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Abstract

This article proposes improved estimation procedures for the population
mean in the presence of non-response using auxiliary information. Based
on the Hansen-Hurwitz subsampling approach, two generalized exponential-
type estimators are introduced for situations where non-response occurs ei-
ther only on the study variable or on both the study and auxiliary variables.
The proposed estimators incorporate tuning constants and an optimization
parameter to minimize the mean square error (MSE) and generate optimum
versions within each class. Expressions for the bias and MSE of the esti-
mators are derived to the �rst order of approximation, and the e�ciency
comparisons of the proposed estimators with the existing estimators are es-
tablished. A comprehensive empirical evaluation demonstrates that the pro-
posed classes consistently provide more precise estimates than the traditional
estimators. The results con�rm that the proposed methodology provides an
e�cient alternative for mean estimation under non-response settings.
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Resumen

Este artículo propone procedimientos de estimación mejorados para la
media poblacional en presencia de no respuesta, utilizando información aux-
iliar. Basándose en el enfoque de submuestreo de Hansen-Hurwitz, se in-
troducen dos estimadores generalizados de tipo exponencial para situaciones
en las que la no respuesta ocurre solo en la variable de estudio o en ambas,
la variable de estudio y las variables auxiliares. Los estimadores propuestos
incorporan constantes de ajuste y un parámetro de optimización para mini-
mizar el error cuadrático medio (ECM) y generar versiones óptimas dentro de
cada clase. Se derivan expresiones para el sesgo y el ECM de los estimadores
hasta el primer orden de aproximación, y se establecen comparaciones de
e�ciencia entre los estimadores propuestos y los estimadores existentes. Una
evaluación numérica exhaustiva demuestra que las clases propuestas pro-
porcionan consistentemente estimaciones más precisas que los estimadores
tradicionales. Los resultados con�rman que la metodología propuesta ofrece
una alternativa e�ciente para la estimación de la media en contextos de no
respuesta.

Palabras clave: Error cuadrático medio; Estudio empírico; Falta de re-
spuesta; Sesgo.

1. Introduction

The problem of non-response often occurs while conducting the sample surveys
in the �eld of medical sciences, social sciences, and agriculture. It is de�ned as the
failure to obtain information from all the units in the sample. It may occur due to
various reasons like surveyor unable to contact the people, refusal by the people
to participate in the survey, and participants unable to answer the questionnaire
for some reason, etc. For example, in exit polls, participants refuse to answer the
questionnaire of the surveyor. This may lead to non-response. It is a severe issue
because it reduces the size of the sample, leads to poor quality of data, and might
induce a bias when the non-respondents di�er signi�cantly from respondents in
the sample. Thus, it becomes very important to tackle this situation.

Many times, a variable of interest known as the study variable is closely related
to a variable that is not of concern termed as an auxiliary variable. It is well
established that this auxiliary variable provides extra information in the estimation
of the population mean. For example, the annual earnings of the family are closely
related to the number of members in a family. Therefore, knowing the number of
members in a family improves the estimation of the population mean of the annual
earnings. Thus, it is customary to use the auxiliary variable while considering the
estimators of the population mean.

Hansen & Hurwitz (1946) introduced the technique of sub-sampling from the
non-respondents group to tackle the problem of non-response in the survey data. It
is well-known that the auxiliary information aid in the estimation of the population
parameter. Numerous other works have been done by several authors to study the
problem of the estimation of population mean in presence of non-response using
information on auxiliary variable. Rao (1986) developed the ratio and regression
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estimators under non-response. Khare & Srivastava (1993, 1995, 1997) and Khare
& Rehman (2014) introduced several estimation procedures of population mean
under non-response by utilizing auxiliary information.

Bhushan & Naqvi (2015) proposed the generalized e�cient classes of estimators
in presence of non-response utilizing two auxiliary variables. Bhushan & Kumar
(2017) developed some cost e�cient classes of estimators for population mean
in presence of measurement errors and non-response simultaneously. Shahzad &
Hanif (2019) suggested some imputation based new estimators of population mean
under non-response. Bhushan & Pandey (2019) designed an e�cient estimation
procedure for the population mean under non-response. Bhushan & Pandey (2020)
formulated a cost-e�ective computational approach with non response on two oc-
casions. Audu et al. (2021) advocated some improved estimators for population
mean under non-response. Pandey et al. (2021) suggested an improved class of
estimators for population mean using auxiliary information under non-response.
Singh et al. (2021) developed the estimation of population mean using auxiliary
information under non-response. Ahmad et al. (2022) estimated the �nite popu-
lation mean using dual auxiliary variable for non-response using SRS. Bhushan &
Pandey (2023) presented an optimal estimation of population mean in the presence
of random non-response. Rather & Kadilar (2023) constructed some improved es-
timators for the population mean under non-response. Bhushan & Pandey (2025)
proposed an optimal random non response framework for mean estimation on cur-
rent occasion. Arsalan & Shabbir (2025) estimated the mean of �nite population
under double sampling strati�cation in the presence of non-response. Unal &
Kadilar (2025) generated an exponential estimator under non-response cases.

