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Abstract

This paper considers situations where regression models are proposed
to model abilities on three parameter logistic models. After a summary of
the classical approach to estimate the item parameters and the abilities,
we provide an exposition of the maximum likelihood method to estimate
the regression parameters. We analyze how good these estimations are,
using a simulated study, and we include an application.
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1. Introduction

In Item Response Theory (IRT) we have an estimation problem including
two types of parameters: the item parameters and the subject’s ability para-
meters. The difficulty in the general model is that the subject’s ability, which
appears as a nuisance parameter, cannot be eliminated from the likelihood
function by conditioning a sufficient statistic in the way proposed for the one
parameter logistic model by Rasch (see Andersen, 1980, chap 6). Moreover,
joint maximum likelihood estimation of the subject’s abilities and item para-
meters is not generally possible because the number of parameters increases
with the number of subjects and then, standard limit theorems do not apply
(Bock & Aitken, 1981).

A better approach to estimation in the presence of a random nuisance pa-
rameter is to integrate over the parameter distribution and to estimate the
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structural parameters by maximum likelihood in the marginal distribution.
Working with two parameter normal ogive model, Bock & Lieberman (1970)
have already taken this approach and have estimated item stress holds and fac-
tor loadings based on the assumption that subjects are random samples from
a N(0, 1) distribution of the ability.

Bock & Aitken (1981) show that, by a simple reformulation of the Bock–
Lieberman likelihood equation, a computational solution is possible to find for
both, small and large number of items. This reformulation of the likelihood
equation clearly states that the form of the ability distribution does not need
to be known. Instead, it can be estimated as a discrete distribution on a finite
number of points (i.e. a histogram). The item parameters can be estimated by
integrating over the empirical distribution; thus freeing the method from arbi-
trary assumptions about the ability distribution in the population effectively
sampled.

Subject’s abilities can be explained by associated factors such as habits, gen-
der, number of hours of practice, socioeconomic status and parents’ education
level, among others. If xt

j = (1, xij , ..., xRj), j = 1, 2, ..., n, is a vector of ability
explanatory variables, we can model the abilities using θj = xt

jβ + εj , where
βt = (β0, β1, ..., βR) is a regression parameters vector and εj ∼ N(0, σ2). This
is not a new idea. Verhelst & Eggen (1989) and Zwinderman (1991) formulated
a structural model for the Rasch model assuming that the item parameters are
known.

In this paper we model the abilities as a regression model on a 3-IRT model.
Section 2 presents some topics on three parameter logistic models. Section 3
reviews the marginal maximum likelihood estimate of item parameters. Section
4 reviews the maximum likelihood estimate of the abilities. Section 5 presents
the ability regression models and the ML method for the parameter estimation.
Section 6 includes a simulated study. Section 7 presents an application and
section 8 draws concluding remarks.

2. Three Parameter Logistic Models

Let uij , i = 1, ..., I and j = 1, ..., n, be I×n binary random variables, where
i indicates an item and j a subject. uij = 1 if subject j solves item i, otherwise
uij = 0. The probability that a subject j with ability parameter θj solves item
i with difficulty parameter bi is given by:

p(uij = 1|θj , ξi) = ci + (1− ci)
1

1 + e−Dai(θj−bi)
, i = 1, ..., I; j = 1, ..., n, (1)
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where ξi = (ai, bi, ci) are the parameters of item i, 0 ≤ ci < 1 and ai > 0
(Birnbaun, 1968). θj and bi assume values between −∞ and ∞. The latent
continuous θ is called the ability, and θj is the ability of j-th subject.

The following considerations provide a basis for the interpretation of the
parameters involved in the IRT model:

1. Since ci = lim
θj→−∞

p(ui = 1|θj , ξi), ci can be interpreted as the probability

of random correct answers.

2. If θj = bi, equation (1) reduces to:

p(uij = 1|θj , ξi) =
1 + ci

2
;

then bi may be interpreted as the subject’s ability necessary for the prob-

ability of solving the item equals
1 + ci

2
; thus, higher values of bi corre-

spond to higher difficulty levels for the item being considered.

