 1. It can be checked that for p =1 and p = 2, the Fisher information
matrices are simplified to the following.

I(w) = {1/0"2 1/00_4} L with w = (1,0%),

A 0
I(w) = 2z 23 , with w:(ﬂlvl@va%’o—%vﬂ)’
O3x2 Baxo

and symmetric matrices are given by

—p+1 P P
= P e A el e T
A — [ (1-p®)o? (1p2)0102] B — p 2—p° P’
L 1 ’ (1-p?)o1 (02 =107  (p2—1)aio2
(1-p?)o1o2 (0?2 -1)o3 2 2—p®

Iz P
(1-p?o2  (1-p2)o102 (p2-1)o3

3. Bayesian Set Up

We begin by proposing prior distributions on the parameters and subsequently
derive the posterior distribution based on the given likelihood functions (7) and
(8) corresponding to models (5) and (6), respectively.

Consider the following priors on parameters g, 3 in (5) and A in (6) as below

m(p, X) o [B]7 7, (12)
m(A) o A7 (13)

n

=1’

Let ® = {(@il,@iQ)T}
pendent. Thus, we have

and suppose that priors (12) and (13) are inde-

p+1

(s, B, A) o [B]75F AT (14)

The posterior distribution of p, ¥, A can then be written as

m(p, 2, A | O) xLq(p, X ]| O11,...,01,) La(A | O1a,...,0,9) (e, X, A)

ntpt2 nm+p+2
2

o[ BT AL

exp <—;tr(52_1) -2 D (00— 1) =70 - H)) (15)

2 4

X exp (—;tr(zn: 9i2A1)> .

=1

The following lemma provides the full conditional posterior distributions asso-
ciated with the posterior distribution in (15).
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Lemma 1. Full conditional distributions associated with the posterior distribution
in (15) are given by

1 | 25 61 ~ Np(élv 2/77’) ) (]‘6)
2,01 ~ IWy(n+1,(01 —p)(©1 — )" /n), (17)
A Oy ~ IW,(nm, > Op). (18)
i=1
Proof. The proof is straightforward and hence is omitted. O

3.1. Loss Functions

The most common loss function for estimating vector p using fi is Lo loss,
|| — f1]|?, while the common loss function in the matrix form is the entropy loss
(Stein, 1956)

L(B,B) = tr (BB’l) ~log ‘BB‘l‘ _p, (19)

where B is a p X p symmetric matrix. The Bayesian estimator for the matrix
estimator is the posterior mean.

The corresponding risk function to loss function (19) is given by
R(B,B) = E [5(373)} . (20)
Theorem 3. Consider model 5, 6, and the prior (14). The The Bayes estimators

of parameters p (with respect to Lo loss), 3, and A (with respect to entropy loss
function in 19) are given by

i =0, (21)

. S

> = 22
s’ (22)

A= 2= O (23)

Proof. Given that Bayes estimators are the expectations of corresponding marginal
distributions, and with the posterior distributions available in (15), we integrate
over 3 and A, p and A, and eventually over ¥ and p, yielding

1|~ Ty(O, n+1-p), (24)

n+p+1’
@ ~IW,(n+1,8),

A O ~TIW,(nm, > Op),
i=1
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where T,(m, A, v) in (24) represents a multivariate Student’s t-distribution with
mean vector m, variance matrix A, and v degrees of freedom with an expectation
of m. Completing the proof involves using the expectation of the inverse Wishart
distribution, as given in Definition 2. O

Theorem 4. Under the assumptions of Theorem 3, the Bayes estimators of the
parameters X and A obtained in equations (22) and (23) dominate the ML esti-
mators (10) and (11) obtained in Theorem 1 under entropy loss function (19).

Proof. Let Ay and Ay denote the difference in risk functions of the Bayes and
ML estimators for X and A, respectively. It can be easily seen that

As=E[cE" 3 - 23 3) zlognfl. (25)
Similarly, one can show that
Ap = _mm (26)

nm—-p—1"

Both equations (25) and (26) confirm that the difference in risk functions is posi-
tive. This completes the proof. O

As with any Bayesian procedure, it is important to acknowledge that posterior
inferences may exhibit some sensitivity to the choice of prior distributions; in this
work we focus on the objective, conjugate priors in (12)—(13) that yield closed-form
posteriors, and a more systematic prior-sensitivity study is left for future research.

