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Abstract

The modeling and estimation of the conditional volatility associated with
a stochastic process usually have been based on parametric ARCH-type and
stochastic volatility models. These time series models are very powerful in
representing the dynamic stochastic properties of the data generating process
only if the parametric functions are correctly specified. The nonparametric
approach acquires importance as a complementary and flexible method to
explore these properties without imposing particular functional forms on the
conditional moments of process. This paper presents an application of non-
parametric time series methods to estimate the conditional volatility function
of the COP/USD exchange rate returns. Additionally, we estimate the con-
ditional mean function under this approach.

Key words: Nonparametric regression, Local polynomial regression, Non-
linear time series, Variance function estimation, Autoregressive conditional
heteroscedasticity, Time series analysis.

Resumen

La modelaciéon y estimacion de la volatilidad condicional asociada a
un proceso estocastico ha estado basada en los modelos paramétricos tipo
ARCH y de volatilidad estocastica. Estos modelos son muy poderosos para
representar las propiedades dinamicas estocasticas del proceso generador de
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26 Santiago Gallon & Karoll Gomez

datos solo si las funciones paramétricas estan correctamente especificadas.
En este sentido, el enfoque no paramétrico adquiere importancia como
un método complementario y flexible para explorar dichas propiedades al
no imponer formas funcionales particulares en los momentos condicionales
del proceso. Este documento presenta una aplicaciéon de los métodos no
paramétricos de series de tiempo para estimar la funciéon de volatilidad
condicional de los retornos de la tasa de cambio COP/USD. Ademas, se
estima la funcion de media condicional bajo este enfoque.

Palabras clave: regresion no paramétrica, regresiéon polinomial local,
series de tiempo no lineales, estimacion de la funcién de varianza,
heterocedasticidad condicional autorregresiva, andlisis de series de tiempo.

1. Introduction

In numerous publications researchers have written about the important role
that associated volatility plays in a stochastic process, particularly in economics
and finance. For example, the estimation of a conditional volatility measure
that approximates its principal empirical features such as cluster volatility,
asymmetries, leverage effects, and long memory, among others, is crucial for
different issues in finance, like financial risk management, asset pricing, and
efficient portfolio allocation.  Subsequently, the development of models to
adequately approximate the volatility process has concentrated the attention
of researchers in the past two decades (Andersen, Bollerslev & Diebold 2009,
Straumann 2005).

In this way, most volatility models have concentrated the attention on the
parametric approach assuming an explicit functional form to the volatility process.
This being said since Engle’s (1982) Autoregressive Conditional Heteroscedasticity
-ARCH- specification, where he explicitly expresses conditional volatility as a
linear function of past squared innovations of the process, there has been an
exponential growth of different parametric specifications. A short list of these
specifications: Bollerslev’s (1986) Generalized ARCH -GARCH- model, Engle
& Bollerslev’s (1986) Integrated GARCH -IGARCH- model, Nelson’s (1991)
Exponential GARCH -EGARCH- model, Ding et al. (1993) Asymmetric Power
ARCH -APARCH- model, Baillie et al. (1996) Fractionally Integrated GARCH
-FIGARCH- model, and Davidson’s (2004) Hyperbolic GARCH -HYGARCH-
model, among others. For a complete review of ARCH-type models, see Bollerslev
et al. (1992), Bollerslev et al. (1994), and Andersen, Davis, Kreiff & Mikosch
(2009). The estimation of ARCH-type models is commonly done by maximum
likelihood under different distribution functions such as the usual Gaussian
distribution, the Student-¢ distribution, the Generalized Error distribution (GED),
and the skewed-Student distribution.

Jointly with ARCH-type models are also the Stochastic Volatility -SV- models.
This class of parametric models presents, unlike ARCH models, an alternative
approach to the specification of the volatility function where the standard
specification contains an unobserved variance component (latent state variable)
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Nonparametric Analysis of the Conditional Mean and Volatility Functions 27

which is modeled directly as a linear stochastic process, such as an autoregression
(Harvey et al. 1994). See Ghysels et al. (1996), Shephard (2005), and Andersen,
Davis, Kreifs & Mikosch (2009) for a complete overview about SV models. The
estimation of SV models covers a wide range of estimation procedures, for instance
quasi-maximum likelihood, applying the Kalman filter, Bayesian estimation,
generalized method of moments, and efficient method of moments.

