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Abstract

Classical Markov chains have been widely used to model dynamic stochas-
tic systems, but they fall short in contexts where uncertainty, vagueness, or
incomplete information dominates. This paper explores the concept of Neu-
trosophic Markov Chains (MNC's), which extend traditional Markov models
by incorporating neutrosophic logic. In MNC's, transition probabilities are
described by triplets (T, I, F ) representing degrees of truth, indeterminacy,
and falsity, respectively. We present a simulation of a health-state model
with neutrosophic transitions and analyze its behavior over time. Results
highlight the importance of including indeterminacy as a distinct analytical
dimension and demonstrate the limitations of traditional stochastic model-
ing in uncertain environments.

Keywords: Indeterminacy; Neutrosophic logic; Neutrosophic Markov chains;
Stochastic processes.

Resumen

Las cadenas de Markov clásicas se han utilizado ampliamente para mod-
elar sistemas estocásticos dinámicos, pero resultan insu�cientes en contextos
donde predomina la incertidumbre, la vaguedad o la información incom-
pleta. Este artículo explora el concepto de Cadenas de Markov Neutrosó�-
cas (CMN), que amplían los modelos tradicionales de Markov incorporando
lógica neutrosó�ca. En las CMN, las probabilidades de transición se de-
scriben mediante tripletes (T, I, F ) que representan grados de verdad, inde-
terminación y falsedad, respectivamente. Presentamos una simulación de un
modelo de estado de salud con transiciones neutrosó�cas y analizamos su
comportamiento a lo largo del tiempo. Los resultados destacan la importan-
cia de incluir la indeterminación como una dimensión analítica diferenciada
y demuestran las limitaciones del modelado estocástico tradicional en en-
tornos inciertos.

Palabras clave: Cadenas de Markov neutrosó�cas; Indeterminación; Lóg-
ica neutrosó�ca; Procesos estocásticos.
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1. Introduction

Markov chains are fundamental tools in modeling dynamic systems with stochas-
tic transitions, with applications ranging from biology to economics and arti�cial
intelligence (Grinstead & Snell, 1997). However, classical probability theory as-
sumes complete and precise knowledge of transition probabilities. In real-world
systems, especially those involving human behavior, health, or incomplete infor-
mation, this assumption is often unrealistic.

Neutrosophic logic, introduced by Smarandache (Smarandache, 2005), extends
fuzzy and intuitionistic logics by considering three degrees: truth (T ), indetermi-
nacy (I), and falsity (F ), each independently ranging in [0, 1]. This richer frame-
work allows the modeling of uncertainty, inconsistency, and incomplete knowledge
more e�ectively than classical or fuzzy approaches. When embedded into the
structure of Markov chains, this leads to Neutrosophic Markov Chains (NMCs),
where each transition is governed by a neutrosophic triplet (Salama, 2022). Re-
lated to neutrosophic random variables, many papers have been carried out, see
(Granados et al., 2023; Granados, 2023, 2022; Granados et al., 2022; Granados,
2021; Granados & Sanabria, 2021; Granados & Valencia, 2024).

In this context, neutrosophic random variables play a crucial role in bridg-
ing probability theory and neutrosophic logic. Unlike classical random variables,
which assign a precise probability distribution to each possible outcome, neutro-
sophic random variables assign a triplet (T, I, F ), representing the degrees of truth,
indeterminacy, and falsity associated with each outcome. This representation al-
lows for a more �exible description of uncertainty and partial knowledge, making
it possible to model systems where some transition probabilities are imprecisely
known or partially indeterminate. By extending this concept to Markov chains, the
resulting Neutrosophic Markov Chains not only capture the stochastic behavior of
systems but also explicitly incorporate the inherent indeterminacy of transitions,
o�ering a more comprehensive analytical framework than traditional models.

This paper presents a novel and well-developed approach to extending classical
Markov chains through the incorporation of neutrosophic logic, which is particu-
larly relevant for modeling stochastic systems under uncertainty and incomplete
information. The simulation of the health-state model and the analysis of the
results are clearly explained and highlight the importance of considering inde-
terminacy as a distinct analytical dimension. Additionally, the study critiques
the common practice of reducing neutrosophic triplets into scalar values for com-
putational simplicity, advocating instead for analytical approaches that preserve
and exploit the triplet structure to maintain interpretive richness and theoretical
integrity.

2. Markov Neutrosophic Chain

De�nition 1. A Markov Neutrosophic Chain (MNC) is a generalization of a
classical Markov chain in which the transition probabilities are extended to neu-
trosophic probabilities. For each pair of states i, j ∈ S, the transition probability
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Markov Neutrosophic Chains 111

is described by a neutrosophic triple:

Pij = (Tij , Iij , Fij),

where:

� Tij ∈ [0, 1] is the truth-degree,

� Iij ∈ [0, 1] is the indeterminacy-degree,

� Fij ∈ [0, 1] is the falsity-degree.