3.2. Special Cases
3.2.1. Univariate Case

When p = 1, Equations (5) and (6) imply that {©;;}"; are IID from N (p, o?)
and are independent of {©;2}" ;, which are IID from an exponential distribu-

tion E(A) (equivalently Wy (2,2))). Furthermore, as shown by Le-Rademacher &
Billard (2011), the ML estimators of parameters p, o2, and \ are given by

~ML _ @& ~2ML __ - D)2 ML _ Z?ﬂ@i?
Ml =0, & _;(@z1 01)%/n AML = .

The corresponding posterior distribution (15) in this case is w(u, o0, A) oc 073171,
which is also Jeffrey’s prior studied by Xu & Qin (2024). Therefore, the conditional
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posterior distributions from equations (16), (17), and (18) are reduced respectively
to the following

H | 9702’7 NN(éhO-Q/n)’
n+1l

02 | (—)au7)‘NIg( 2 )

(©i2 — 1)?/2),

1

A O, p,0° ~IG(n, Y ©ia).

Moreover, the Bayes estimators can also be retrieved from Theorem (3), with p = 1
as below

Q=6 &= Y1 (0i —©y)? 5 - Sy @iQ'
’ n—1 ’ n

Uunlike Xu & Qin (2024), we have proposed closed-form Bayesian estimators for
the parameters, making the Gibbs sampler method they employed unnecessary.

3.2.2. Bivariate Case

In this case {®7""2}" | are iid from Na(p1, u2, 07,03, p) (which is correspond-
ing = (p1,p2)", and X = ( 1 palzm) in 5) is independent of {@®;"**}", are

pPoT102 Ty

iid from Wh(m, A = (:\\E i;i )-

Therefore the conditional posterior distributions are obtained using (16), (17)
and (18) with p = 2. In order to obtain the ML estimators of the parameters, lets
rewrite the likelihood functions (7) and (8) in this case as follows.

Ly =(2m0102) " exp (Z (05 — p)? /o + 677 — M2)2/U§>

1=1n

—2 Lm0 — )/, (27)

0102
n

Midgg = Apg)?r2- /2 w1 pre  priz2ym/2—1
(C(m/2)T((m — 1)/2))" E(% 07 —0i3"7)

A11A v 0 Y0 2 O
exp | — 11122 . Zz:l i2 + Zz:l 2 12 Z@;ﬂ;xQ )
(A11A22 — Afy) A11 A22 A11A22

- (28)

Ly =

Taking derivatives with respect to parameters of u;, o; for i = 1,2, and p
from log of likelihood functions (27) and (28) (see Samadi et al. (2024) for details)
results to following ML estimators.
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pMt = ey, &ML = Z(@ff—ui)2/n,for i=1,2,
i=1
e SO - p)(©F — )
Vi (07 — )2 30 (07 — p2)?
noe% . nooeTir2
Zz:l 12 , for i= I’Q’A%L _ Zz:l 12
nm nm

b

\ML
)‘ii

)

which corresponds to Theorem 3 with p = 2.

4. Simulation Results

In the simulation, three scenarios are considered to generate samples of n from
the random variables ®;; and ©;3, as described in equations (5) and (6). In the
first scenario (I), samples are generated from univariate distributions, where each
random variable ®;; and ©;5 was independently sampled from N(u = 2,02 = 5),
and £(A = 2), respectively.

In the second scenario (II), bivariate distributions were employed, generating
samples where the random variables ®;; and ©®;s are independently sampled from
Na((2),(33)), and Wa(m = 3,A = (21)). Finally, in the third scenario (III),
trivariate distributions were utilized, resulting in samples where the random vari-
ables ©;; and @, are sampled from N3(p,X), and Ws(m = 3, A), with

2 1 14 06 2 1 1
p= 4], =1{14 4 15|, A=1|1 5 2
6 06 15 9 1 2 3

These scenarios allow us to compare behavior and performance of the proposed
Bayesian and ML parameter estimators for different dimensions.