However, as it is well-known, the parametric time series models are very
powerful in representing the stochastic dynamical properties of the data generating
process if the parametric functions are correctly specified (Hardle & Linton 1994,
Fan & Yao 2005), and searching for a parametric functional form is critical and not
always is a simple task, especially when the process has nonlinear characteristics,
as is the case of financial time series variables. Thus the nonparametric approach
gains importance as a way of searching more flexible models without imposing
particular functional forms of the conditional moments such as a mean, variance,
or density function of process. The nonparametric estimates may be used as an
end product or, perhaps more importantly, as a guide to identifying a parametric
model to be used in a subsequent stage or to validate an existing one (Masry
& Tjostheim 1995). Additionally, the estimation of nonparametric regression
functions is not always complicated; on the contrary, it usually takes much less
time estimation with respect to some more complicated parametric models where
convergence problems are commonly found in their estimation algorithms.

Although the use of nonparametric methods in time series analysis has a
long tradition, it has obtained popularity with modern nonparametric techniques,
particularly in the analysis of nonlinear time series, due to the existence of large
data sets and computational advances (Hardle et al. 1997). Some references about
the development of nonparametric time series theory and its applications are:
books by Hardle (1990), Fan & Gijbels (1996), and Fan & Yao (2005), and the
articles by Robinson (1983), Hardle et al. (1997), Tjostheim (1999), and references
therein. This approach is applied to a vast range of areas in economics, and
has come to obtain great popularity in financial econometrics, for example, in
modeling the drift and diffusion process underlying asset returns, among other
issues in empirical finance. See, for example, Pagan & Ullah (1988), Diabold &
Nason (1990), Mizrach (1992), Bossaerts et al. (1995), Bossaerts et al. (1996), Ait-
Sahalia (1996a), Ait-Sahalia (1996b), Ait-Sahalia & Lo (1998), and Ait-Sahalia &
Lo (2000). Particular studies using the nonparametric approach to estimate the
conditional volatility function are Engle & Gonzalez-Rivera (1991), Bossaerts et al.
(1995), Bossaerts et al. (1996), Masry & Tjostheim (1995), Hardle & Tsybakov
(1997), Fan & Yao (1998), and Ziegelmann (2002).

In this paper, we apply nonparametric time series methods to estimate the
conditional mean and volatility functions for the Colombian Peso/US Dollar -
COP/USD- exchange rate returns. The fundamental reason for studying this
variable is that the Colombian exchange rate has had significant variation episodes
generating great uncertainty, and with large and severe costs on various economic
sectors.  Additionally, international asset pricing theories and international
portfolio management depend on the expected foreign exchange rate movements
(Bollerslev et al. 1992); therefore this paper can be a contribution to properly
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28 Santiago Gallon & Karoll Gomez

understand the foreign exchange rate dynamics using the advantages of the
nonparametric time series methods. The reason being that in Colombia, almost
all analyses about foreign exchange rate has been concentrated on parametric
models. The only nonparametric study for the COP/USD exchange rate is by
Julio et al. (2005). For international nonlinear analysis on exchange rates using
nonparametric procedures, see the studies by Meese & Rose (1990), Diabold &
Nason (1990), LeBaron (1990), Bossaerts et al. (1995), Bossaerts et al. (1996),
and Hardle & Tsybakov (1997).

The paper is organized as follows: Section 2l makes a short description of the
nonparametric time series model and its different estimation methods. Section
Bl applies the nonparametric model to estimate both the conditional mean and
volatility functions for the returns of the COP /USD exchange rate process. Finally,
Section M concludes.