3. Viewing p(uij = 1|θj , ξi) as a function f of θj , f ′(bi) = 1
2 (1− ci)Dai.

This fact justifies to take ai as a discrimination measure. If for items i
and j, ci = cj and ai < aj , then the item with discrimination measure aj

discriminates more than the item with discrimination measure ai.

Given an item with known parameters, the curve which describes the relation
between subject’s ability parameter and agreement probability is called Item
Characteristic Curve (ICC) (See figure 1). If in equation (1) ci = 0, then there
is no possibility of having random correct answers and the resulting model is
called the unidimensional two parameter logistic model or Birnbaum’s model.
Setting ai = a and c = 0 in equation (1), we obtain the unidimensional one
parameter logistic model, also called the Rasch Model (1961). The Rasch model
describes how the probability of correct answers depends on the subject’s overall
ability and on the level of difficulty of the questions.

One of the most important theoretical merits of the Rasch models is called
by Fisher (1995) the “specific objectivity”, consisting in that item parameters
do not depend on the characteristics of the subjects answering the test, and
subject’s parameters do not depend on the items chosen from a given set.
Consequently, the three parameters are independent from the sample location
and dispersion of the ability.

As the ability scale does not have practical interpretation in pedagogical
terms, it is necessary to define an ability scale characterized by sets of items
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Figure 1: Item Characteristic Curve: Probability of agreement with (a) c = 0.1,
a = 2 and b = 0.5 (full line), (b) c = 0.2, a = 1.5 and b = −0.59 (dashed line).

with pedagogical interpretation in the test theoretical frame. The ability scale
is defined by a set of values, θ0 < θ1 < ... < θP , called “anchor levels”, selected
by the analyst. The pedagogical interpretation of the scale is possible through
the pedagogical interpretation of the set of items associated with each level.

Pertinent anchor levels, θp, depend of the conditional probabilities of correct
answer p(u = 1|θ = θp) and p(u = 1|θ = θp−1). Specifically, an item u is one
anchor item of a level θp if and only if p(u = 1|θ = θp) ≥ 0.65, p(u = 1|θ =
θp−1) < 0.5, and p(u = 1|θ = θp) − p(u = 1|θ = θp−1) ≥ 0.30 (see Andrade,
2000). Thus, the scale is defined only at the end of the statistical analysis of
the data resulting from the test application.
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3. Item parameter estimation

In this section we present the marginal maximum likelihood method to
estimate item parameters, based on Andrade (2000). To this end, we consider
two hypothesis:

1. Answers of different subjects are independent from each other.

2. Different items are solved independently by each subject, given their abil-
ity.

To gain computational advantage it is convenient to work with different re-
sponse patterns (Bock & Lieberman, 1970). Assuming the ability having a
known distribution g(θ|η), if ũl is a response pattern,

p(ũl|ξ, η) =
∫

R

p(ũl|θ, ξ)g(θ|η)dθ, (2)

where ξ = (ξi, ..., ξn) and ξi = (ai, bi, ci) = (ξi1, ξi2, ξi3).

Given the independence between different subject’s answers (hypothesis 1),
if γl, is the number of occurrences of response pattern ũl, l = 1, ..., s, where s
is the number of different response patterns with γl > 0, then the likelihood
function is:

L(ξ, η) =
n!∏s

l=1 γl!

s∏

l=1

p(ũl|ξ, η)γl .

Thus, the log likelihood function is:

` = log
( n!∏s

l=1 γl!

)
+

s∑

l=1

γl log
[
p(ũl|ξ, η)

]
,

and

∂`

∂ξir
=

s∑

l=1

γl

p(ũl|ξ, η)
∂

∂ξir
p(ũl|ξ, η), i = 1, ..., I; r = 1, 2, 3. (3)
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By the independence between responses, we have:

∂p(ũl|ξ, η)
∂ξir

=
∂

∂ξir

I∏

j=1

p(ujl|ξj , η)

=
∂

∂ξir

I∏

j=1

∫

R

p(ujl|θ, ξj)g(θ|η)dθ

=
∫

R

[ I∏

j 6=i

p(ujl|θ, ξj)
][ ∂

∂ξir
p(uil|θ, ξj)g(θ|η)

]
dθ,

where ujl = 1 if in the l-th pattern of response, item j is answered.