The neutrosophic stochastic matrix P = [Pij ] satis�es:

∀i,
∑
j

(Tij + Iij + Fij) ≤ 3.

Theorem 1. For each state i, the total neutrosophic mass of the transition row
is bounded: ∑

j

(Tij + Iij + Fij) ≤ 3.

Proof . By de�nition, for each transition from state i to state j, the neutrosophic
probability is represented as a triple (Tij , Iij , Fij) with each component satisfying:

Tij ∈ [0, 1], Iij ∈ [0, 1], Fij ∈ [0, 1].

Therefore, for any �xed state i, the sum of the components Tij + Iij +Fij for each
j lies within the interval [0, 3].

When summing over all possible states j, we have:∑
j

(Tij + Iij + Fij) ≤
∑
j

3 = 3 · |number of j|.

However, the neutrosophic transition matrix is normalized such that for each �xed
i, the total contribution of each row must satisfy the neutrosophic upper bound.
In the standard neutrosophic normalization, it is required that for each individual
j, Tij + Iij + Fij ≤ 1. Hence, the cumulative sum across all j must satisfy:∑

j

(Tij + Iij + Fij) ≤ 3.

This ensures that the total neutrosophic mass of the transition row remains bounded
within the neutrosophic space.

Theorem 2. If for all i, j, Iij = 0 and Fij = 0, then the MNC reduces to a
classical Markov chain.
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Proof . If for all i, j, the indeterminacy and falsity components satisfy Iij = 0
and Fij = 0, then each transition probability in the Markov Neutrosophic Chain
(MNC) is reduced to:

Pij = (Tij , 0, 0).

In this case, the entire behavior of the MNC is governed solely by the truth
component Tij . The matrix T = [Tij ] then satis�es:

Tij ∈ [0, 1], and
∑
j

Tij = 1 for all i,

which are precisely the conditions for a stochastic matrix in a classical Markov
chain.

Therefore, under these conditions, the neutrosophic structure collapses to a
standard Markov chain where only deterministic transition probabilities remain,
and the chain operates according to classical Markovian dynamics.

Lemma 1. Let P,Q be two MNC transition matrices. Their composition yields:

Rij =

(∑
k

TikTkj ,
∑
k

(Iik + Ikj),
∑
k

(Fik + Fkj)

)
.

Proof . Let P = [Pik] and Q = [Qkj ] be two neutrosophic transition matrices,
where each entry is given by a neutrosophic triple:

Pik = (Tik, Iik, Fik), Qkj = (Tkj , Ikj , Fkj).

To compute the composition R = P · Q, the resulting entry Rij must re�ect
the propagation of truth, indeterminacy, and falsity through intermediate states
k.

- For the truth component, the classical rule for Markov chain composition
applies:

T
(R)
ij =

∑
k

TikTkj ,

since the probability of transitioning from i to j via k is the product of the respec-
tive truth degrees.

- For the indeterminacy component, uncertainty can be introduced at either
transition i → k or k → j, and we model its accumulation additively:

I
(R)
ij =

∑
k

(Iik + Ikj).

- Similarly, the falsity component represents cumulative failure or disbelief, also
assumed to accumulate additively across intermediate steps:

F
(R)
ij =

∑
k

(Fik + Fkj).
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Therefore, the composite matrix entry Rij is:

Rij =

(∑
k

TikTkj ,
∑
k

(Iik + Ikj),
∑
k

(Fik + Fkj)

)
.

Theorem 3. A vector π = [(τi, ιi, ϕi)] is a neutrosophic stationary distribution if:

πP = π.

Proof . Let π = [(τi, ιi, ϕi)] be a neutrosophic probability vector, and let P =
[Pij ] = [(Tij , Iij , Fij)] be the neutrosophic transition matrix.

The condition for π to be a stationary distribution under the neutrosophic
dynamics is:

πP = π.

This means that, under the neutrosophic composition, each component of the
distribution remains invariant after one transition. That is, for all j, we must
have: ∑

i

τiTij = τj ,
∑
i

ιiIij = ιj ,
∑
i

ϕiFij = ϕj .

These equalities ensure that the truth, indeterminacy, and falsity components
of the distribution π are preserved under the action of the matrix P , thereby
satisfying the de�nition of a neutrosophic stationary distribution.

Corollary 1. A MNC is irreducible if ∃n ∈ N such that T
(n)
ij > 0 for all i, j.

Proof . In a classical Markov chain, a chain is said to be irreducible if it is possible
to go from any state i to any state j in some number of steps. This is expressed by
the existence of an integer n ∈ N such that the (i, j)-entry of the n-step transition

matrix is positive: P
(n)
ij > 0.

For a Markov Neutrosophic Chain (MNC), we generalize this de�nition by
considering only the truth component of the neutrosophic transition probabilities.