For each simulation within each scenario, sample sizes of n = 25,50, 200, and
500, with 10000 iterations, are conducted. The estimated parameters using The-
orems 1 and 3, associated with the ML and Bayes estimators, are tabulated in
Tables 1, 2, and 3, corresponding to dimensions p = 1, p = 2, and p = 3 (scenarios
I, 11, and III).

According to Table 1 both methods yield similar estimates for p across sample
sizes, while Bayesian estimation tends to produce slightly higher estimates for o2
and A compared to MLE, with standard deviations also presented.

In Table 2, representing a simulation with p = 2, both ML and Bayesian estima-
tions exhibit consistency across various parameters and sample sizes. Analogous
to Table 1, both methods yield similar estimates for x4 and us, irrespective of sam-
ple size, with consistent standard deviations. However, for 0%, 03, 012, A1, A2,
and \;o, Bayesian estimation tends to produce slightly higher estimates compared
to ML, accompanied by corresponding standard deviations. This trend persists
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across different sample sizes, highlighting the robustness of Bayesian estimation in
this scenario.

On the other hand, in Table 3, reflecting scenario III, we observe similar trends
to those seen in simulation II (Table 2). Bayesian estimation consistently yields
slightly higher parameter estimates compared to ML across various parameters
and sample sizes.

TaBLE 1: Simulation scenario I (univariate interval-valued model with ©;1 ~ N(u =
2,062 = 5) and ©;2 ~ £\ = 2)): Monte Carlo means (with standard
deviations in parentheses) of ML and Bayes estimators for sample sizes
n € {25, 50,200, 500}.

Parameter MLE Bayesian

n =25

2.006555 (SD: 0.4395082)
4.824011 (SD: 1.396871)
2.006947 (SD: 0.3253547)

2.006555 (SD: 0.4395082)
5.025011 (SD: 1.455074)
2.061932 (SD: 0.3342685)

n = 50

2.000126 (SD: 0.3111599)
4.912915 (SD: 0.9940378)
2.001979 (SD: 0.2297495)

2.000126 (SD: 0.3111599)
5.013179 (SD: 1.014324)
2.029032 (SD: 0.2328543)

n = 200

1.997678 (SD: 0.1580845)
4.973424 (SD: 0.4938952)
1.999907 (SD: 0.1159792)

1.997678 (SD: 0.1580845)
4.998416 (SD: 0.4963771)
2.006596 (SD: 0.116367)

n = 500

1.998748 (SD: 0.09948847)
4.990833 (SD: 0.3125381)
2.000496 (SD: 0.07324693)

1.998748 (SD: 0.09948847)
.000835 (SD: 0.3131644)
2.003167 (SD: 0.07334472)
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TABLE 2: Simulation scenario II

Ali Sadeghkhani, Abdolnasser Sadeghkhani & Abdulkadir Hussein

(bivariate interval-valued model with ©;;
Na((2,4)7,%) and @2 ~ Wa(m = 3,A) as specified in Section 4): Monte
Carlo means (with standard deviations in parentheses) of ML and Bayes esti-

mators for sample sizes n € {25, 50,200, 500}.