2. The Nonparametric Time Series Model

The starting point of the data generating process of a strictly stationary
discrete-time stochastic process {X;} defined on some probability space (2, F, P)
is the general univariate nonlinear stochastic regression model given by

Xt:m(Xt_l,...,Xt_p)+O'(Xt_1,...,Xt_p)Et, tzl,,T (1)

where m(zi—1,...,x1—p) = E(X¢ | X4—1 = 21,...,X4—p = x,) is the nonlinear
autoregressive conditional mean (smooth) function, o%(z4—1,...,2;—p) = Var(X; |
X¢—1 = x1,...,X¢—p = xp) represents the nonlinear autoregressive conditional
variance (smooth) function, and {e;} is an independent and identically distributed
(ii.d.) sequence of random variables with E(e; | X¢—1,...,X¢—p) = 0, Var(e; |
Xi—1,...,X—p) =1, and independent of {X;_1, Xy _o,...}.

The model () is known as the Conditional Heteroscedastic Autoregressive
Nonlinear -CHARN- model; see Bossaerts et al. (1996), or the Nonparametric

Autoregressive Conditional Heteroscedastic -NARCH- model; see Fan & Yao
(2005).

This model is the most flexible nonparametric time series model because it
does not impose any (parametric) particular form on the conditional mean and
volatility functions. However, due to the well-known “curse of dimensionality”
problem, the estimation of equation () is complicated As a consequence, it is
necessary to assume a certain level of structure on the conditional functions m(-)
and a(')

! Nonparametric regression estimators are very flexible, but their statistical accuracy decreases
greatly if there are several explicatory variables in the model (Hardle et al. 2004). Additionally,
their estimation is difficult unless the sample size is excessively large (Fan & Yao 2005), and (Fan
& Gijbels 1996).

2A very popular nonparametric model is the Functional-Coefficient Autoregressive -FAR-
model (Chen & Tsay 1993), where the conditional mean and volatility functions are specified as

m(Xe—1,...,Xt—p) = a1 (X¢e—a) X1+ - + ap(Xe—q) Xt —p
o (Xem1s- s Xemp) = b1 (X a) XT + - + bp(X—a) X7,
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Nonparametric Analysis of the Conditional Mean and Volatility Functions 29

The usual assumption is: suppose p = 1 such that the model () becomes

X = m(Xt_l) + O'(Xt_l)f;‘t (2)

Following Hardle & Tsybakov (1997), and Fan & Yao (1998) if {X,} is a
stationary process, the conditional variance function can be decomposed as

o(z) = E(X7 | X;o1 = 2) — {E(X; | X¢o1 = 2)}?
= g(z) — {m(x)}*

such that the conditional variance estimate is based on the nonparametric
estimation of g(x) and m(z) given by 62 (x) = gr(x) — {mr(z)}>.

3)

2.1. Nonparametric Kernel Estimation

A way to obtain estimates of functions m(z) and g(z) is by applying the popular
Nadaraya-Watson estimator given by:

YL K (Xem —2)/hr) X,

mr(Xi_q1) =
T S L K (= (W
T
gr(X,_1) = Yo K (Xe—1 — ) /hr) X7

Sy K (Xi-1 — ) /hr)

where K(-) : R — R is the (continuous, bordered, symmetric, and integrating to
one) Kernel function and hy > 0 is the bandwidth parameter (also smoothing
parameter), hy — 0 as T — oo. The Nadaraya—Watson estimator is a special
case of the local polynomial estimation explained below. The Kernel functions
most commonly used are the Gaussian, Quartic, and Epanechnikov Kernels.

These estimators are strongly consistent and asymptotically normal for a-
mixing observationsf] see Robinson (1983), and Masry & Tjostheim (1995).

with a;(-) and b;(:), ¢ = 1,...,p one-dimensional unknown functions, and X;_4 is the model-
dependent variable. Another common model is the Additive Autoregressive -AAR- model
(Jones 1978) which assumes an additive structure for conditional mean and variance,

m(Xeo1,..., Xeop) = ma(Xe1) + -+ mp(Xi—yp)

02 (Xio1,ee o, Xemp) = 01(XP 1) -+ 0p(X7 )
where m;(-) and o;(-), ¢ = 1,...,p are univariate unknown functions. For other nonparametric
models such as Partially Linear models and Single-Index Models, see Hardle & Tsybakov (1997),

Hardle et al. (2004), Fan & Yao (2005), and Gao (2007).
3A sequence is said to be a-mixing if @(n) — 0 when n — oo, with a(n) defined as

a(n) = sup | PLANB) — P(A)P(B) |, n=1,2,...,

k
AeFk ,BEFE

where F7 is the o-field generated by Xj, ..., X;. See Robinson (1983), and Fan & Yao (2005).