In the present paper, we have proposed two estimators for estimating the pop-
ulation means of the �nite population using auxiliary information in the presence
of non-response. The bias and MSE of the proposed estimators are derived up to
the �rst degree of approximation. The minimum value of the MSE is also obtained
by �nding the optimum value of the unknown scalar used in the estimator. We
also compared the e�ciency of the proposed estimators with Hansen & Hurwitz
(1946), ratio, and exponential estimator using an empirical study.

2. Sample Structure and Symbols

Let U = {1, 2, . . . , N} denote a �nite population consisting of N units. Due to
the presence of non-response, the population is conceptually partitioned into two
mutually exclusive groups:

U = UR ∪ UNR, UR ∩ UNR = ∅,

where UR = set of responding units with size N1 = |UR|, UNR = set of non-
responding units with size N2 = |UNR|.

Thus,

N = N1 +N2, W1 =
N1

N
, W2 =

N2

N
.
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Let y be the study variable and x be an auxiliary variable, with corresponding
population means Ȳ and X̄, respectively.

From the population U , a simple random sample without replacement (SR-
SWOR) of size n is drawn. Under non-response, the sample is similarly parti-
tioned:

n = n1 + n2,

where n1 = number of responding sampled units, n2 = number of non-responding
sampled units.

Following Hansen & Hurwitz (1946), a sub-sample of size h2 is drawn at random
from the n2 non-responding units. De�ne

f =
n2

h2
, f ≥ 1.

The symbols used throughout the paper are summarized below:

� N,n: population size and sample size, respectively.

� y, x: study variable and auxiliary variable.

� ȳ, x̄: sample means of y and x, respectively.

� Ȳ , X̄: population means of y and x, respectively.

� ȳ∗, x̄∗: Hansen-Hurwitz adjusted sample means in the presence of non-
response.

� Sy, Sx: population standard deviations of y and x, respectively.

� Cy, Cx: coe�cients of variation of y and x, respectively.

� S2
y , S

2
x: population variances of y and x, respectively.

� S2
2y, S

2
2x: variances of y and x among non-responding units.

� C2
2y, C

2
2x: coe�cients of variation for non-responding units.

� Syx: population covariance between y and x.

� ρyx: population correlation coe�cient between y and x.

� ρ2yx: correlation coe�cient between y and x among non-responding units.

� W1,W2: proportions of responding and non-responding units in the popula-
tion.

� f =
n2

h2
, f1 =

(
1
n − 1

N

)
, f2 = W2

(
f−1
N

)
.
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3. Proposed Estimators

In this section, we introduce two estimators for the estimation of the population
mean Y under two distinct cases of non-response. The �rst case corresponds to
the situation where non-response is present only in the study variable y, while the
auxiliary variable x is fully observed. For this case, we develop the estimator T1.
The second case arises when non-response a�ects both the study variable y and
the auxiliary variable x. To address this more complex setting, we propose the
estimator T2.

The functional forms of the proposed estimators T1 and T2 are constructed
to appropriately incorporate auxiliary information and to adjust for the Hansen�
Hurwitz subsampling scheme.

Case - 1: When non-response occurs only on the study variable y

In this case, the estimator T1 is given as follows

T1 = y∗
(

X

α1x+ (1− α1)X

)
exp

(
a(X − x)

a(X + x) + 2b

)
, (1)

where,

� ȳ∗ is the Hansen�Hurwitz estimator of the population mean of study variable
y,

� x̄ is the sample mean of the auxiliary variable x,

� α1 is an unknown scalar determining the optimum form of the estimator,
whose value is calculated later in this section,

� a and b are known constants chosen at the design stage. These are either
real numbers or known parameters of auxiliary variable such as mean, stan-
dard deviation, coe�cient of variation, coe�cient of skewness, coe�cient of
kurtosis, etc.

The term involving α1 represents a convex linear combination between x̄ and X̄,
thereby stabilizing the estimator when x̄ is noisy due to sampling �uctuations. The
exponential factor improves e�ciency by incorporating the discrepancy between
X̄ and x̄ in a nonlinear fashion.