Parameter MLE Bayesian
n =25
1 1.998343 (SD: 0.3971383) 1.998343 (SD: 0.3971383)
"2 3.998895 (SD: 0.5914762) 3.998895 (SD: 0.5914762)
o? 3.854855 (SD: 1.116438) 4.19006 (SD: 1.213519)
o3 8.67281 (SD: 2.542278) 9.426968 (SD: 2.763346)
o012 2.898315 (SD: 1.320275) 3.150342 (SD: 1.435081)
A1 2.001881 (SD: 0.324576) 2.085292 (SD: 0.3381)
A22 4.989752 (SD: 0.811227) 5.197658 (SD: 0.8450281)
A12 1.003482 (SD: 0.3770854) 1.045294 (SD: 0.3927973)
n =50
51 1.997207 (SD: 0.2815495) 1.997207 (SD: 0.2815495)
2 3.995872 (SD: 0.4210236) 3.995872 (SD: 0.4210236)
a? 3.923179 (SD: 0.7913848) 4.086645 (SD: 0.8243592)
o2 8.821342 (SD: 1.775198) 9.188898 (SD: 1.849164)
o012 2.945679 (SD: 0.9464634) 3.068416 (SD: 0.9858993)
A1l 1.999832 (SD: 0.2306271) 2.040645 (SD: 0.2353338)
A22 4.998042 (SD: 0.5803669) 5.100043 (SD: 0.5922111)
A2 1.002067 (SD: 0.2672165) 1.022517 (SD: 0.2726699)
n = 200
1 2.001589 (SD: 0.1427427) 2.001589 (SD: 0.1427427)
o 3.999514 (SD: 0.2126366) 3.999514 (SD: 0.2126366)
o? 3.979203 (SD: 0.3944584) 4.019397 (SD: 0.3984429)
o2 8.944955 (SD: 0.8901909) 9.035308 (SD: 0.8991827)
012 2.975505 (SD: 0.4695272) 3.005561 (SD: 0.4742699)
A11 1.998426 (SD: 0.1153766) 2.008469 (SD: 0.1159564)
A22 4.996518 (SD: 0.2876331) 5.021626 (SD: 0.2890785)
A2 0.9984405 (SD: 0.1352488) 1.003458 (SD: 0.1359284)
n = 500
1 2.000842 (SD: 0.09020568) 2.000842 (SD: 0.09020568)
e 4.00109 (SD: 0.1340408) 4.00109 (SD: 0.1340408)
o2 3.993712 (SD: 0.2534548) 4.009751 (SD: 0.2544727)
o2 8.982588 (SD: 0.5689367) 9.018663 (SD: 0.5712216)
012 2.996848 (SD: 0.3020145) 3.008884 (SD: 0.3032274)
A1l 1.998547 (SD: 0.07260435) 2.002552 (SD: 0.07274985)
A22 5.000131 (SD: 0.1804525) 5.010151 (SD: 0.1808142)
A12 0.9986841 (SD: 0.08520831)  1.000685 (SD: 0.08537907)
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TaBLE 3: Simulation scenario III (trivariate interval-valued model with ®;; ~ N3(u, X)
and @;2 ~ Ws(m = 3, A) as specified in Section 4): Monte Carlo means (with
standard deviations in parentheses) of ML and Bayes estimators for sample
sizes n € {25, 50,200, 500}.

Parameter MLE Bayesian
n =25

w1 2.001857 (SD: 0.1996053) 2.001857 (SD: 0.1996053)
2 4.000511 (SD: 0.3989019) 4.000511 (SD: 0.3989019)
w3 6.00609 (SD: 0.5932688) 6.00609 (SD: 0.5932688)
o2 0.9618643 (SD: 0.2764356) 1.093028 (SD: 0.3141314)
ag 3.851198 (SD: 1.113989) 4.376362 (SD: 1.265897)
O’% 8.655308 (SD: 2.536946) 9.835577 (SD: 2.882893)
012 1.348785 (SD: 0.4805106) 1.53271 (SD: 0.5460348)
013 0.5855684 (SD: 0.5996525)  0.6654186 (SD: 0.6814233)
023 1.449337 (SD: 1.20976) 1.646974 (SD: 1.374727)
A11 2.004908 (SD: 0.3292506) 2.11786 (SD: 0.3478)
A12 1.002803 (SD: 0.3870634) 1.059299 (SD: 0.4088698)
A13 1.002417 (SD: 0.3094444) 1.058891 (SD: 0.3268779)
A22 5.010742 (SD: 0.8130529) 5.293038 (SD: 0.8588587)
A23 2.004597 (SD: 0.5016901) 2.117532 (SD: 0.5299543)
A33 2.999371 (SD: 0.4971395) 3.16835 (SD: 0.5251473)

TABLE 4: Simulation scenario III (continued): same trivariate interval-valued model as
in Table 3; Monte Carlo means (with standard deviations in parentheses) of
ML and Bayes estimators for n = 50.