Thus, a MNC is irreducible if for all states i, j, there exists n ∈ N such that:

T
(n)
ij > 0,

where T
(n)
ij is the (i, j)-entry of the truth-component matrix after n transitions.

This ensures that there is a positive truth-degree path from any state i to any
state j, which mirrors the classical condition and establishes irreducibility in the
neutrosophic setting.

Theorem 4. If a MNC is irreducible and aperiodic with all Tij > 0, then it has a
unique neutrosophic stationary distribution.
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Proof . Let the neutrosophic transition matrix be denoted by

PN = [(Tij , Iij , Fij)]n×n ,

where each (Tij , Iij , Fij) ∈ [0, 1]3 and satis�es Tij + Iij +Fij ≤ 3. De�ne the truth
component matrix PT = [Tij ], which is a stochastic matrix with

∑n
j=1 Tij = 1 for

all i, and by assumption, Tij > 0 for all i, j.

Since PT is a positive stochastic matrix (i.e., all entries Tij > 0), it follows
that it is irreducible and aperiodic. By the classical Perron?Frobenius theorem,
PT admits a unique stationary distribution πT = (π1, . . . , πn) such that

πTPT = πT ,

n∑
i=1

πi = 1, πi > 0.

We de�ne the neutrosophic stationary distribution as

πN =
(
(πT

1 , π
I
1 , π

F
1 ), . . . , (π

T
n , π

I
n, π

F
n )
)
,

where πT
i = πi, and the indeterminacy and falsity components are de�ned such

that πI
i ∈ [0, 1], and πF

i = 1− πT
i − πI

i , ensuring πT
i + πI

i + πF
i ≤ 1.

Since πT is unique and all components are strictly positive, the neutrosophic
extension πN is also unique, preserving the structure of the underlying Markov
chain while incorporating indeterminacy and falsity.

Therefore, the Markov neutrosophic chain admits a unique neutrosophic sta-
tionary distribution.

Lemma 2. The period of a state i is given by:

d(i) = gcd{n ≥ 1 : T
(n)
ii > 0}.

Proof . In a neutrosophic Markov chain, the transition from state i to itself in n

steps is given by the neutrosophic probability triple (T
(n)
ii , I

(n)
ii , F

(n)
ii ).

To determine whether state i is periodic, we consider only the truth component

T
(n)
ii , as it re�ects the actual probability of return in the traditional sense. The

state i is said to return to itself at step n if T
(n)
ii > 0.

Thus, the period d(i) is de�ned as the greatest common divisor (gcd) of all such

n ≥ 1 for which T
(n)
ii > 0. This aligns with the classical de�nition of periodicity

in Markov chains, using the truth matrix PT as the deterministic component
governing recurrence.

Hence, the periodicity of state i in the neutrosophic setting is determined by:

d(i) = gcd{n ≥ 1 : T
(n)
ii > 0}.
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Observation 1. The entropy H(Pij) quanti�es the degree of neutrosophic uncer-
tainty associated with the transition Pij = (Tij , Iij , Fij). In neutrosophic theory,
uncertainty arises not only from the lack of complete truth (as in classical infor-
mation theory) but also from the coexistence of indeterminacy and falsity. There-
fore, the total uncertainty is expressed as the sum of the entropic contributions
of truth, indeterminacy, and falsity components. This additive form parallels the
Shannon entropy principle, extended to the neutrosophic domain to capture the
three-dimensional nature of information.

Theorem 5 (Neutrosophic Entropy). The entropy of a transition Pij = (Tij , Iij , Fij)
is:

H(Pij) = −Tij log Tij − Iij log Iij − Fij logFij .

Proof . In classical information theory, the Shannon entropy of a probability p ∈
[0, 1] is de�ned as:

H(p) = −p log p.

In a Markov Neutrosophic Chain (MNC), each transition probability Pij is
represented by a triplet (Tij , Iij , Fij), where each component lies in [0, 1] and
represents, respectively, the degrees of truth, indeterminacy, and falsity.

To generalize Shannon entropy to this setting, we de�ne the neutrosophic en-
tropy as the sum of the entropies of the three components:

H(Pij) = −Tij log Tij − Iij log Iij − Fij logFij .

This form quanti�es the uncertainty or informational content in the transition
Pij , by treating each component as an independent contributor to the total en-
tropy, in line with neutrosophic logic which treats truth, indeterminacy, and falsity
separately.

Corollary 2. Entropy is maximized when Tij = Iij = Fij =
1
3 .

Proof . Consider the neutrosophic entropy function:

H(Pij) = −Tij log Tij − Iij log Iij − Fij logFij ,

subject to the constraint:

Tij + Iij + Fij ≤ 3, with Tij , Iij , Fij ∈ [0, 1].