Case - 2: When non-response occurs on the study variable y as well

as the auxiliary variable x also

In this case, the estimator T2 is given as follows

T2 = y∗
(

X

α2x
∗ + (1− α2)X

)
exp

(
a(X − x∗)

a(X + x∗) + 2b

)
(2)

� x̄∗ is the Hansen�Hurwitz estimator of the population mean of x under non-
response,
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� α2 is an unknown scalar which is determined later in this section. The value
of α2 gives the optimum estimator T2,

� a and b are same as de�ned earlier.

Observation 1. Let T = {T (α) : α ∈ R} be a parametric family of estimators for
the population mean Ȳ , where α is an unknown scalar constant. The estimator

T (α∗) ∈ T

is said to be the optimum estimator if it minimizes the MSE within the class T ,
i.e.,

α∗ = argmin
α

MSE
(
T (α)

)
.

The resulting estimator T (α∗) is referred to as the optimum estimator.

3.1. Properties of Proposed Estimators

To derive the bias, MSE, and the optimum MSE of the proposed estimators
Ti (i = 1, 2) up to the �rst order of approximation, we use the following transfor-
mations:

y∗ = Y (1 + ϵ∗0), x = X(1 + ϵ1), x∗ = X(1 + ϵ∗1), (3)

where ϵ1, ϵ
∗
0 and ϵ∗1 are the error terms, such that

ϵ∗0 =
y∗ − Y

Y
, ϵ1 =

x−X

X
, ϵ∗1 =

x∗ −X

X
. (4)

Substituting the appropriate values from Equation (3) to Equation (1), we get

T1 = Y (1 + ϵ∗0)

{
X

α1X(1 + ϵ1) + (1− α1)X

}
exp

{
a(X −X(1 + ϵ1))

a(X +X(1 + ϵ1)) + 2b

}
= Y (1 + ϵ∗0)

(
1

1 + α1ϵ1

)
exp

{
−aXϵ1

2(aX + b) + aXϵ1

}
= Y (1 + ϵ∗0)(1 + α1ϵ1)

−1 exp {(1 + tϵ1)
−1 − 1}, (5)

where

t =
aX

2(aX + b)
. (6)

Expanding the right-hand side of the Equation (5) and considering up to the
�rst degree of approximation, i.e., neglecting the terms involving the powers of
error terms greater than two, we have

T1 = Y [1 + ϵ∗0 − (α1 + t)ϵ1 − (α1 + t)ϵ∗0ϵ1 + (α2
1 + α1t+ 1.5t2)ϵ21]. (7)

Similarly, substituting the appropriate values from Equation (3) to Equation
(2) and considering up to the �rst degree of approximation while expanding, we
get

T2 = Y [1 + ϵ∗0 − (α2 + t)ϵ∗1 − (α2 + t)ϵ∗0ϵ
∗
1 + (α2

2 + α2t+ 1.5t2)ϵ∗21 ]. (8)
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To compute the bias and MSE of T1 and T2, we need to compute the expecta-
tion of the error terms, the expectation of the square of the error terms and the
expectation of the multiplication of two error terms. Taking expectations on both
sides of the Equation (4), we get

E(ϵ∗0) = E

(
y∗ − Y

Y

)
=

E(y∗)− E(Y )

E(Y )
=

Y − Y

Y
= 0, (9)

E(ϵ1) = E

(
x−X

X

)
=

E(x)− E(X)

E(X)
=

X −X

X
= 0, (10)

E(ϵ∗1) = E

(
x∗ −X

X

)
=

E(x∗)− E(X)

E(X)
=

X −X

X
= 0, (11)

Using the same technique as above, we obtain the following results.

E(ϵ∗20 ) = f1C
2
y + f2C

2
2y, E(ϵ21) = f1C

2
x, E(ϵ∗21 ) = f1C

2
x + f2C

2
2x, (12)

E(ϵ∗0ϵ1) = f1ρyxCyCx, E(ϵ∗0ϵ
∗
1) = f1ρyxCyCx + f2ρ2yxC2yC2x. (13)

Using the above equations, we will derive the bias and the MSE of the estima-
tors Ti (i = 1, 2).

3.1.1. Bias of Proposed Estimators

In this section, we obtain the bias of the estimators T1 and T2 up to the �rst
degree of approximation.