Parameter MLE Bayesian
n = 50

w1 2.001289 (SD: 0.1414633) 2.001289 (SD: 0.1414633)
w2 4.006495 (SD: 0.2821739) 4.006495 (SD: 0.2821739)
w3 6.009829 (SD: 0.4182362) 6.009829 (SD: 0.4182362)
O’% 0.9788372 (SD: 0.1987836) 1.041316 (SD: 0.2114719)
o2 3.91668 (SD: 0.7861622) 4.16668 (SD: 0.8363427)
0’§ 8.81281 (SD: 1.784628) 9.37533 (SD: 1.89854)

012 1.371165 (SD: 0.3410975) 1.458686 (SD: 0.3628697)
013 0.5826238 (SD: 0.4231293)  0.6198126 (SD: 0.4501376)
023 1.456099 (SD: 0.8677798) 1.549041 (SD: 0.9231701)
A1 1.999239 (SD: 0.2297266) 2.054012 (SD: 0.2360205)
A12 0.9989928 (SD: 0.2741133) 1.026362 (SD: 0.2816232)
A13 0.9996421 (SD: 0.2188311) 1.02703 (SD: 0.2248265)
A22 5.000366 (SD: 0.5758727) 5.137362 (SD: 0.59165)

A23 1.999313 (SD: 0.354906) 2.054089 (SD: 0.3646294)
A33 2.996561 (SD: 0.3473413) 3.078658 (SD: 0.3568575)
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TABLE 5: Simulation scenario III (continued): same trivariate interval-valued model as
in Table 3; Monte Carlo means (with standard deviations in parentheses) of

ML and Bayes estimators for n = 200.

Parameter MLE Bayesian
n = 200

15 1.999994 (SD: 0.07056982) 1.999994 (SD: 0.07056982)
2 4.000806 (SD: 0.142892) 4.000806 (SD: 0.142892)

"3 6.003733 (SD: 0.2112991) 6.003733 (SD: 0.2112991)
a? 0.9941807 (SD: 0.09982312) 1.009321 (SD: 0.1013433)
o2 3.981968 (SD: 0.3995839) 4.042607 (SD: 0.4056689)
ag 8.967562 (SD: 0.8961266) 9.104123 (SD: 0.9097732)
012 1.392808 (SD: 0.1736081) 1.414019 (SD: 0.1762519)
013 0.5962916 (SD: 0.2150788) 0.6053722 (SD: 0.2183541)
023 1.490207 (SD: 0.436213) 1.5129 (SD: 0.4428558)

A11 1.999746 (SD: 0.1159753) 2.013167 (SD: 0.1167536)
A12 0.9999034 (SD: 0.1359524) 1.006614 (SD: 0.1368648)
A13 0.9997189 (SD: 0.1086336) 1.006428 (SD: 0.1093627)
A22 4.997789 (SD: 0.2901505) 5.031331 (SD: 0.2920978)
A23 1.998484 (SD: 0.1780972) 2.011896 (SD: 0.1792925)
A33 2.999204 (SD: 0.1738039) 3.019332 (SD: 0.1749704)

TABLE 6: Simulation scenario III (continued): same trivariate interval-valued model as
in Table 3; Monte Carlo means (with standard deviations in parentheses) of

ML and Bayes estimators for n = 500.

Parameter MLE Bayesian
n = 500

w1 1.999996 (SD: 0.04464038) 1.999996 (SD: 0.04464038)
e 3.999947 (SD: 0.08934335) 3.999947 (SD: 0.08934335)
u3 5.999125 (SD: 0.1331876) 5.999125 (SD: 0.1331876)
o% 0.9984463 (SD: 0.0627888) 1.004473 (SD: 0.06316781)
o2 3.992415 (SD: 0.2512253) 4.016514 (SD: 0.2527417)
O'% 8.990107 (SD: 0.5671697) 9.044374 (SD: 0.5705933)
012 1.397712 (SD: 0.1085339) 1.406149 (SD: 0.109189)

013 0.5989173 (SD: 0.136427) 0.6025325 (SD: 0.1372505)
023 1.499177 (SD: 0.2751862) 1.508226 (SD: 0.2768472)
A1 1.999446 (SD: 0.0730402) 2.004792 (SD: 0.07323549)
A12 0.9997517 (SD: 0.08515412)  1.002425 (SD: 0.08538181)
A13 0.999939 (SD: 0.06844347) 1.002613 (SD: 0.06862647)
A22 4.999755 (SD: 0.1830031) 5.013123 (SD: 0.1834924)
A23 1.999826 (SD: 0.112514) 2.005173 (SD: 0.1128148)
A33 3.000691 (SD: 0.1095989) 3.008714 (SD: 0.109892)
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5. Real Data

Example 1 (Medical dataset). The data presented in Table 7 represent the range
of pulse rate over a day (X;), the range of systolic blood pressure over the same
day (X3), and the range of diastolic blood pressure over the same day (X3). These
observations were gathered from a sample of 59 patients, each suffering from var-
ious illnesses, out of a yearly hospitalized population of 3000. This data was used
by Gil et al. (2007).