(3
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2.2. Local Polynomial Regression

Another nonparametric technique used to estimate the functions m(z) and
g(z) is proposed by Hardle & Tsybakov (1997), who applied the local polynomial
regression method. The estimates for m(z) and g(x) functions are derived through
the solution of the following weighted least-squares problems:

T
er(z) = argeﬁllinZ(Xt — dUr)*K (X4—1 — x)/hr)
t;l (5)
er(x) = arg ESmZ(xf —?Uir)*K (X, — ) /h7)
ceR! Yoy

where K(-) and hy > 0 are again the Kernel function and bandwidth parameter,
respectively, and Uyr = F(usr) with F(u) = (1,u,...,u!"1/(I — 1)!) and uyr =
(Xi—1 — x)/hr (the symbol ' denotes the transpose of a row vector). Note that
when [ = 1, the local polynomial fit is reduce to the Nadaraya-Watson estimator.

The estimators of m(x) and g(z) are given by my(x) = ¢r(x) F(0) and
gr(z) = ¢r(z)'F(0), respectively; such that the estimator of the conditional
variance functions is defined as

o7(2) = r(x) F(0) - {er(2) F(0)}? (6)

Hardle & Tsybakov (1997) establish the asymptotic normality of local
polynomial estimators for conditional mean and variance.

In the application of the local polynomial nonparametric regression method
to estimate the volatility function to DM/USD and YEN/USD foreign exchange
rates Hardle & Tsybakov (1997) use a local linear approximation (I = 2), such
that

T
er(z) = arg&ginZ (X — 1 — ca(Xo—1 — 2))° K (X1 — 2)/h7)

T (7)
er(z) = ar_g;erzinZ (X7 -2 — (X1 — ;v))2 K ((Xt—1 —x)/hr)

Note that in the minimization problems in (), employed to obtain local
approximation estimates of m(z) and g(z), the Kernel function and bandwidth
parameter are commons in both equations. This strategy is used by Hardle &
Tsybakov (1997) to avoid nonnegative estimators of o2(x) and to reduce bias.
Therefore, Fan & Yao (1998) propose a residual-based estimator to conditional
variance based on local linear regression.

From @) we have that r? = {X; — m(X;_1)}? = 02(X;_1)e7, such that its
conditional expectation is E(r? | X;—1 = z) = o?(x). This therefore shows
that it is natural to estimate o2(z) using the estimated residuals. Consequently
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the estimates of m(x) and o2(z) are derived from the solutions of the following
minimization problems:

T
ar(r) = argmin ¥ {X; — a1 — aa(X; 1 — 2)}°K (Xe-1 — 2)/hur)

a€R? 5

(8)

-~

T
br(xz) = argmin Z{?f — by — bo( Xy — )W (X¢—1 — 2)/har)

(2SS —

where K (-) and W(-) are the Kernel functions, h17 > 0 and hor > 0 the bandwidth
parameters, and 72 = {X; — mz(x)}? the estimated residuals.

The estimate of m(z) is given by my(z) = ar(x)'e = a1 where e = (1,0)
such that the residuals are 72 = {X;_1 — @1 }? which are used in the above second
minimization problem to obtain the estimator of o%(z) given by

o7 (x) = br(z)'e = by (9)

Fan & Yao (1998) demonstrate the asymptotic normality and efficiency of
G2 (z), and apply their method to estimate the conditional mean and volatility
functions to yields of the three-month Treasury Bill.