Since
∂

∂ξir
p(uil|θ, ξi) =

∂

∂ξir

[
puil

i q1−uil
i

]
= (−1)uil+1 ∂pi

∂ξir
, i = 1, ..., I;

l = 1, 2, .., s, where pi = ci + (1− ci)
1

1 + e−Dai(θ−bi)
, we have:

∂p(ũl|ξ, η)
∂ξir

=
∫

R

[ (−1)uil+1

puil
i q1−uil

i

][ ∂

∂ξir
p(ũl|θ, ξ)g(θ|η)

]
dθ

=
∫

R

[(uil − pi

piqi

)( ∂pi

∂ξir

)]
p(ũl|θ, ξ)g(θ|η)dθ. (4)

Given (4), equation (3) can be written as:

∂`

∂ξir
=

s∑

l=1

γl

∫

R

[
(uil − pi)

∂pi

∂ξir

Wi

p∗i q
∗
i

]
g∗l (θ)dθ, (5)

where p∗i = {1 + e−Dai(θ−bi)}−1, q∗i = 1− p∗i , Wi =
p∗i q

∗
i

piqi
and

g∗l (θ) = g(θ|ul, η, ξ) =
p(ũl|θ, ξ)g(θ|η)

p(ũl|ξ, η)
.

The distribution g∗l (θ) is the conditional distribution of θl given η.

From equation (5) we obtain:

∂`

∂ai
= D(1− ci)

s∑

l=1

γl

∫

R

[
(uil − pi)(θ − bi)Wi

]
g∗l (θ)dθ,

∂`

∂bi
= −Dai(1− ci)

s∑

l=1

γl

∫

R

[
(uil − pi)Wi

]
g∗l (θ)dθ,
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∂`

∂ci
=

s∑

l=1

γl

∫

R

[
(uil − pi)

Wi

p∗i

]
g∗l (θ)dθ.

Then the equations for the estimation of item parameters are:
∂`

∂ai
= 0,

∂`

∂bi
= 0,

∂`

∂ci
= 0, i=1,...,I.

In order to apply the Newton-Raphson algorithm or Fisher scoring algo-
rithm, we need the second derivative of `(ξ, η). Given the independence be-
tween items (Bock & Aitkin, 1981), item parameters can be estimated individ-

ually, since from the hypothesis,
∂2 log `

∂ξir∂ξjk
= 0, for i 6= j, r, k = 1, 2, 3. For

i = 1, 2, ...I and j = i,

∂2`

∂ξi∂ξt
i

=
∂

∂ξi

(
∂`

∂ξi

)t

=
∂

∂ξi

[
log L(ξ, η)

∂ξi

]t

=
∂

∂ξi

[ s∑

l=1

γj
1

p(ũl|ξ, η))
p(ũl|ξ, η)

∂ξi

]t

=
s∑

l=1

γj

{
∂2p(ũl|ξ, η)/∂ξi∂ξt

i

p(ũl|ξ, η)

−
(

∂p(ũl|ξ, η)/ξi

p(ũj |ξ, η)

)(
∂p(ũl|ξ, η)/∂ξi

p(ũl|ξ, η)

)t
}

. (6)

Thus the Newton-Raphson algorithm equation is:

ξ̂(k+1) = ξ(k) − (H(k))−1q(k), (7)

where q̂(k) = q(ξ̂(k)), q = (q1, q2, ...., q7) with qi =
∂ log L(ξ, η)

∂ξi
,

H(k) = diag(H(k)
i ) and H

(k)
i = Ĥ

(k)
i ), where

Hi =
∂2`(ξ, η)
∂ξi∂ξ

′
i

.