TABLE 7: Data on the ranges of pulse rate (X1), systolic (X2), and diastolic (X3) blood
pressure.

X1 X2 X3 X1 X2 X3

58-90 118-173 63—-102 52-78 119-212 47-93
47-68 104-161 71-118 55-84 122-178 73-105
32-114 131-186 58-113 61-101 127-189 74-125
61-110 105-157 62-118 65-92 113-213 52-112
62—-89 120-179 59-94 38-66 141-205 69-133
63-119 101-194 48-116 48-73 99-169 53-109
51-95 109-174 60-119 59-98 126-191 60-98
49-78 128-210 76—125 59-87 99-201 55-121
43-67 94-145 47-104 49-82 88-221 37-94
55-102 148-201 88-130 4877 113-183 55—85
64-107 111-192 52-96 56-133 94-176 56-121
54-84 116-201 74-133 37-75 102-156 50-94
47-95 102-167 39-84 61-94 103-159 52-95
56-90 104-161 55—-98 44-110 102-185 63-118
44-108 106-167 45-95 46-83 111-199 57-113
63-109 112-162 62-116 52-98 130-180 64-121
62-95 136-201 67—-122 56—-84 103-161 55-97
48-107 90-177 52-104 54-92 125-192  59-101
26-109 116-168 58-109 53-120 97-182 54-104
61-108 98-157 50-111 49-88 124-226  57-101
54-78 98-160 47-108 75-124 120-180 59-90
53-103 97-154 60—-107 58-99 100-161 54-104
47-86 87-150 47-86 59-78 159-214  99-127
70-132 141-256 77-158 55-89 138221 70-118
63-115 108-147 62-107 55—-80 87-152 50-95
47-83 115-196 65-117 70-105 120-188 53-105
56-103 99-172 42-86 40-80 95-166 54-100
71-121 113-176 57-95 5697 92-173 45-107
68-91 114-186 46-103 37-86 83-140 45-91
62-100 145-210 100-136

Despite ©]F being slightly deviant from the normality assumption, overall,
having p-values 0.14, and 0.08 using Mardia’s test or the Shapiro-Wilk test (see
Korkmaz et al. (2014)) indicates that there is no significant evidence against mul-

tivariate normality of ®;; = (O%!,072,07)". As a means to verify whether

T T1T2 T1T3

i2 i2 ®i2X

P T1T2 To T2A3
CIPES i2 i2 92’2

r1xT3 2 X3 XS
12 @7,'2 67,'2
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is consistent with being drawn from a Wishart distribution, we follow Algorithm
1 with n = 59, p = 3, degrees of freedom, df =n —p+ 1 =57, and ML estimator
of A from Table 8.

Algorithm 1 Goodness-of-Fit Test for Wishart Distribution

1: Input: Observed matrices {O1, Os, ..., O, }, Wishart parameters df and A
2: Output: Test statistic and p-value
Simulate n Wishart-distributed matrices {S1, Sa, ..., S,} with parameters df
and A
for i=1tondo
Compute the sample covariance matrix C; of O;
Reshape C; into a vector v;
end for
Reshape each S; into a vector u;
Perform a statistical test to compare the distributions of {vy,vs,...,v,} and
{uy,uz,...,;up } (Chi-squared test)
10: Compute the test statistic and p-value
11: return p-value

@

SR B A

Having returned p-value=0.2 does not reject the assumption that @;s is from
a Wishart distribution.

The ML and Bayesian estimators for mean vector p, variance covariance matrix
3, and scale matrix A are presented in Table 8.

TABLE 8: ML and Bayesian estimates of p, 3, and A for the trivariate medical interval-

valued dataset in Table 7 (ranges of pulse rate, systolic and diastolic blood
pressure; n = 59 patients).