Theorem 1. The biases of the estimators Ti (i = 1, 2) up to the �rst degree of
approximation are derived as

B(T1) = Y f1Cx[(α
2
1 + α1t+ 1.5t2)Cx − (α1 + t)ρyxCy] (14)

B(T2) = Y

[
f1Cx{(α2

2 + α2t+ 1.5t2)Cx − (α2 + t)ρyxCy}
+f2C2x{(α2

2 + α2t+ 1.5t2)C2x − (α2 + t)ρ2yxC2y}

]
. (15)

Proof . The bias of the estimator Ti (i = 1, 2) is given by

B(Ti) = E(Ti − Y ). (16)

First, we will compute the bias of the estimator T1. From Equation (7), we get

T1 − Y = Y [ϵ∗0 − (α1 + t)ϵ1 − (α1 + t)ϵ∗0ϵ1 + (α2
1 + α1t+ 1.5t2)ϵ21]. (17)

Taking expectations on both sides of the Equation (17), we get

E(T1−Y ) = Y [E(ϵ∗0)−(α1+t)E(ϵ1)−(α1+t)E(ϵ∗0ϵ1)+(α2
1+α1t+1.5t2)E(ϵ21)] (18)
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Using the appropriate values from equations (9), (10), (12), and (13) and sub-
stituting in Equation (18), we have

B(T1) = Y f1Cx[(α
2
1 + α1t+ 1.5t2)Cx − (α1 + t)ρyxCy].

Similarly, using Equation (8), we have

T2 − Y = Y [ϵ∗0 − (α2 + t)ϵ∗1 − (α2 + t)ϵ∗0ϵ
∗
1 + (α2

2 + α2t+ 1.5t2)ϵ∗21 ]. (19)

Taking expectations on both sides of Equation (19) and substituting the ap-
propriate values from equation (9), Equation (11), Equation (12) and Equation
(13), we get

B(T2) = Y

[
f1Cx{(α2

2 + α2t+ 1.5t2)Cx − (α2 + t)ρyxCy}
+f2C2x{(α2

2 + α2t+ 1.5t2)C2x − (α2 + t)ρ2yxC2y}

]
.

3.1.2. MSE of Proposed Estimator

The MSE of an estimator gives the average squared di�erence between the
estimator and the actual parameter. The MSE of the estimator T1 and T2 are
given here.

Theorem 2. The MSE of the estimators Ti (i = 1, 2) up to the �rst degree of
approximation is derived as

MSE(T1) = Y
2
[f1{C2

y + (α1 + t)
2
C2

x − 2(α1 + t)ρyxCyCx}+ f2C
2
2y] (20)

MSE(T2) = Y
2

[
f1C

2
y + f2C

2
2y + (α2 + t)

2
(f1C

2
x + f2C

2
2x)

−2(α2 + t)(f1ρyxCyCx + f2ρ2yxC2yC2x)

]
. (21)

Proof . The MSE of the estimators Ti (i = 1, 2) is given by

MSE(Ti) = E(Ti − Y )
2
. (22)

First, we will compute the MSE of the estimator T1. Squaring Equation (17)
and neglecting the power of error term greater than two, we get

(T1 − Y )
2
= Y

2
[ϵ∗20 + (α1 + t)

2
ϵ21 − 2(α1 + t)ϵ∗0ϵ1]. (23)

Taking expectations on both sides of Equation (23), we get

E(T1 − Y )2 = Y
2
[E(ϵ∗20 ) + (α1 + t)

2
E(ϵ21)− 2(α1 + t)E(ϵ∗0ϵ1)]. (24)

Substituting appropriate values from Equation (12) and Equation (13) in Equa-
tion (24), we get

MSE(T1) = Y
2
[f1{C2

y + (α1 + t)
2
C2

x − 2(α1 + t)ρyxCyCx}+ f2C
2
2y].
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Similarly, to compute the MSE of the estimator T2, we square the Equation
(19) as

(T2 − Y )
2
= Y

2
[ϵ∗20 + (α2 + t)

2
ϵ∗21 − 2(α2 + t)ϵ∗0ϵ

∗
1]. (25)

Taking expectations on both sides of the Equation (25) and substituting ap-
propriate values from Equation (12) and Equation (13), we get

MSE(T2) = Y
2

[
f1C

2
y + f2C

2
2y + (α2 + t)

2
(f1C

2
x + f2C

2
2x)

−2(α2 + t)(f1ρyxCyCx + f2ρ2yxC2yC2x)

]
.

3.1.3. Optimum MSE of Proposed Estimators

The optimum MSE of an estimator can be achieved for an optimum value of
the unknown scalars αi (i = 1, 2). To get the optimum value of αi (i = 1, 2),
the MSE of the estimators Ti (i = 1, 2) is minimized with respect to the scalars
αi (i = 1, 2).