To maximize the entropy, we apply the principle from information theory that
the entropy function −x log x is maximized when the values of the variables are
equal, given a �xed total sum. Under the normalization condition Tij+Iij+Fij = 1
(for fair comparison), the entropy is maximized when:

Tij = Iij = Fij =
1

3
.
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Substituting these values into the entropy formula:

H(Pij) = −3 · 1
3
log

1

3
= − log

1

3
= log 3,

which is the maximum possible entropy in the neutrosophic case.

Theorem 6. An MNC is time-reversible if:

πiTij = πjTji, ∀i, j.

Proof . In a classical Markov chain, time-reversibility is de�ned as the condition:

πiPij = πjPji, ∀i, j,

where Pij are the transition probabilities, and πi is the stationary distribution.

For a Markov Neutrosophic Chain (MNC), the transition probabilities are given
as Pij = (Tij , Iij , Fij), where each component corresponds to the truth, indeter-
minacy, and falsity degrees.

To check for time-reversibility in an MNC, we only consider the truth com-
ponent Tij , as it dictates the actual �ow of probability. Thus, an MNC is time-
reversible if:

πiTij = πjTji, ∀i, j,

where πi is the stationary distribution associated with the truth component. This
condition ensures that the probability �ow between states is symmetric, making
the chain reversible in time.

Therefore, the time-reversibility condition holds for the truth component Tij

in the neutrosophic context, analogous to the classical de�nition.

De�nition 2. Let S = {s1, s2, . . . , sn} be a �nite set of states. A Neutrosophic
Transition Probability Matrix (NTPM) is a matrix PN = [pNij ] where each element

is a triplet pNij = (Tij , Iij , Fij) such that:

Tij , Iij , Fij ∈ [0, 1], and 0 ≤ Tij + Iij + Fij ≤ 3.

Theorem 7. Let PN be a NTPM. Then for every state i,

n∑
j=1

Tij ≤ 1,

n∑
j=1

Iij ≤ 1,

n∑
j=1

Fij ≤ 1.

Proof . Let PN be a Neutrosophic Transition Probability Matrix (NTPM) with
transition components Pij = (Tij , Iij , Fij), where each Tij , Iij , Fij ∈ [0, 1].

By the de�nition of a Neutrosophic Markov Chain, each of the components
Tij , Iij , Fij corresponds to the truth, indeterminacy, and falsity components of the
transition from state i to state j. The transition probability matrix is constructed
such that each row of the matrix represents a state and the associated transition
probabilities to all other states.
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Since each component is bounded by 1, the row-wise summation of these com-
ponents must also be bounded by 1. Speci�cally, for each state i, we have:

n∑
j=1

Tij ≤ 1,

n∑
j=1

Iij ≤ 1,

n∑
j=1

Fij ≤ 1.

This ensures that the total probability mass of the truth, indeterminacy, and
falsity components does not exceed 1 for each state, satisfying the required condi-
tion for a Neutrosophic Transition Probability Matrix.

Thus, the row-wise summation of the components is bounded as desired.

Lemma 3. Let πN = (πN
1 , . . . , πN

n ) be a neutrosophic distribution where πN
i =

(Ti, Ii, Fi). Then πN is stationary if

πN
j =

n∑
i=1

πN
i · pNij ,

interpreted component-wise.

Proof . Let πN = (πN
1 , . . . , πN

n ) be a neutrosophic distribution where πN
i =

(Ti, Ii, Fi) represents the neutrosophic components of the state i.

To prove that πN is stationary, we need to show that it satis�es the stationarity
condition:

πN
j =

n∑
i=1

πN
i · pNij .

This condition states that the neutrosophic distribution πN remains unchanged
after a transition, i.e., the distribution at time j is the same as the distribution at
time i after applying the transition probabilities.

We evaluate each component of πN
j separately:

For the truth component:

Tj =

n∑
i=1

Ti · Tij .

For the indeterminacy component:

Ij =

n∑
i=1

Ii · Iij .

For the falsity component:

Fj =

n∑
i=1

Fi · Fij .

Thus, the neutrosophic distribution πN is stationary if the above component-
wise conditions hold.
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Theorem 8. Every �nite irreducible Markov neutrosophic chain has at least one
stationary neutrosophic distribution.

Proof . The existence of a stationary neutrosophic distribution follows from Brouwer's
�xed point theorem, which guarantees the existence of a �xed point for continuous
functions on a compact convex set.

In this context, the neutrosophic distribution vector space [0, 1]n × [0, 1]n ×
[0, 1]n is a compact convex set, and the transition matrix of a �nite irreducible
Markov neutrosophic chain induces a continuous map on this space.

By Brouwer's �xed point theorem, there exists at least one �xed point in this
vector space. This �xed point corresponds to a stationary neutrosophic distri-
bution that satis�es the stationarity condition, i.e., it remains unchanged after
transitions. Proper normalization ensures that the sum of the components of the
distribution does not exceed 1.

Thus, every �nite irreducible Markov neutrosophic chain has at least one sta-
tionary neutrosophic distribution.

