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Abstract

This work considers distributions obtained as scale mixture of normal
densities for correlated random variables, in the context of the Markov ran-
dom field theory, which is applied in Bayesian spatial intrinsically autoregres-
sive random effect models. Conditions are established in order to guarantee
the posterior distribution existence when the random field is assumed as
scale mixture of normal densities. Lung, trachea and bronchi cancer rela-
tive risks and childhood diabetes incidence in Chilean municipal districts are
estimated to illustrate the proposed methods. Results are presented using
appropriate thematic maps. Inference over unknown parameters is discussed
and some extensions are proposed.

Key words: Disease mapping, Markov random field, Hierarchical model,
Incidence rate, Relative risk.

Resumen

Este trabajo aborda las distribuciones obtenidas como mezcla de escala de
normales para variables aleatorias correlacionadas, en el contexto de la teoría
de los campos markovianos, la cual es aplicada a modelos bayesianos espa-
ciales con efectos aleatorios autoregresivos intrínsecos. Se establecen condi-
ciones para garantizar la existencia de la distribución a posteriori cuando se
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asume una distribución mezcla de escala de normales para el campo marko-
viano propuesto. Para ilustrar los métodos propuestos, se estiman los riesgos
relativos de cáncer de tráquea, bronquios y pulmón, y tasas de incidencia de
diabetes tipo 1 en distritos municipales de Chile. Los resultados son presen-
tados usando mapas temáticos apropiados. Se discute la inferencia sobre los
parámetros desconocidos y se proponen algunas extensiones.

Palabras clave: campo aleatorio markoviano, mapeo de enfermedades, mod-
elo jerárquico, riesgo relativo, tasa de incidencia.

1. Introduction

Over the last two decades, Bayesian spatial models have become increasingly
popular for epidemiologists and statisticians. In particular, small-area modeling is
oriented to illustrate the behavior of rates or relative risks associated to each dis-
trict that form a region or a country, that is, recognition of spatial patterns through
maps is the main aim of these methodologies. The conventional assumption to es-
timate the standardized mortality ratios (SMRs) or incidence rates is based on
the Poisson distribution. This assumption may cause several problems in this
class of studies, mainly because of the extra-poisson variation. This extra-Poisson
variation generally arises when the observed number of cases on each small-area
are more variable than the variation contributed by the standard Poisson model
(Mollié 2000). Bayesian models have been developed to solve this problem, intro-
ducing random effects to account for unobserved spatial heterogeneity; even more,
Markov chain Monte Carlo (MCMC) methods led to an explosive increment of the
use of Bayesian analysis in these areas of application.

Important works that develop and use Bayesian theory are mentioned in the
following lines. The pioneering work in this direction was done by Clayton &
Kaldor (1987) who proposed an empirical Bayes approach with application to lip
cancer data in Scotland. In Ghosh, Natarajan, Stroud & Carlin (1998), conditions
to demonstrate Bayesian generalized linear model (GLM) integrability are formal-
ized under improper prior assumptions in order to represent lack of knowledge over
unknown parameters. Best, Arnold, Thomas, Waller & Collon (1999) investigated
several spatial prior distributions based on Markov random field (MRF) theory,
and discussed methods for model comparison and diagnostics. Pascutto, Wake-
field, Best, Richardson, Bernardinelli, Staines & Elliott (2000) examined some
structural and functional assumptions of these models and illustrated their sensi-
tivity through the presentation of results related to informal sensitivity analysis
for prior distributions choices. They also explored the effect caused by outlying
areas, assuming a Student-t distribution for the nonstructured effect.

Recently, Parent & Lesage (2008) proposed a linear Bayesian hierarchical model
to study the knowledge spillovers in European countries, under different specifica-
tions of the proximity structures. They also compared this effect through different
strategies, for example allowing different prior distributions or Student-t errors, to
include heterogeneity in the disturbances.
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As it was previously mentioned, the class of spatial models has been related to
GLM theory, considering random effects to represent the influence of geography.
Besag (1974) presented a pioneering work in the context of the MRF theory, with
applications to regular lattice systems when spatial heterogeneity is considered.