Given the independence between items, the computational process is sim-
ple. However, when a theoretical structure for test elaboration exists, this can
induce a linked structure in the items set. There will be groups formed by
independent items and groups with non independent items. In this case, the



34 Edilberto Cepeda C. & José Peláez A.

probability of some response vector is given by the product of the group proba-
bilities instead of the product of probabilities of individual item responses. For
detail and comments about estimation methods see Mark & Raymond(1995)
and Adams & Wilson(1992).

4. Ability estimation

Now we know the item parameters. By hypothesis (1) and (2), the logarithm
of likelihood function can be written as:

`(θ) = log L(θ) =
n∑

j=1

I∑

i=1

{
uij log(pij) + (1− uij) log(qij)

}
,

where pij = p(uij = 1|θj , ξi) and qij = 1− pij .

Then for j = 1, 2, ..., n,

∂`(θ)
∂θj

=
I∑

i=1

{
uij − pij

pijqij

}[
∂pij

∂θj

]

= D

I∑

i=1

ai(1− ci)(uij − pij)Wij ,

where

Wij =
p∗ijq

∗
ij

pijqij
,

p∗ij =
{
1 + e−Dai(x

t
jβ−bi)

}−1 and q∗ij = 1− p∗ij .

In order to apply Newton-Raphson algorithm or Fisher scoring algorithm,

we need to calculate the second derivatives,
∂`2(θ)
∂θ2

j

, since by hypothesis (2),

section (3),
∂2`(θ)
∂θj∂θk

= 0 for k 6= j.

∂2`(θ)
∂θ2

j

=
I∑

i=1

{(uij − pij

pijqij

)(∂2pij

∂θ2
j

)
−

(uij − pij

pijqij

)2(∂pij

∂θj

)2
}

(8)



Modeling Abilities in 3-IRT Models 35

where
∂pij

∂θj
= Dai(1− ci)p∗ijq

∗
ij ,

∂2pij

∂θ2
j

= D2a2
i (1− ci)(1− 2p∗ij)(p

∗
ijq

∗
ij)

2.

As in (7) we can use the Newton-Raphson algorithm to estimate subject’s
abilities.

5. Modeling the abilities

Subject’s abilities may be explained by associated factors such as hours of
practice, socioeconomic status or education level, with the model θ = xtβ +
ε. In this model xt = (1, x1, ...., xR), is a explanatory variables vector; β =
(β0, β1, ..., βR) is a parameter vector and ε is a random variable associated with
error. Thus, model (1) can be written as:

p(uij = 1|β, ξi, εj) = ci + (1− ci)
1

1 + e−Dai(xt
jβ+εj−bi)

:= pij , (9)

for i = 1, ..., I, j = 1, ..., n.

Assuming that the distribution of the random variable εj , g(εj |η), is known,

P (uij = 1|β, ξi, η) =
∫

R

p(uij = 1|β, ξi, εj)g(εj |η)dεj := Pij , (10)

where β = (β0, β1, ..., βR)t, ξ = (ξ1, ..., ξn)t, ξi = (ai, bi, ci)t = (ξi1, ξi2, ξi3)t

and g(εj |η) = N(0, σ2).

Given the independence between answers from different subjects (hypoth-
esis 1) and that different items are solved independently by each subject (hy-
pothesis 2), the logarithm of the likelihood function is:

` =
n∑

j=1

I∑

i=1

{
uij log(Pij) + (1− uij) log(Qij)

}
.

Given that
∂P (uij |β, ξi, η)

∂βr
=

∂

∂βr

∫

R

p(uij |β, ξi, εj)g(εj |η)dεj

=
∫

R

[ ∂

∂βr
p(uij |β, ξi, εj)g(εj |η)

]
dεj ,
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for r = 1, 2, ..., R, we obtain:

∂`

∂βr
=

n∑

j=1

I∑

i=1

∫

R

[(uij − Pij

PijQij

)(∂pij

∂βr

)]
g(εj |η)dεj , (11)

where pij = p(uij = 1|β, ξi, η, εj) as in (9), Pij = p(uij = 1|β, ξi, η) as in (10)
and Qij = 1− Pij = p(uij = 0|β, ξi, η). So equation (11) can be written as:

∂`(θ)
∂βr

= D

n∑

j=1

I∑

i=1

(1− ci)aixjr

∫

R

(uij − Pij)Wijg(εj |η)dεj ,

where Wij =
p∗ij ∗ q∗ij
Pij ∗Qij

, p∗ij =
(
1 + e−Dai(x

t
iβ+εj−bi)

)−1 and q∗ij = 1 − pij ,

j = 1, ..., R.