Parameter MLE Bayesian
74.5169 74.5169
I |:146.7034:| |:146.7034:|
83.4491 83.4491

116.08446  27.03893  18.16188 122.30327  28.48744  19.13484

b |:27.03893 329.96711 149.77729:| |:28.48744 347.64392 157.80107:|

18.16188  149.77729 157.47199 19.13484  157.80107 165.90799

A 4.1862 7.5626 5.1744 4.1912 7.5716 5.1806

[2.7849 4.1862 3.033} |:2‘7883 4.1912 3.036}

3.0329 5.1744 3.7496 3.0365 5.1806 3.754

Example 2. (Car dataset)

The data in Table 9 provides measurements for 8 different car models. These
measurements include four variables: X7 represents the price of the car in thou-
sands of euros, X, denotes the maximum velocity, X3 indicates the acceleration
time required to reach a given speed, and X, represents the cylinder capacity of
the car. These variables are utilized as per Billard & Diday (2012).
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TABLE 9: Cars Data.

Car Model X1 X2 X3 X4

Aston Martin  [260.5,460.0]  [298,306]  [4.7,5.0]  [5935,5935]
Audi A6 [68.2,140.3]  [216,250]  [6.7,9.7]  [1781,4172]
Audi A8 [123.8,171.4] [232,250] [5.4,10.1] [2771,4172]
BMW 7 [104.9,276.8]  [228,240]  [7.0,8.6]  [2793,5397]
Ferrari [240.3,391.7]  [295,298]  [4.5,5.2]  [3586,5474]
Honda NSR  [205.2,215.2] [260,270]  [5.7,6.5]  [2977,3179)]
Mercedes C [55.9,115.2]  [210,250] [5.2,11.0]  [1998,3199)]

[ |

Porsche [147.7,246.4) [4.2,5.2]  [3387,3600]

One can easily verify that there is no evidence to reject ®;; = (07,072, 07 O7}) T
as a multivariate normal. Due to the small sample size, checking whether

1 T1T2 @fle T1X4
i2 i2 i2 i2
r1T2 T2 @IQX;; o4
®., = i2 i2 i2 i2
2 Tizy  graXs OXs OX3Xa
)i(QX 3(2 X XiQX iQX
134 244 3444 4
67,'2 ®i2 ®i2 ®i2

follows a Wishart distribution is quite challenging. However, we attempt to mod-
ify Algorithm 1 to incorporate bootstrapping by resampling from the observed
matrices with replacement to generate additional samples. This can be seen in
Algorithm 2, with n =8, B =100, p =4, and df = 5.

The results (p-value = 0.33) confirms that we can Wishart distribution as-
sumption is not violated. In Table 9 one can find the ML and Bayesian estimation
of the parameters in this example.

TABLE 10: ML and Bayesian estimates of u, 3, and A for the four-dimensional car
interval-valued dataset in Table 9 (n = 8 car models; price, maximum veloc-
ity, acceleration time, and cylinder capacity).

Parameter MLE Bayesian
201.4687 201.4687
261.75 261.75
ot 6.5437 6.5437
3772.25 3772.25
8040.986  2268.914  —109.7983 81444.44 [16081.973  4537.8281 —219.596 162888.88
= {2268.914 852.37 —42.7609 19997.9 U4537.828 1704.75 —85.521 39995.81 }
—109.798  —42.7609 2.191 —903.314| |—219.59 —85.521 4.3830 —1806.628
81444.44  19997.906  —903.314  1002110.31P162888.884  39995.8125  —1806.62812  2004220.625
335613 25.7561  2.774  2222.525 269271 29.43 3.17 2540.02
A [ 25.751 8.38 0.99 414.185:| [ 29.43 9.576  1.131 473.35 }
2.774 0.99 0.145 55.38 3.17 1131 0.165 63.3
2222.525 414.185 55.38  40736.7 2540.03  473.354  63.3  46556.228

Observation 1. As can be seen from Example 2, when dealing with a scenario
where the sample size is small (n = 8) and the dimensionality of the data is rela-
tively large compared to the sample size (p = 4), it is common to observe significant
divergence between the ML and Bayesian estimators. This discrepancy arises due
to several factors. Firstly, in general, the limited amount of data can lead to sparse
representations in the high-dimensional space, making it challenging for the ML
method to accurately estimate parameters. On the other hand, Bayesian estima-
tion offers advantages in this context. By incorporating prior information about
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Algorithm 2 Goodness-of-Fit Test for Wishart Distribution with Bootstrapping