Furthermore, the most used structure follows the work developed by Besag
(1986), who presents a definition in the context of a MRF: Let u = (u1, u2, . . . , um)′

be a set of m random variables and u−i the random vector without the i-th
component, where m represents a number of different and contiguous areas. If
the joint distribution of u can be expressed by each conditional distribution, ui |
u−i, i = 1, . . . ,m, then it is called a MRF. Intrinsically conditional autoregressive
(CAR) random effects are defined as a particular MRF, initially proposed by
Besag, York & Mollié (1991), which name is related to the impropriety of the joint
distribution generated by the univariate conditional distributions of ui | u−i, i =
1, . . . ,m (see details in Banerjee, Carlin & Gelfand 2004).

In this work, an intrinsically Gaussian MRF is considered and its properties are
extended to a more general family of continuous distributions. Scale mixture of
normal (SMN) distributions have been proposed as robust extensions of the normal
model. The genesis of this class of models is presented by Andrews & Mallows
(1974). The SMN class of distributions is generated if the vector of interest, u,
can be represented as

u = µ+ ψ−1/2z (1)

where µ is a location vector parameter, and z and ψ are independent, with z
following a multivariate zero centered normal distribution with covariance matrix
Σ and ψ being a non-negative random scale factor with c.d.f. Fψ(· | ν), so that
Fψ(0 | ν) = 0. Here ν is an additional or set of parameters controlling the kurtosis
of the distribution of ψ. The SMN distributions have been shown to be a subclass
of the elliptical distributions family by Fang, Kotz & Ng (1990). This subfamily
presents properties similar to the normal distributions, except that their behavior
allows capturing unusual patterns present in the data. In a Bayesian context,
robust linear models have been studied since Zellner (1976). The multivariate
Student-t and the multivariate Slash distributions are examples of this class of
distributions.

Following the above ideas, heavier-tailed models will be assumed instead of
working with the usual assumption of normality for u, through the Student-t
and Slash distributions developed by Geweke (1993) and Lange & Sinsheimer
(1993), respectively. Specifically, the Slash distribution considered in this work
corresponds to the distribution of the random vector ψ−1/2z, where z and ψ are
independent, with z having a multivariate normal distribution as in (1) and ψ | ν
following a distributionBeta(ν/2, 1), ν > 0. The Student-t distribution is obtained
through the same representation as the Slash distribution, with the difference that
ψ | ν follows a Gamma distribution, where both parameters are equal to ν/2, ν > 0.
There are some potential problems with the Slash distribution that probably has
resulted in more use of the Student-t. However, the Slash distribution may allow
for fatter tails (more extreme values) than the Student-t.

Revista Colombiana de Estadística 35 (2012) 185–204



188 Francisco J. Torres-Avilés, Gloria Icaza & Reinaldo B. Arellano-Valle

From a MRF context, the class of SMN can be found in papers developed from a
geological point of view, where prediction is the main focus. Student-t distributed
MRF was treated by Roislien & Omre (2006) using a frequentist approach. Lyu
& Simoncelli (2007) made the extension of Gaussian MRF theory to what they
called Gaussian scale mixture fields, for image reconstruction modeling.

In this work, Bayesian non-Gaussian spatial models are developed to detect
unusual rates or relative risks in a particular area under the following scheme.
Standard small-area models are presented in Section 2. SMN theory is applied
to extend the Gaussian MRF model (Besag 1974) in Section 3. In Section 4,
non-Gaussian models are developed trough extensions of the spatial random effect
following a Gaussian MRF to the scale mixture of Normal random field (SMN
RF) proposed previously. Three different models are used to estimate the incidence
rates of Insulin Dependent Diabetes Mellitus (IDDM) in the Chilean Metropolitan
Region, and Respiratory Cancer mortality in the northern regions of Chile. These
results are presented in Section 5. Finally, some comments and discussion are
made in Section 6.