Finally, the estimates are obtained by solving the equations
∂`

∂βr
= 0, r =

1, 2, ..., R.

The marginal maximum likelihood estimation of regression parameters, ap-
plying the Fisher scoring algorithm, requires the second derivative matrix, given
by:

∂2`(θ)
∂βrβs

=
J∑

j=1

I∑

i=1

∫

R

{(uij − Pij

PijQij

)( ∂2pij

∂βsβr

)
−

(uij − Pij

PijQij

)2(∂Pij

∂βs

)(∂pij

∂βr

)}
g(εj |η)dεj , (12)

where
∂2pij

∂βrβs
= (1− ci)D2a2

i xjsxjr(1− 2p∗ij)p
∗
ij ∗ q∗ij

and
∂Pij

∂βs
= (1− ci)Daixjr

∫
R

p∗ijq
∗
ijg(εj |η).

Thus, the Fisher scoring algorithm is given by:

β̂k+1 = β̂k +
[
I(βk)

]−1
q̂k,

where q̂k = q̂
(
β(k)

)
, q = (q1, q2, ..., qr) with qi =

∂`(θ)
∂βi

. The second informa-

tion matrix is Ik = (hij), with hij = −E
[ ∂2`(θ)
∂βi∂βr

]
.

We may also consider models with two levels of explanatory variables. For
example, school variables and student’s variables. Then in the k-th school
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we can model the abilities as θj = β0k + β1kxj + εj , where xj is the ability
explanatory variable corresponding to the j-th student. If the parameters β0k

and β1k are not the same between schools, it can be modeled as a function
of school variables zk, given by β0k = α0 + α1zk and β1k = γ0 + γ1zk for
k = 1, ..., K. So, θj = α0 + α1zk + (γ0 + γ1zk)xj + εj .

6. Simulated study

A simulated study was conducted to examine how the estimates are similar
to the original parameters when we model the ability in the IRT models as
a function of some explanatory variables (Model 13). Initially, we considered
twenty five items, with a′is and b′is values simulated from uniform distributions
U(1, 1.5) and U(−1.5, 1.5), respectively. The ci values were simulated from
a discrete uniform distribution with mass value 0.5 on 0.1, and on 0.2. For
the variables X1, X2 and X3 were simulated n=100 (500) values: x1i = 1
to obtain an intercept model, x2i from a discrete distribution with P (X2 =
0) = 0.4 and P (X2 = 1) = 0.6, x3i from an uniform distribution on the interval
(−10, 10). The values yi of interest variables Y were generated from a Bernoulli
distribution with parameters (1, pij), where pij is given by the deterministic
model:

p(uij = 1|β, ξi) = ci + (1− ci)
1

1 + e−Dai(1−0.5x1j+0.02x2i−bi)
, (13)

for i = 1, ..., 25 and j = 1, ..., n.

The estimates of regression parameters (with standard deviations) are given
in table 1.

Table 1: Ability model
I n β0 β1 β2

25 100 Estimates 9.955× 10−1 −5.1749× 10−1 2.5479× 10−2

S. Deviation 5.487× 10−2 6.817× 10−2 5.9945× 10−3

25 500 Estimates 9.819× 10−1 −4.837× 10−1 1.926× 10−2

S. Deviation 2.357× 10−2 2.980× 10−2 2.592× 10−3

10 500 Estimates 9.292× 10−1 −4.177× 10−1 2.441× 10−2

S. Deviation 4.220× 10−2 4.955× 10−2 4.038× 10−3

The simulation shows that using more data, better estimate values will be
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obtained, but with sets with fewer data, precision decreases quickly. In general,
we need larger samples to obtain better estimates, closer to true values and
with small variance. We can see better estimates of parameters and smaller
standard deviations in the study with I = 25 and n = 500, as expected from
the increasing likelihood information. For example, with twenty five items, a
sample size of thirty or fifty students may be very small. The conclusions are
the same for non deterministic models, where θj = µj + εj .