The reason for using the local polynomial regression, especially the local linear
estimator applied in the Hardle & Tsybakov (1997) and Fan & Yao (1998), is
because the local polynomial estimator has diverse statistical properties. Among
these are: Agreeable nice asymptotic properties such as asymptotic minimax
efficiency (Fan 1993), good finite sampling and design-adaptation properties,
and it overcomes the drawbacks of the Nadaraya-Watson estimator and other
nonparametric estimators such as large biases due to boundary effects. See Fan
(1993), Fan & Gijbels (1996), and Fan & Yao (2005) for a complete derivation and
description of statistical properties of the local polynomial estimator.

Note that the implementation of the above estimators depends on the
appropriate selection of both bandwidth parameter and Kernel function. For
example, for local linear estimator, Hardle & Tsybakov (1997) applied the cross-
validation method to choose the bandwidth parameter using the Quartic Kernel,
and Fan & Yao (1998) applied the data-driven bandwidth selection method using
the Epanechnikov Kernel. See Fan & Yao (2005) for a complete description of
bandwidth parameter selection methods for dependent processes.

3. Empirical Application for the COP/USD
Exchange Rate Returns

In this section we apply the previously described different nonparametric
estimators to estimate both the conditional mean and variance functions for the
COP/USD exchange rate returns, Sy, defined as X; = log(S:/S¢—1). The data
consists of 3515 commercial daily observations (from 2 January 1995-20 June
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2008). There are two reasons for choosing this period. Firstly, the applied work on
COP/USD exchange rate usually studies this series without the exchange rate band
regime, and due to the nonparametric time series methods are very effective in
modeling potential nonlinearities (for example, due to interventions), we consider
that is important to use the whole period. Secondly, the estimation and bandwidth
selection methods are difficult unless the sample size is large (Fan & Yao 2005, Fan
& Gijbels 1996). The statistical source of the database is the Central Bank of
Colombia.

The graphs of the COP/USD exchange rate, its returns and respectively
squared returns are presented in Figure[ll As we can see, the COP/USD exchange
rate returns present the well-known cluster volatility phenomena. This is related
to the excess kurtosis as is ilustrated by the Kernel density estimation for the
COP/USD exchange rate returns in Figure [Il

COP/USD Exchange Rate COP/USD Returns
3000 - 0.06 4
2500 - 0.04 1
0.02 1
2000 +
0.00 4
1500 -
—0.02 -
1000 +
—0.04 A
1996 1998 2000 2002 2004 2006 2008 1996 1998 2000 2002 2004 2006 2008
Time Time
Squared COP/USD Returns COP/USD Returns Density

Kernel Density
Normal(sd=0.00524)

0.0030 -

150 o
0.0025 -

0.0020 -
100 1
0.0015 -
0.0010 -

0.0005 -

0.0000 -

19‘96 19‘98 2[;00 2(;02 20‘04 2C;05 ZC;OS
Time X_t
Ficure 1: COP/USD exchange rate, COP/USD exchange rate returns, squared
COP/USD exchange rate returns, and Kernel density estimation for
COP/USD exchange rate returns compared with a mean zero normal density
with standard deviation, o = 0.00524.

To test for the existence of nomlinearity in the COP/USD returns and its
squares, we applied the popular BDS test (see Brock et al. 1996), which can
be considered a misspecification test in time series analysis. This test has power
against a wide range of linear and nonlinear alternatives. The results displayed in
Table [I] show that the null hypothesis of i.i.d. is rejected for most combinations
of m and e for both variables. Since there appears to be no discernible linear
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structure in the returns and its squares, the results suggest that there may be a
nonlinear structure.

TABLE 1: BDS test statistics for nonlinearity of X; and Xf.

X, X7
m\e  0.0026 0.0052 0.0079 0.0105 Oe+00 le—04 le—04 2e—04
2 16.508 17.078 15279  13.424 11.163 9.718 7.513 6.103
(0) (0) (0) (0) (0) (0) (0) (0)
3 22.301 21.550 19.088  17.442 14.018 12.615 11.318 11.644
(0) (0) (0) (0) (0) (0) (0) (0)
4 28.976 25.196  21.426 19.114 15.720 13.521 12.439 12.864
(0)  (0) (0) (0) (0) (0) (0) (0)
5 38.839  28.877 23.283 20.095 | 16.937 13.770 12.835 13.305
(0) (0) (0) (0) (0) (0) (0) (0)
m: embedding dimension, e: close point.
p-values in parenthesis.