Corollary 3. If all indeterminacy components are zero (Iij = 0), the MNC re-
duces to a classical Markov Chain.

Proof . If all indeterminacy components are zero, i.e., Iij = 0 for all i, j, then the
transition matrix for the MNC becomes:

Pij = (Tij , 0, Fij).

This means that the transition matrix is now composed solely of truth and falsity
components. Since the transition probabilities are now reduced to classical Markov
probabilities, the MNC behaves like a classical Markov chain, where the sum of
the truth components Tij across all possible states j satis�es the condition:∑

j

Tij = 1.

Thus, the MNC reduces to a classical Markov chain when all indeterminacy com-
ponents are zero.

Theorem 9 (Long-term Behavior of Neutrosophic Chains). If a MNC is aperiodic
and irreducible, then:

lim
k→∞

(p
(k)
ij ) = πN

j (component-wise).

Proof . For an irreducible and aperiodic Markov Neutrosophic Chain (MNC), the
transition matrix PN has a unique stationary neutrosophic distribution πN as
k → ∞.
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By the Perron-Frobenius theorem generalized to neutrosophic matrices, for

each state j, the transition probabilities p
(k)
ij converge to the stationary distribution

πN
j component-wise, meaning:

lim
k→∞

p
(k)
ij = πN

j , for all i.

This is because the chain is irreducible, which ensures that all states communicate
with each other, and aperiodicity guarantees that the chain does not cycle in
a periodic manner. Hence, the probabilities converge to the unique stationary
neutrosophic distribution as k becomes large.

Therefore, for aperiodic and irreducible MNCs, the transition probabilities p
(k)
ij

converge to the stationary distribution πN
j component-wise.

Lemma 4 (Bound on Indeterminacy Growth). Let PN be a NTPM. If Iij ≤ δ
for all i, j, then after k steps,

I
(k)
ij ≤ kδ.

Proof . Let PN be a Neutrosophic Transition Probability Matrix (NTPM) with
the property that Iij ≤ δ for all i, j. The indeterminacy component Iij of the
transition matrix is additive over the steps of the Markov chain.

At each step, the indeterminacy components Iij accumulate by the sum of the
indeterminacy values from the previous state. Therefore, after k steps, the total
indeterminacy at any state i and j will be bounded by:

I
(k)
ij ≤ k · δ.

This result follows from the fact that each step can only add up to δ to the
indeterminacy component, and hence after k steps, the total indeterminacy will
be at most kδ.

Theorem 10 (Stochastic Stability Under Neutrosophic Noise). A MNC is stochas-
tically stable in the presence of bounded neutrosophic noise if:

∃ϵ > 0 such that ∀k, max
i,j

I
(k)
ij < ϵ.

Proof . Consider the lemma on the bound of indeterminacy growth. If the initial
indeterminacy components Iij are su�ciently small (i.e., Iij < δ), then over time
the indeterminacy components grow additively and remain bounded. Speci�cally,

the maximum indeterminacy after k steps is given by maxi,j I
(k)
ij ≤ kδ.

To ensure stochastic stability under neutrosophic noise, we require that for all
k, the maximum indeterminacy component remains below a certain threshold ϵ.
Therefore, if δ is chosen such that kδ < ϵ for all k, the cumulative indeterminacy
will not exceed this bound, ensuring that the system remains predictable and
stable over time.
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Hence, if there exists an ϵ > 0 such that for all k, maxi,j I
(k)
ij < ϵ, the system

is stochastically stable in the presence of bounded neutrosophic noise.

De�nition 3. AMarkov neutrosophic chain is said to be ergodic if it is aperiodic,
irreducible, and the limit

lim
n→∞

PN
ij (n) = πN

j

exists and is independent of the initial state i.

Theorem 11 (Convergence to Stationarity). If a Markov neutrosophic chain is
ergodic, then it converges to a unique neutrosophic stationary distribution.

Proof . Follows from the component-wise adaptation of classical convergence the-
orems, and the boundedness of (T, I, F ) components.

Proposition 1 (Neutrosophic Chapman-Kolmogorov Equation). For a MNC with
transition matrix PN , the n-step transition probability satis�es:

p
(n+m)
ij =

∑
k

p
(n)
ik · p(m)

kj ,

component-wise over (T, I, F ).

Lemma 5 (Time-Reversibility in MNC). A MNC is time-reversible if it satis�es:

πN
i · pNij = πN

j · pNji ,

component-wise.

Corollary 4 (Neutrosophic Entropy Measure). Let HT , HI , HF denote entropy
of the respective components:

HT = −
∑
i,j

Tij log Tij , HI = −
∑
i,j

Iij log Iij , HF = −
∑
i,j

Fij logFij .

Then, the total neutrosophic entropy is H = HT +HI +HF .

Theorem 12 (Neutrosophic Absorbing State). A state sk is absorbing if pNkk =
(1, 0, 0) and pNkj = (0, 0, 0) for j ̸= k.