7. Application

In the universities at El Salvador, candidates applying for spanish teachers
are evaluated by the Ministry of Education. With an evaluation of academical
and pedagogical abilities of the candidates, the Ministry intends to improve the
education quality. The academic and pedagogical abilities in spanish teaching
are measured in the effectiveness of approaching capacity to language analysis,
specifications of communicative phenomenon, universal and local literature,
and pedagogical techniques which guarantee an efficient practice of the teacher’s
job in these topics in the first levels of the educational process.

The test to explore academic abilities included topics knowledge and disci-
plinary theories, as well as about the student’s capacity of developing strategies
to teach these concepts. The test, with one hundred items, includes the follow-
ing topics: literature, language, communicative and didactic abilities. It was
answered by 230 students. As predictor variables of academic abilities we used
X1=gender (0=male, 1=female) and X2=age.

From the marginal likelihood function we found the item parameters. We
selected twenty one items with discrimination parameters: ai= 0.905, 0.833,
0.44, 0.526, 0.64, 0.74, 0.61, 1.09, 1.28, 1.25, 1.28, 1.40, 0.8, 0.96, 0.55, 0.889,
1.33,0.83, 0.549, 0.59, 0.68; difficulty parameters: bi=0.42, 0.67, -1.32, 0.83,
0.06, -0.24, 0.917, -0.77, 0.204, 0.052, 0.47,-0.978, -0.93, 1.29, -0.025, 0.33, 2.26,
0.54, 0.98, -1.16, -0.24; and probability of random correct answers: ci =0.16,
0.18, 0.19, 0.18, 0.18, 0.16, 0.18, 0.17, 0.19,0.14,0.12, 0.17, 0.18, 0.12, 0.18, 0.18,
0.11, 0.19, 0.2, 0.18, 0.179, i=1,2,...,21.

In this application σ2 is unknown. (β̂, σ̂2) can be estimated using different
algorithms, (some of them will be presented in a future paper) but here we esti-
mate the regression parameters β for fixed values of σ2, between 0 and 1. First,
for each value of σ2 the regression model parameters are estimated as in sec-
tion 4. Next, we determine the likelihood value L(β̂, σ2

i ). Finally, we compare
the likelihood values, to get the estimates as the values corresponding to the
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maximum of the likelihood function. Figure 2 is a plot of log likelihood versus
variance. It shows an increasing behavior before 0.35 (±0.01) and decreasing
behavior afterwards. For σ2 = 0.35 the maximum likelihood estimates (and
standard deviation) are β̂0 = 0.740(0.047), β̂1 = −2.083× 10−2(4.367× 10−3),
and β̂2 = 0.526(0.092). From these estimates we can see that gender and age
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Figure 2: Log likelihood function of variance.

have contribution in the statistical explanation of differences in the abilities
of university students. An interpretation is that female students have more
developed language abilities than male students, while older students have less
developed language abilities than younger students.

8. Conclusions

The subject’s parameters estimates may be subject to considerable error
and consequently these should not be considered as dependent variables in re-
gression models (Zwindeman, 1991), although latent regression analysis with
subject-level predictors would eliminate such problems. In general, it is neces-
sary to consider large samples in order to obtain good estimates, close to true
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values, with small variance. Samples of size fifty or less should be considered,
in the most of the cases, too small to obtain acceptable estimates, althought a
rule establishing the minimum number of items in an test does not exist.

Latent regression can be used to determine the “mean ability” of groups
of students, for example to compare schools, including indicator functions as
explanatory variables. Other extensions are possible, for example, explore clas-
sical and bayesian metodologies to model mean and variance parameters.
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