The Kernel function used in all estimations for both the conditional mean
and volatility functions was the Epanechnikov Kernel, given by K(u) = 3(1 —
u?)I(Ju| < 1). In addition, we developed all estimations by employing other
kernel functions such as the Quartic Kernel, K (u) = (1 — v?)?I(|u| < 1), and
the Gaussian Kernel, K(u) = \/%—ﬂ exp(—%u2); and by not necessarily using the
same kernel function for the conditional mean and volatility, we obtained very
similar results. For optimal bandwidth parameter selection, we always choose it
by applying the following bandwidth selection methods: cross-validation, rule of
thumb, the pre-asymptotic substitution method by Fan & Gijbels (1995), and
the plug-in approach. After the empirical comparison of the estimations obtained
by means of the different bandwidth selection methods, the optimal bandwidth
parameters for the conditional mean were 0.0134 and 0.0140 to Nadaraya-Watson
and local linear polynomial estimators, respectively, and for the conditional
variance were 0.0134, 0.0127, and 0.0149 to the Nadaraya-Watson, Hardle &
Tsybakov (1997), and Fan & Yao (1998) estimators, respectively. All estimations
and computations were carried out using the Xplore software version 4.8 and the
locpol R package developed by Cabrera (2008). We also applied a robust local
polynomial regression proposed by Cleveland (1979) to guard against deviant
points (outliers) which may have had a distorting effect on the smoothing. As
the results were very similar, they have not been illustrated to save space

Figure [ shows the scatterplots of X; against X; 1, and the conditional
mean function estimated by (a) Nadaraya-Watson (local constant estimator), and
(b) local linear polynomial estimators denoted by mr(X;—1). The dashed lines
correspond to pointwise 95% asymptotic confidence intervalsll As we can see, the
shape of both estimate curves is almost equal, except for on the left edge where
there is a boundary effect in the local constant fit thus generating bias problems
in the lineal direction on the edges.

4The plots are available upon request.
5See Fan & Yao (2005) for a complete construction of the confidence intervals for dependent
data.
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(a) Local Constant Estimator (b) Local Linear Estimator

FIGURE 2: (a) X: against X;_1, and local constant polynomial fit mr(X¢—1). (b) X
against X;_; and local linear polynomial fit mz(X:—1).

The most important segment in the graphs corresponds at the center: between
—0.02 and 0.02, because there in that interval are most of the observations, and
therefore more efficiency in the estimation of the conditional mean function. As
we can see in that segment, the slope is almost zero which that possibly means
that an efficient exchange rate market exists. The results found in the literature
on exchange rate markets are diverse. Some show evidence of low negative slopes
(mean reversion) (Hardle & Tsybakov 1997) and others low positive slopes (Julio
et al. 2005).

The graphs of the estimated residuals, 7, = {X; — mr(x)}, where mp(z) is
the estimated conditional mean function obtained from the local linear polynomial
estimation, and its squares, 72, are illustrated in Figure3l The latter is employed in
the estimation for the conditional variance function using the local linear estimator
of Fan & Yao (1998). Additionally the scatterplot between 7; against X, 1,
including the estimated conditional mean curve, and the Kernel density estimation
for residuals compared with a mean zero normal density with standard deviation,

o = 0.00524 are shown in Figure [3

Figures@{(a) and E{(b) depict the scatterplots of the squared returns, X?, against
X1, and the estimated regression curve of the conditional variance, denoted
by 6%(X;_1), estimated by the Nadaraya-Watson and the local linear estimator
by Hardle & Tsybakov (1997). Figure (c) shows the scatterplot of the squared
residuals, 7, against X;_1, and the local linear estimator of Fan & Yao (1998).

