1Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá, Colombia. Student. Email: msadinleg@unal.edu.co
The negative binomial distribution is associated to the series obtained by taking derivatives of the logarithmic series. Conversely, the logarithmic series distribution is associated to the series found by integrating the series associated to the negative binomial distribution. The parameter of the number of failures of the negative binomial distribution is the number of derivatives needed to obtain the negative binomial series from the logarithmic series. The reasoning in this article could be used as an alternative method to prove that the probability mass function of the negative binomial distribution sums to one. Finally, an interpretation of the logarithmic series distribution is given by using the presented reasoning.
Key words: Convergent series, Logarithmic series distribution, Negative binomial distribution, Power series distributions.
La distribución binomial negativa está asociada a la serie obtenida de derivar la serie logarítmica. Recíprocamente, la distribución logarítmica está asociada a la serie obtenida de integrar la serie asociada a la distribución binomial negativa. El parámetro del número de fallas de la distribución binomial negativa es el número de derivadas necesarias para obtener la serie binomial negativa de la serie logarítmica. El razonamiento presentado puede emplearse como un método alternativo para probar que la función de masa de probabilidad de la distribución binomial negativa suma uno. Finalmente, se presenta una interpretación de la distribución logarítmica usando el razonamiento planteado.
Palabras clave: distribución binomial negativa, distribución de series de potencias, distribución logarítmica, series convergentes.
Texto completo disponible en PDF
References
1. Anscombe, F. J. (1950), `Sampling Theory of the Negative Binomial and Logarithmic Series Distributions´, Biometrika 37(3/4), 358-382.
2. Apostol, T. M. (1988), Calculus, Second edn, Reverté.
3. Casella, G. & Berger, R. L. (2002), Statistical Inference, Second edn, Duxbury Thomson Learning, Pacific Grove, United States.
4. Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943), `The Relation between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population´, The Journal of Animal Ecology 12(1), 42-58.
5. Khatri, C. G. (1959), `On Certain Properties of Power-Series Distributions´, Biometrika 46(3/4), 486-490.
6. Leemis, L. M. & McQueston, J. T. (2008), `Univariate Distribution Relationships´, The American Statistician 62(1), 45-53.
7. Noack, A. (1950), `A Class of Random Variables with Discrete Distributions´, The Annals of Mathematical Statistics 21(1), 127-132.
8. Ord, J. K. (1967), `Graphical Methods for a Class of Discrete Distributions´, Journal of the Royal Statistical Society 130(2), 232-238.
9. Patil, G. P. (1962), `On Homogeneity and Combined Estimation for the Generalized Power Series Distribution and Certain Applications´, Biometrics 18(3), 365-374.
10. Quenouille, M. H. (1949), `A Relation between the Logarithmic, Poisson, and Negative Binomial Series´, Biometrics 5(2), 162-164.
11. Samaniego, F. J. (1992), `Elementary Derivations of Geometric Moments´, The American Statistician 46(2), 108-109.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv31n2a11,
AUTHOR = {Sadinle, Mauricio},
TITLE = {{Linking the Negative Binomial and Logarithmic Series Distributions via their Associated Series}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2008},
volume = {31},
number = {2},
pages = {311-319}
}