Theorem 3. The optimum MSE of the estimators Ti (i = 1, 2) at α1(opt) =
(ρyxCy/Cx)− t and α2(opt) = {(f1ρyxCyCx + f2ρ2yxC2yC2x)/(f1C

2
x + f2C

2
2x)} − t

is obtained as

MSE(T1)opt = Y
2
[f1C

2
y(1− ρ2yx) + f2C

2
2y] (26)

MSE(T2)opt = Y
2
[
f1C

2
y + f2C

2
2y −

(f1ρyxCyCx + f2ρ2yxC2yC2x)
2

f1C2
x + f2C2

2x

]
, (27)

where t = aX/2(aX + b).

Proof . To get the minimum MSE of the estimators Ti (i = 1, 2), we take the
partial derivative of the MSE of Ti (i = 1, 2) with respect to αi (i = 1, 2) and
equate it to 0. Therefore, taking the partial derivative of Equation (20) with
respect to α1 and equating it to 0, we get

∂MSE(T1)

∂α1
= Y

2
f1[2(α1 + t)C2

x − 2ρyxCyCx] = 0. (28)

Solving Equation (28), we get

α1(opt) =
ρyxCy

Cx
− t (29)

Substituting the value of α1(opt) from Equation (29) to Equation (20), we get

MSE(T1)opt = Y
2
[f1C

2
y(1− ρ2yx) + f2C

2
2y].
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Similarly, taking the partial derivative of the Equation (21) wrt α2 and equating
it to 0, we get

∂MSE(T2)

∂α2
= Y

2
[2(α2 + t)(f1C

2
x + f2C

2
2x)− 2(f1ρyxCyCx + f2ρ2yxC2yC2x)] = 0.

(30)

Solving Equation (30), we get

α2(opt) =
f1ρyxCyCx + f2ρ2yxC2yC2x

f1C2
x + f2C2

2x

− t. (31)

Substituting the value of α2(opt) from Equation (31) in Equation (21), we get

MSE(T2)opt = Y
2
[
f1C

2
y + f2C

2
2y −

(f1ρyxCyCx + f2ρ2yxC2yC2x)
2

f1C2
x + f2C2

2x

]
.

4. E�ciency Comparisons

In this section, we compare the e�ciency of the proposed estimator with the
well known existing estimators. The percent relative e�ciency (PRE) of the pro-
posed estimators is calculated with respect to the Hansen & Hurwitz (1946), ratio,
and exponential estimators.

The PRE of the estimator T1 with respect to (wrt) di�erent estimators are
given as:

(i) PRE of the estimator T1 wrt Hansen & Hurwitz (1946) estimator (y*w):

V ar(y∗w)

MSE(T1)opt
∗ 100, (32)

where V ar(y∗w) = f1S
2
y + f2S

2
2y.

(ii) PRE of the estimator T1 wrt ratio estimator (y*R):

MSE(y∗R)

MSE(T1)opt
∗ 100, (33)

where MSE(y∗R) = Y
2
[f1(C

2
y + C2

x − 2ρyxCyCx) + f2C
2
2y].

(iii) PRE of the estimator T1 wrt exponential estimator (y*e):

MSE(y∗e)

MSE(T1)opt
∗ 100, (34)

where MSE(y∗e) = Y
2
[f1(C

2
y +

C2
x

4 − ρyxCyCx) + f2C
2
2y].
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Now, we compare the estimator T2 wrt di�erent estimators and obtain the
PRE as follow:

(i) PRE of the estimator T2 wrt Hansen & Hurwitz (1946) estimator (y*w):

V ar(y∗w)

MSE(T2)opt
∗ 100. (35)

(ii) PRE of the estimator T2 wrt ratio estimator (y**R ):

MSE(y∗∗R )

MSE(T2)opt
∗ 100, (36)

whereMSE(y∗∗R ) = Y
2
[f1(C

2
y+C2

x−2ρyxCyCx)+f2(C
2
2y+C2

2x−2ρ2yxC2yC2x)].

(iii) PRE of the estimator T2 wrt exponential estimator (y**e ):

MSE(y∗∗e )

MSE(T2)opt
∗ 100, (37)

whereMSE(y∗∗e ) = Y
2
[f1(C

2
y+

C2
x

4 −ρyxCyCx)+f2(C
2
2y+

C2
2x

4 −ρ2yxC2yC2x)].