Figure [ shows the volatility functions, o7(X;—1), estimated by (a) the
Nadaraya-Watson, (b) the Hardle & Tsybakov (1997), and (c¢) the Fan & Yao
(1998) estimators. The results show that the conditional volatility function
estimated by means of the Fan and Yao residual-based local linear estimator is
smoother than the local constant and linear estimators using the squared returns.
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Residuals Squared Residuals
0.06 - 0.0035 4
0.0030 4
0.04
0.0025 4
0.02 0.0020 -
0.00 0.0015 4
0.0010 +
—-0.02
0.0005 4
—0.04 + 0.0000 A
1996 1998 2000 2002 2004 2006 2008 1996 1998 2000 2002 2004 2006 2008
Time Time
Residuals vs X_t Residuals Density

150 A

-0.04 -0.02 0.00 0.02 0.04 0.06 —0.04 -0.02 0.00 0.02 0.04 0.06
X_t-1 X_t

FIGURE 3: Residuals, squared residuals, residuals against X:—1, and Kernel density
estimation for residuals compared to a mean zero normal density with
standard deviation, o = 0.00524.

Furthermore, the results do not to show evidence of volatility asymmetries. On
the contrary, the well-known U-shape in the conditional volatility function (except
to the Fan and Yao’s estimator) is present. This result concurs with findings in
other studies that employ the parametric approach (Castafo et al. 2008, Maya
& Gomez 2008). This indicates, for example, that it is proper to carry out an
option evaluation on the COP/USD exchange rate with the symmetric volatility
“smile”. However, this symmetric U-shape is particularly clear in the central area
of the graphs where the majority of observations are, this is, in the segment
between —0.02 and 0.02 (see Figure [3). As expected, this symmetry in volatility
is broken due to boundary effects on the right and left edges where there are few
observations for correct smoothing (Hardle 1990, Hardle & Tsybakov 1997, Fan &
Gijbels 1996, Hardle et al. 2004).

Finally, the results are along the lines of the findings by Julio et al. (2005),
who applied the local lineal polynomial regressionﬁ The goal of their study was
to determine the features of the “volatility U-shape” and mean response functions,
and the market effect of central bank interventions on those functions. They found
that “discretional interventions” tend to change the concavity of the “volatility U-
shape”. However, that change was moderated and it never produced “volatility
skew”.

6 In their study they used a different sample, from September 27th 1999-March 31st 2005.
Additionally, they fit a local linear approximation to conditional mean and local quadratic
approximation to conditional variance.
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Fi1GURE 4: (a) X7 against X;_1, and local constant polynomial fit %(X;—1). (b) X7
against X;_1, and local linear polynomial fit 3%(Xt,1). (c) 72 against X;_1,
and local linear polynomial fit G2 (Xe—1).

4. Conclusions

The role of volatility associated with a stochastic process is well-known,
particularly in economics and finance. However, most of the volatility models have
focused their attention on the parametric approach to represent the stochastic
dynamic properties of the data generating process, assuming explicit functional
forms for the mean and variance processes. In this paper a nonparametric time
series analysis to the conditional mean and variance functions was carried out on
the Colombian Peso/US Dollar -COP/USD- exchange rate returns.

Two nonparametric estimators were applied to estimate the conditional mean
function: the local constant polynomial (Nadaraya-Watson) and local linear
polynomial estimators; whereas three were used for the conditional variance
function: the local constant and linear estimators based on the squared returns
and the residual-based local linear estimator. The results show no evidence of
asymmetries in the volatility of COP/USD exchange rate. On the contrary, we
found the “volatility U-shape”. Additionally, the results indicate that there is mean
reversion according to the existence of a lineal function relationship to conditional
mean.

Finally, as Bossaerts et al. (1995) point out, the nonparametric analysis can be
extended considering a less restricted data generating process on the conditional
mean function as well as on the conditional variance function including more lags
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FiGURE 5: (a) or(X¢—1) against X;—1 (Nadaraya-Watson). (b) o7 (X¢—1) against X;—1
(Hardle-Tsybakov). (c¢) or(X¢—1) against X;—1 (Fan-Yao).

in both functions. However this implies the well-known “curse of dimensionality”
problem. Moreover, other nonparametric models can be attempted; for instance
the Functional-Coefficient Autoregressive model, the Additive Autoregressive
model, and among others. At this moment this extension is been performed jointly
with a multivariate analysis to modeling portfolios of exchange rates and forecast
future returns over short horizons.
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