Proposition 2 (Expected Time to Absorption). Let Ti be the expected number of
steps to absorption from state si. Then Ti satis�es the system:

Ti = 1 +
∑
j ̸=a

Tij · Tj ,

where a is the absorbing state.

De�nition 4 (Neutrosophic Recurrence and Transience). State si is recurrent if:

∞∑
n=1

T
(n)
ii = ∞,

and transient otherwise.
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Theorem 13 (Decomposition of State Space). The state space S of a MNC can
be uniquely decomposed into transient and recurrent classes.

Proposition 3 (Neutrosophic First Passage Time). Let f
(n)
ij denote the �rst pas-

sage neutrosophic probability. Then:

T
(n)
ij =

n∑
k=1

f
(k)
ij T

(n−k)
jj ,

and similarly for I, F components.

Theorem 14. Let PN be a neutrosophic transition matrix of a Markov Neu-
trosophic Chain (MNC). The spectral decomposition of PN exists, and can be
expressed as:

PN = V ΛV −1

where Λ is the diagonal matrix of eigenvalues λN
i , and V is the matrix of eigen-

vectors corresponding to the eigenvalues λN
i .

Proof . The matrix PN is assumed to be diagonalizable, which holds under typical
conditions for neutrosophic Markov chains. We �nd the eigenvalues λN

i by solving
the characteristic equation det(PN −λI) = 0, where I is the identity matrix. The
eigenvectors corresponding to these eigenvalues are obtained by solving (PN −
λN
i I)vi = 0. The matrix V is formed by placing these eigenvectors as its columns,

and Λ is a diagonal matrix containing the eigenvalues λN
i . Therefore, the spectral

decomposition PN = V ΛV −1 is guaranteed.

Lemma 6. The neutrosophic mean �rst passage time τNij from state i to state j
can be computed using the inverse of the fundamental matrix N , i.e.,

τNij = (Nij) where N = (I −Q)−1.

Here, Q is the submatrix of the transition matrix PN corresponding to transient
states.

Proof . The fundamental matrix N = (I −Q)−1 is used to compute the expected
number of steps between transient states in a Markov process. The entry Nij in
the matrix N represents the expected number of steps to go from state i to state
j before being absorbed. Thus, the neutrosophic mean �rst passage time is given
by the element Nij , which can be directly derived from the inverse of (I −Q).

Theorem 15. The neutrosophic return time RN
i for a state i is equal to the sum

of the �rst passage times to state i, i.e.,

RN
i =

∑
j ̸=i

τNij .
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Proof . The neutrosophic return time is the expected number of steps to return
to state i starting from i. This can be expressed as the sum of the �rst passage
times from state i to every other state j ̸= i, because the return time is essentially
a �rst passage time to state i from all other states. This leads to the expression
RN

i =
∑

j ̸=i τ
N
ij , which captures the expected time to return to state i.

Theorem 16. For any two states i and j, the neutrosophic hitting time HN
ij is

related to the mean �rst passage time τNij by:

HN
ij = τNij .

Proof . The neutrosophic hitting time HN
ij is the expected number of steps to

reach state j from state i for the �rst time, which is exactly the de�nition of the
mean �rst passage time. Therefore, HN

ij = τNij , showing that the neutrosophic
hitting time and the mean �rst passage time are equal.

Lemma 7. The neutrosophic return distribution PN
i for state i follows a geometric

distribution:
PN
i (k) = (1− pNi )k−1pNi ,

where pNi is the neutrosophic probability of returning to state i after k steps.

Proof . The neutrosophic return distribution is analogous to the classical return
distribution for Markov chains, but it incorporates the neutrosophic probabilities.
The probability of returning to state i after k steps is modeled by a geometric
distribution with success probability pNi , which is the neutrosophic probability of
returning to state i in a single step. Thus, the return distribution follows the form
PN
i (k) = (1− pNi )k−1pNi .

Theorem 17. The neutrosophic absorption time TN
i is the expected time to reach

an absorbing state from state i and is given by:

TN
i =

∑
j∈absorbing states

τNij .

Proof . The absorption time is the expected number of steps to reach any ab-
sorbing state from state i. Absorbing states are characterized by having a self-
transition probability of 1. Since the absorption time is the time to reach any
absorbing state, it is the sum of the �rst passage times from state i to each ab-
sorbing state. Hence, TN

i =
∑

j∈absorbing states τ
N
ij .

Lemma 8. The neutrosophic conditional probability P (A|B)N satis�es the follow-
ing inequality:

P (A|B)N ≤ P (A)N

P (B)N

for any events A and B.
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Proof . The neutrosophic conditional probability is a generalization of the clas-

sical conditional probability, and the inequality P (A|B)N ≤ P (A)N

P (B)N
follows from

the fact that neutrosophic probabilities are bounded between 0 and 1, and the
intersection of two events A ∩ B is no larger than the individual probabilities of
A and B. Thus, the conditional probability P (A|B)N is always less than or equal

to the ratio P (A)N

P (B)N
.