2. Spatial Models with Random Effects

Let y = (y1, . . . , ym)′ be a set of m random variables indexed to a specific
region. A general formulation is assumed from the generalized linear mixed model
theory (Breslow & Clayton 1993), which includes the following elements:

1. A specification of the likelihood function as member of the exponential fam-
ily, namely

f(y | θ,φ) =

m∏
i=1

exp{φ−1i (yiθi − g(θi)) + ρ(φi; yi)}, (2)

where θ = (θ1, . . . , θm)′ is the vector of canonical parameters, φ = (φ1, . . . ,
φm)′ is a vector of known scale parameters, g is a known function that does
not depend on the data, and ρ is a known function that does not depend on
the unknown parameters.

2. A random specification for the link function, h(θi) = E(yi | θi), is typically
represented by the normal linear mixed model

h(θi) | xi,β, ui, σ2 ind.∼ Normal(x′iβ + ui, σ
2), (3)

where the xis are a p× 1 vectors of covariates associated to a p× 1 vector of
coefficients β, the uis represent spatial random effects, and σ2 measures the
nonstructured variability.

3. A model specification for the spatially structured random effects uis. Typ-
ically, Gaussian assumptions for the uis are made. In the literature it is
recurrent to find that these spatial random effects are influenced by a prede-
fined neighborhood represented by an adjacency matrix Dw, controlling the
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local variability. Hence, the mean is smoothed by the information given by
its neighbors.

Let π(u | σ2
u,Dw) = π(u1, . . . , um | σ2

u,Dw) be the joint probability
distribution derived from a MRF given a dispersion parameter σ2

u and a
m ×m m ×m adjacency matrix Dw. A multivariate Gaussian distribution
is then obtained when,

π(u | σ2
u,Dw) ∝ 1

(σ2
u)m/2

exp

{
− 1

2σ2
u

u′Dwu

}
. (4)

A specific case is considered in this work, where Dw has diagonal ele-
ments wi+ representing the number of neighbors of the i-th component, and
off-diagonal elements wij taking values −1 if the elements i and j share
boundary, denoted by i ∼ j, and 0 in other case, i.e.,

wij =


wi+ i = j

−1 i 6= j; i ∼ j
0 otherwise.

(5)

Under 5, equation 4 is reduced to

π(u | σ2
u,Dw) ∝ 1

(σ2
u)m/2

exp

− 1

2σ2
u

∑
i∼j

(ui − uj)2
 (6)

A basic discussion and treatment of several proximity matrices can be found
in Banerjee et al. (2004). A constraint will be imposed to this expression to
guarantee integrability.

4. As a final step of the modeling, prior distributions are required for the un-
known parameters to complete the hierarchical model. Usual non-informative
prior distributions are represented by

i. π(β) ∝ constant
ii. σ−2 ∼ Gamma(a/2, b/2)

iii. σ−2u ∼ Gamma(c/2, d/2)

(7)

where the improper prior π(β), β = (β1, β2, . . . , βp)
′ ∈ Rp, is assumed ac-

cording with Ghosh et al. (1998). The hyperparameters a, b, c, d > 0 are
known constant. Here, both σ2 and σ2

u represent the dispersion parame-
ters included in the model; σ2

u is the local dispersion parameter related to
a specific spatial structure. Another useful measure in spatial models is the
percentage of spatial aggregation explained by the model, which usually is
measured by the ratio

σ2
u

σ2
u + σ2

× 100% (8)

Its interpretation is related to obtain the relative contribution given by the
spatial aggregation effect. Here, a common estimation of σ2

u is the empirical
variance s2u, which can be obtained from the estimation of u for each MCMC
iteration.
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3. Scale mixture of Intrinsically CAR Models

In this section an extension of the usual multivariate Gaussian MRF is pro-
posed, assuming a multivariate SMN distribution. The next definition will provide
an extension of (4) to the SMN random field (SMN RF).