5. Empirical Study

In this section, we will compute the performance of our proposed estimators.
To compare the e�ciency of the proposed estimators, we have calculated the PRE
of our proposed estimators with respect to Hansen & Hurwitz (1946), ratio, and
exponential estimators on real and arti�cially generated datasets.

5.1. Study on Real Data

Population I: (Source: UCI Machine Learning Repository) The real estate
valuation dataset contains historical market data of real estate valuation from
Sindian Dist., New Taipei City, Taiwan across 2012 to 2013. The responding
and non-responding units are chosen randomly, and even the sample from the
population is chosen randomly. Here, the study and auxiliary variables are: y =
house price of unit area, and x = distance to the nearest MRT station.

The di�erent statistics of the data are as follows: N = 414, n = 124, Y =
37.9802, X = 1083.8857, ρyx = −0.6736, Sy = 13.59, and Sx = 1260.584.

The PRE of the proposed estimators T1 and T2 based on the population I is
computed by varying W2 and f , and is shown in Table 1 and Table 2, respectively.

Population II: (Source: UCI Machine Learning Repository) Boston Hous-
ing concerns housing values in the suburbs of Boston. The responding and non-
responding units are chosen randomly, and even the sample from the population is
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chosen randomly. Here, the study and auxiliary variables are given as follows: y =
Lower status of the population, and x = Index of accessibility to radial highways.

The di�erent statistics of the data are: N = 506, n = 151, Y = 12.6531,
X = 9.5494, ρyx = 0.4887, Sy = 7.1340, and Sx = 8.6987.

The PRE of the proposed estimators T1 and T2 on the population II is com-
puted by varying W2 and f , and is shown in Table 3 and Table 4, respectively.

Population III: (Khare & Sinha, 2007) This dataset contains data on the
physical growth of an upper socio-economic group of 95 school children of Varanasi
under an ICMR study, Department of Pediatrics, BHU, during 1983-1984. The
�rst 1/4th (i.e., W2 = 0.25) of the data is considered to be non-response. Here,
the study and auxiliary variables are given as follows: y = the weight in kg, and
x = the skull circumference in cm.

The di�erent statistics of the data are: N = 95, N2 = 24 Y = 19.49, X =
51.17, ρyx = 0.32, ρ2yx = 0.47, Cy = 0.15, Cx = 0.03, C2y = 0.12, and C2x =
0.02.

The PRE of the proposed estimators T1 and T2 on the population III is com-
puted by varying n and f , and is shown in Table 5 and Table 6, respectively.

Table 1: PRE of estimator T1 with respect to y∗
w, y

∗
R, y

∗
e using Population I.

W2 f y*w y*R y*e
0.1 1.5 177.8645 2719.2822 998.9419

2.0 173.3489 2546.1977 939.5390

2.5 169.3931 2394.5705 887.5003

3.0 165.8991 2260.6433 841.5363

0.2 1.5 170.7614 2508.3029 926.5334

2.0 161.5836 2202.2092 821.4816

2.5 154.4751 1965.1499 740.1245

3.0 148.8076 1776.1373 675.2530

0.3 1.5 162.9004 2261.9607 841.9884

2.0 150.3551 1853.4141 701.7746

2.5 141.7976 1574.7332 606.1308

3.0 135.5873 1372.4887 536.7201

Table 2: PRE of estimator T2 with respect to y∗
w, y

∗∗
R , y∗∗

e using Population I.

W2 f y*w y**R y**e
0.1 1.5 182.6002 2959.0123 1077.1886

2.0 182.2476 2996.9705 1086.5648

2.5 181.9831 3032.7329 1095.5102

3.0 181.7867 3066.4405 1104.0288

0.2 1.5 184.8235 3066.4944 1114.0374

2.0 186.3974 3194.6759 1154.5505

2.5 187.8082 3306.9006 1190.0527

3.0 189.0758 3405.9616 1221.4125

0.3 1.5 185.7558 3117.6530 1131.8069

2.0 187.8927 3273.0873 1182.1700

2.5 189.6277 3397.8757 1222.6199

3.0 191.0625 3500.2636 1255.8183
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Table 3: PRE of estimator T1 with respect to y∗
w, y

∗
R, y

∗
e using Population II.

W2 f y*w y*R y*e
0.1 1.5 130.9725 254.0821 112.3564

2.0 130.6296 243.1354 111.4785

2.5 130.3321 233.6410 110.7171

3.0 130.0716 225.3278 110.0505

0.2 1.5 127.1662 242.3486 111.4154

2.0 124.0369 224.1263 109.9541

2.5 121.6179 210.0400 108.8245

3.0 119.6920 198.8249 107.9251

0.3 1.5 124.4455 228.6885 110.3200

2.0 120.0971 204.7372 108.3992

2.5 117.1134 188.3025 107.0812

3.0 114.9390 176.3260 106.1208

Table 4: PRE of estimator T2 with respect to y∗
w, y

∗∗
R , y∗∗

e using Population II.