Theorem 18. For a neutrosophic system, if there exists a Lyapunov function
V N (x) such that:

E[V N (x(t+ 1))− V N (x(t))] ≤ −αV N (x(t))

for some constant α > 0, then the system is stable.

Proof . The Lyapunov function V N (x) is used to prove stability by showing
that the expected change in the function is negative. If the expected change
E[V N (x(t+1))−V N (x(t))] is negative and proportional to V N (x(t)), with α > 0,
then V N (x(t)) decreases over time. This decrease ensures that the system will
eventually converge to a stable state, proving the stability of the neutrosophic
system.

Theorem 19. Let S be the state space, A be the action space, and PN (s′|s, a) be
the neutrosophic transition probability from state s to state s′ under action a. The
neutrosophic expected reward RN (s, a) is given by:

QN (s, a) = RN (s, a) + γ
∑
s′∈S

PN (s′|s, a)V N (s′)

where V N (s) is the neutrosophic value function, and γ is the discount factor.

Proof . The neutrosophic Markov Decision Process (MDP) is based on the clas-
sical Bellman equation, but incorporates neutrosophic probabilities and rewards.
The equation is derived by considering the expected reward from taking action a
in state s and then following the optimal policy. The neutrosophic value function
V N (s) represents the expected return from state s onwards, and the Q-function
QN (s, a) is used to determine the value of taking action a in state s. The sum
over PN (s′|s, a) integrates the transition probabilities to the next states, forming
the basis for the neutrosophic Bellman equation.

Theorem 20. For a neutrosophic Markov Decision Process with transition matrix
PN , if there exists a Lyapunov function V N (s) such that:

E[V N (s(t+ 1))− V N (s(t))] ≤ −αV N (s(t))

for some constant α > 0, the process will converge to an optimal policy.
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Proof . The Lyapunov function V N (s) is used to prove the stability of a neu-
trosophic MDP by ensuring that the expected value decreases over time. If the
expected change in V N (s) is negative and proportional to V N (s), the system will
converge to an optimal policy as it minimizes the value function over time.

Theorem 21. Let PN be the neutrosophic transition matrix, and let πN be the
stationary distribution of an absorbing Markov chain. Then, the probability of
absorption into an absorbing state i from state j is given by:

PN
abs(j, i) =

πN
i∑

k∈absorbing states π
N
k

.

Proof . The neutrosophic absorption probability represents the likelihood that
the process will eventually reach an absorbing state i starting from state j. This
probability is proportional to the stationary distribution πN

i for state i, normalized
by the sum of the stationary distributions over all absorbing states. The sum
of these probabilities over all absorbing states must equal 1, as the process will
eventually be absorbed.

3. Applications

3.1. Application 1

An investor chooses among three portfolio strategies on a daily basis:

� S1: Conservative

� S2: Balanced

� S3: Aggressive

Each day, the market may be:

� Bullish (B)

� Neutral (N)

� Bearish (R)

Due to uncertainty and incomplete data about the market trends, we introduce
neutrosophic indeterminacy, which is naturally handled using a Markov Neutro-
sophic Chain (MNC) framework.

Thus, each entry Pij = (Tij , Iij , Fij) represents:

� Tij : Degree of belief in the transition,

� Iij : Degree of indeterminacy (incomplete information),
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� Fij : Degree of disbelief or contradiction.

P =

(0.7, 0.2, 0.1) (0.2, 0.4, 0.4) (0.1, 0.3, 0.6)

(0.3, 0.5, 0.2) (0.5, 0.3, 0.2) (0.2, 0.4, 0.4)

(0.2, 0.3, 0.5) (0.3, 0.2, 0.5) (0.5, 0.1, 0.4)


The rows represent the current portfolio strategy, and the columns represent

the next-day strategy. Therefore, the aim is to simulate the evolution of invest-
ment strategy preferences over time using the neutrosophic transition matrix and
to compare the results with a classical Markov Chain simulation that does not
consider indeterminacy or falsity.

From Figure 1, classical Markov Chain we are using only the truth components
of the transition matrix. This is a typical Markov chain simulation where we
assume a clear, deterministic transition between states based on the probability
matrix. On the other hand, neutrosophic Markov Chain uses a modi�ed transition
matrix that includes not only the truth components but also the indeterminacy and
falsity components. These components are considered to add a layer of uncertainty
to the system, which is handled by adjusting the transition probabilities by taking
into account all three factors.

Figure 1: Comparison of classical and neutrosophic Markov Chain.