1: Input: Observed matrices {O1,0Oa,...,0,}, Wishart parameters df and A,
Bootstrap iterations B
2: Output: Test statistic and p-value
3: for b=1to B do
Randomly sample n matrices with replacement from {O;, Os, ...,0,} to ob-
tain {Obl, Obg, veey Obn}
5. Simulate n Wishart-distributed matrices {Sy1, Spa, .., Spn } With parameters
df and A
for i =1ton do
Compute the sample covariance matrix Cy; of Oy;
Reshape C%; into a vector vy;
end for
10:  Reshape each S; into a vector uyp;
11:  Perform a statistical test to compare the distributions of {vp1, vp2, ..., Vpn }
and {up1, up2, ..., Upn } (Chi-squared test)
12:  Compute the test statistic and p-value for the bth bootstrap iteration
13: end for
14: Compute the test statistic and p-value based on the distribution of the boot-
strap test statistics
15: return p-value

the parameters, Bayesian estimation can provide regularization and help stabi-
lize parameter estimates, particularly when the sample size is small. Moreover,
Bayesian methods allow for the integration of domain knowledge and uncertainty
quantification, which can improve the robustness of the estimates. Overall, this
divergence underscores the superiority of Bayesian estimation over MLE in scenar-
ios with small sample sizes and high dimensionality, highlighting the importance
of adopting Bayesian approaches when dealing with such data constraints, while
ML relies on large sample theory and can have problems in smaller samples.

6. Concluding remarks

So far, we have assumed that values within intervals are uniformly distributed.
Hence, the ML and Bayesian estimators of the parameters p, 3, and A from
Theorems 1 and 3, can be expressed in terms of aj; and bj; for ¢ = 1,...,n and
j=1,...,p, using equations (3) and (4).

Additionally, there are other cases where we might assume that the internal dis-
tribution follows other distributions such as the triangular or Pert distribution.
Interested readers are referred to Samadi et al. (2024) for more information.

Note that in all aforementioned cases, we maintain the assumption that &,
and ©®,, the mean and the variance-covariance matrix are multivariate normal
and Wishart distributed.
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Alternatively, some researchers have recently considered (e.g., Brito & Duarte Silva
(2012); Lin et al. (2022); and Beranger et al. (2023)) the skew-normal distribution
as a generalization when the normality assumption is not met. In the univariate
case, p = 1, a Box-Cox transformation

G)*:vj _ (efll’z# if K1 75 0
& log(©%1) if k=0

or a power transformation

Q**1 — ( f21)N2 if K2 7& 0
2 log(©%) if ko =0"

were suggested by Xu & Qin (2024) to convert ©F}, for k =1,2,and i = 1,...,n,
into ©;;" (which is normal for k£ = 1, and exponential for k¥ = 2). Parameters x;, for
k = 1,2 vary between (—3,3), and their optimal values can be found numerically.

In conclusion, this paper comprehensively explored both Bayesian and frequen-
tist approaches for handling multivariate interval-valued data. From a theoretical
perspective, we derived ML and Bayesian estimators for the underlying mean vec-
tor and covariance structures, established some asymptotic properties of the ML
estimators, and compared the procedures under Lo loss for location parameters
and entropy-type losses for scale and dependence parameters. The study involved
investigating some asymptotic properties of the ML estimators and comparing
ML methods with Bayesian methods in terms of the risk function associated with
Ls loss and entropy losses. From an applied perspective, we assessed the finite-
sample performance of the proposed estimators and examined how the Bayesian
and ML approaches behave in realistic data-analytic settings. Through extensive
simulation studies, we demonstrated the performance of the proposed estimators
and illustrated their applicability to real interval-valued datasets. Overall, our
findings underscore the significance of leveraging both Bayesian and frequentist
methodologies in addressing the complexities of multivariate interval-valued data,
providing valuable insights for future research and practical applications in various
domains, particularly in areas where interval-valued and symbolic data naturally
arise as aggregated summaries of underlying measurements.
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