W2 f y*w y**R y**e
0.1 1.5 131.9634 269.0465 114.1724

2.0 132.5066 271.0240 114.8872

2.5 133.0639 272.8072 115.5348

3.0 133.4668 274.4232 116.1238

0.2 1.5 131.0059 268.5115 113.8756

2.0 130.7271 269.8384 114.2719

2.5 130.5081 270.9180 114.5958

3.0 130.3315 271.8137 114.8654

0.3 1.5 130.3985 264.6616 113.4767

2.0 129.7422 263.1915 113.5462

2.5 129.2700 262.1332 113.5983

3.0 128.9140 261.3352 113.6389

Table 5: PRE of estimator T1 with respect to y∗
w, y

∗
R, y

∗
e using Population III.

n f y*w y*R y*e
15 1.5 110.3163 101.4507 104.8761

2.0 109.4152 101.3240 104.4502

2.5 108.6589 101.2177 104.0927

3.0 108.0150 101.1271 103.7884

25 1.5 110.1772 101.4312 104.8103

2.0 109.1860 101.2918 104.3418

2.5 108.3707 101.1771 103.9565

3.0 107.6883 101.0812 103.6339

35 1.5 109.9974 101.4059 104.7253

2.0 108.8971 101.2512 104.2053

2.5 108.0150 101.1271 103.7884

3.0 107.2921 101.0254 103.4466
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Table 6: PRE of estimator T2 with respect to y∗
w, y

∗∗
R , y∗∗

e using Population III.

n f y*w y**R y**e
15 1.5 112.2732 101.9949 106.0411

2.0 113.0567 102.3697 106.6378

2.5 113.7692 102.7257 107.1869

3.0 114.4195 103.0623 107.6929

25 1.5 112.3899 102.0495 106.1294

2.0 113.2671 102.4734 106.7993

2.5 114.0550 102.8724 107.4088

3.0 114.7661 103.2458 107.9645

35 1.5 112.5429 102.1218 106.2456

2.0 113.5390 102.6092 107.0088

2.5 114.4194 103.0623 107.6929

3.0 115.2028 103.4808 108.3081

5.2. Study on Arti�cial Data

Population IV: We have generated a normal population of size N= 450 such
that the mean and the standard deviation of the study variable (y) are Y = 12
and Sy = 2.0402, respectively, whereas the mean and the standard deviation of the
auxiliary variable (x) are X = 28 and Sx = 18028, respectively. The correlation
coe�cient between the variable y and variable x is �xed at ρxy = 0.6812, and the
sample size is �xed at n = 135. The PRE of the proposed estimators T1 and T2 on
the population IV is computed by varying W2 and f , and shown in Table 7 and
Table 8, respectively.

Population V: We have also investigated the impact of the correlation co-
e�cient ρxy between the study variable and the auxiliary variable on the PRE
of estimator T1 and T2. For this, we have generated a population of same size
N = 300 such that the mean and the standard deviation of the study variable
(y) are Y = 14 and Sy = 2.3, respectively, whereas the mean and the standard
deviation of the auxiliary variable (x) are X = 18 and Sx = 1.5, respectively with
varying correlation coe�cient. We have �xed the value of W2 = 0.2, f = 1.5, and
sample size n = 75. The PRE of the proposed estimators T1 and T2 on population
V is computed by varying ρxy, and shown in Table 9 and Table 10, respectively.

6. Interpretation of Results

The empirical results are shown in Tables 1-10 for real and arti�cial datasets.
The following interpretations are made from the results obtained through an em-
pirical study on di�erent populations.

(i). From Tables Tables 1-10, it is observed that the PRE of the proposed es-
timators T1 and T2 is greater than 100 in all the situations, which shows
that our estimators are better than Hansen & Hurwitz (1946), ratio, and
exponential estimators.

(ii). From Tables 1, 3, and 7, it is observed that
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Table 7: PRE of estimator T1 with respect to y∗
w, y

∗
R, y

∗
e using Population IV.