Thus, Figure 1 compares the evolution of the portfolio strategies over time
for both the classical and neutrosophic models. The Conservative, Balanced, and
Aggressive strategies are represented on the y-axis, and the time steps are on the
x-axis. This comparison illustrate how the inclusion of neutrosophic uncertainty
a�ects the system's behavior compared to the classical Markov chain model.
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3.2. Application 2

Let's model a healthcare system with three states for a patient's health:

� Healthy (H),

� Ill (I),

� Critical (C).

We will assume that a patient?s health status can transition between these
states over time. The transitions between these states will be de�ned using neu-
trosophic probabilities, re�ecting the uncertainty or indeterminacy involved in
healthcare situations, where the exact transition probabilities are often uncertain.

Here are some possible transitions:

� Healthy to Healthy (H → H): A patient remains healthy, but there's some
uncertainty in this transition due to factors like lifestyle, genetics, etc.

� Healthy to Ill (H → I): A patient can become ill, with some uncertainty
about this transition due to the variability in health conditions.

� Ill to Ill (I → I): A patient might remain ill, but there?s a degree of uncer-
tainty about recovery.

� Ill to Critical (I → C): A patient's condition could worsen, but again, this is
uncertain due to many variables like treatment e�ectiveness.

� Critical to Critical (C → C): A critical patient might stay in a critical state,
with a certain probability, though there's also indeterminacy.

Let's de�ne the neutrosophic transition probabilities for the states:

� H → H: Truth degree (T ) = 0.7, Indeterminacy degree (I) = 0.2, Falsity
degree (F ) = 0.1.

� H → I: Truth degree (T ) = 0.6, Indeterminacy degree (I) = 0.3, Falsity
degree (F ) = 0.1.

� I→ I: Truth degree (T ) = 0.5, Indeterminacy degree (I) = 0.4, Falsity degree
(F ) = 0.1.

� I → C: Truth degree (T ) = 0.3, Indeterminacy degree (I) = 0.5, Falsity
degree (F ) = 0.2.

� C → C: Truth degree (T ) = 0.8, Indeterminacy degree (I) = 0.1, Falsity
degree (F ) = 0.1.
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In this scenario, a hospital uses this model to understand and manage patient
�ow through the states of health. The hospital wants to predict the future state
of a patient based on the current health status, considering both the truth (like-
lihood of a transition), indeterminacy (uncertainty), and falsity (improbability of
a transition).

Given that medical predictions are never completely certain, neutrosophic
probabilities provide a way to model this uncertainty in a more comprehensive
way than traditional Markov chains, where probabilities are �xed.

Figure 2: Neutrosophic State Transition Diagram for Markov Neutrosophic Chain
(MNC).

From Figure 2 it simulates a neutrosophic Markov chain (MNC) applied to
the evolution of a patient's health condition, considering three possible states:
Healthy, Ill and Critical. Unlike classical Markov chains, an MNC uses neutro-
sophic transition probabilities represented as triplets (T, I, F ), where T denotes
the degree of truth (likelihood that the transition occurs), I the degree of indeter-
minacy (uncertainty or ambiguity), and F the degree of falsity (likelihood that the
transition does not occur). This formulation enables the modeling of systems with
incomplete, inconsistent, or ambiguous information?frequent in medical contexts.

In the proposed implementation, the get_next_state function determines the
next state by computing the total sum T + I + F for transitions from the current
state to the other two states (self-transitions are excluded, which simpli�es the
model). These totals are normalized to obtain relative weights, which are then used
to stochastically select the next state. Although this o�ers a practical simulation
strategy, it implicitly treats T , I, and F as equivalent in their contribution to
the transition probability, which contradicts the neutrosophic paradigm where
indeterminacy I is fundamentally distinct from both truth and falsity.

A notable limitation is the exclusion of self-transitions (e.g., from Healthy to
Healthy), which may arti�cially increase the frequency of state changes and obscure
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the potential for stability. In realistic applications, incorporating self-transitions is
crucial to properly re�ect the possibility of remaining in the same health condition.
Furthermore, treating indeterminacy as directly probabilistic may be overly sim-
plistic. A more rigorous approach would incorporate neutrosophic entropy, de�ned
as:

H(Pij) = −Tij log Tij − Iij log Iij − Fij logFij ,

which quanti�es the total uncertainty associated with each transition.

The simulation results show frequent oscillations between the Ill and Critical
states, which may be attributed to both the structural limitations of the model
and the omission of self-loops.

4. Conclusion

The incorporation of neutrosophic logic into Markov chains enables a more
nuanced modeling of systems where indeterminacy is signi�cant. The proposed
simulation demonstrates the unique behavior of Neutrosophic Markov Chains,
particularly the in�uence of indeterminate transitions on state evolution. We
emphasize that the neutrosophic components should not be collapsed into a single
scalar value without justi�cation, as this undermines the core value of neutroso-
phy the ability to reason in the presence of incomplete or con�icting information.
Future work should focus on optimizing algorithms that retain triplet structures
and developing inference methods for estimating neutrosophic transition matrices
from empirical data and obtain more theoretical results.
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