W2 f y*w y*R y*e
0.1 1.5 170.4260 113.2432 136.2143

2.0 164.4864 112.1394 133.1960

2.5 159.4607 111.2055 130.6420

3.0 155.1531 110.4050 128.4531

0.2 1.5 162.6781 111.7314 132.0804

2.0 152.6510 109.8196 126.8523

2.5 145.4341 108.4436 123.0895

3.0 139.9912 107.4058 120.2516

0.3 1.5 159.1088 110.9505 129.9450

2.0 148.0017 108.7724 123.9885

2.5 140.5801 107.3169 120.0086

3.0 135.2708 106.2757 117.1614

Table 8: PRE of estimator T2 with respect to y∗
w, y

∗∗
R , y∗∗

e using Population IV.

W2 f y*w y**R y**e
0.1 1.5 177.1156 114.5496 139.6928

2.0 176.7237 114.5336 114.5336

2.5 176.3712 114.5194 139.4492

3.0 176.0523 114.5068 139.3450

0.2 1.5 176.7119 114.7290 139.5796

2.0 176.0760 114.8663 139.3945

2.5 175.5799 114.9844 139.2565

3.0 175.1829 115.0869 139.1506

0.3 1.5 176.0051 113.8712 138.3832

2.0 174.9099 113.3800 137.3544

2.5 174.0946 113.0150 136.5879

3.0 173.4641 112.7334 135.9948

Table 9: PRE of estimator T1 with respect to y∗
w, y

∗
R, y

∗
e using Population V.

ρxy y*w y*R y*e
-0.9 375.5196 786.5354 558.2098

-0.8 244.8205 495.5283 354.9308

-0.7 187.2284 364.3606 263.9723

-0.6 155.3389 289.4958 212.5416

-0.5 135.5204 240.9416 179.6135

-0.4 122.3860 206.7460 156.8379

0.4 112.6607 101.4632 101.3790

0.5 124.1488 100.0062 105.8433

0.6 142.3156 101.3274 114.6569

0.7 172.2964 106.686 130.7394

0.8 227.3337 119.6378 161.7542

0.9 354.1622 152.9114 234.7838
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Table 10: PRE of estimator T2 with respect to y∗
w, y

∗∗
R , y∗∗

e using Population V

ρxy y*w y**R y**e
-0.9 559.9721 1250.7941 866.8216

-0.8 297.9323 642.9449 449.3450

-0.7 211.0722 437.6198 309.1646

-0.6 168.3218 333.8259 238.8759

-0.5 143.3677 270.8536 196.7217

-0.4 127.4096 228.2752 168.6860

0.4 113.6502 101.7332 101.4139

0.5 127.1503 100.0058 106.5901

0.6 149.4983 101.6729 117.3414

0.7 188.9680 108.6426 138.2684

0.8 270.7350 127.2276 183.5915

0.9 521.5821 189.5687 324.9960

a) The PRE of the estimator T1 for a �xed value of W2 decreases as the
value of f increases.

b) The PRE of the estimator T1 for a �xed value of f decreases as the
value of W2 increases.

(iii). From Tables 5 and 6, it is observed that

a) The PRE for a �xed value of n decreases for the estimator T1 and
increases for the estimator T2 as the value of f increases.

b) The PRE for a �xed value of f decreases for the estimator T1 and
increases for the estimator T2 as the value of f increases.

(iv). From Tables 9 and 10, it is observed that the PRE of the proposed estimator
increases as the value of the correlation coe�cient increases irrespective of
its sign. It means that the e�ciency of the proposed estimators is better for
strongly correlated (positive or negative) data.

7. Conclusions

In this paper, we proposed two exponential-type estimators for estimating the
�nite population mean in the presence of non-response by e�ciently incorporat-
ing auxiliary information. The �rst estimator accommodated the case where the
auxiliary variable is fully observed, while the second estimator addressed a more
general and practically relevant case in which both the study and auxiliary vari-
ables were subject to non-response. For each estimator, we formally derived the
bias and MSE expressions up to the �rst order of approximation and obtained
the optimal estimators by minimizing their respective MSEs with respect to the
tuning constants.

The empirical results consistently show that the proposed estimators outper-
form the traditional Hansen�Hurwitz, ratio, and exponential estimators. The supe-
riority of the proposed estimators is evident across varying levels of non-response,
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subsampling rates, and correlation structures, con�rming their practical applica-
bility. In particular, the gains in e�ciency become more pronounced when the
auxiliary variable exhibits a strong positive or negative correlation with the study
variable. Given their theoretical soundness and empirical advantages, the proposed
estimators are recommended for application in surveys a�ected by non-response.
Future research may extend this framework to strati�ed sampling, multi-phase
sampling, or situations involving measurement error, imputation procedures, or
complex non-response models.
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