Definition 1. A spatial random vector u = (u1, . . . , um)′ follows an SMN RF, if
the kernel distribution can be obtained as

π(u | σ2
u,Dw, ν) ∝

∫ ∞
0

(
ψ

σ2
u

)m/2
exp

{
− ψ

2σ2
u

u′Dwu

}
dF (ψ | ν) (9)

where F (· | ν) is the c.d.f. of ψ | ν, σ2
u is a dispersion parameter, and Dw denotes

a adjacency matrix. A SMN RF with scale parameter σ2
u will be denoted as

SMNRF (0, σ−2u Dw, ν).

For the Gaussian case, it is known that specification of Dw in (5) makes (4)
improper (Banerjee et al. 2004), since the matrix Dw is singular, so that its inverse
does not exist, hence∫

Rm

π(u | σ2
u,Dw, ν)du ∝

∫
Rm

1

(σ2
u)m/2

exp

{
− 1

2σ2
u

u′Dwu

}
du =∞

The last equation implies that a density function is available, but not inte-
grable. This result is the intrinsic autoregressive model property, and it is usually
relegated to the prior distribution elicitation. If additional assumptions are not
considered, the improper condition will imply that if a multivariate SMN RF is
assumed with kernel (9), then consistent property (Kano 1994) fails. Therefore,
integration theory can not be applied.

In the same way as the joint distribution of the Gaussian MRF treated in the
spatial literature, for every SMN RF, the joint distribution will also be improper.
In fact, this distribution will be proper only if the associated dispersion matrix is
definite positive. Hence, some additional restrictions should be imposed to obtain
a proper joint distribution, as discussed in Banerjee et al. (2004) and Assunção,
Potter & Cavenaghi (2002). The next proposition establishes conditions to make
proper the associated SMN RF. The proof of this proposition can be found in the
appendix.

Proposition 1. Suppose that a set of spatial indexed random variables, repre-
sented by the vector u = (u1, . . . , um)′, is available. Consider the SMN RF in
(9) as the distribution of u. Additionally, let us suppose that F (· | ν) is a known
positive c.d.f. If

∑m
i=1 ui = 0 and E(ψ1/2 | ν) <∞, then (9) is proper.

Specific choices for F (· | ν) in (9) lead to different scale mixture probability
distributions. Student-t and Slash MRFs will be used in this work, which can
be obtained using stochastic representations which depend on the selected mixing
distribution F (· | ν).

The SMN RF can be represented hierarchically in terms of two stages:
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At the first stage of the hierarchy, a Gaussian MRF is specified with an addi-
tional random scale factor ψ. At the second stage, a mixing distribution for the
scale perturbation ψ is then specified. Specifically:

1. For the Student-t MRF:

i) u | σ2
u, ψ,Dw ∼ Normal

(
0, σ−2u ψDw

)
(10)

ii) ψ | ν ∼ Gamma(ν/2, ν/2) (11)

In this case, the Student-t MRF with ν degrees of freedom follows, which is
denoted by u | Dw, σ

2
u, ν ∼ t(0, σ−2u Dw, ν).

2. For the Slash MRF:

i) u | σ2
u, ψ,Dw ∼ Normal

(
0, σ−2u ψDw

)
(12)

ii) ψ | ν ∼ Beta(ν/2, 1) (13)

In this case, the Slash MRF, denoted by u | Dw, σ
2
u, ν ∼ Slash(0, σ−2u Dw, ν),

is obtained.

The model described above is useful to implement the MCMC method. It is
important to mention that the distribution of both of the above random fields has
the finite condition exposed in Proposition 1.

A prior distribution for ν is required in order to assume a valid Bayesian model.
Usually, an exponential distribution prior is considered for this parameter, which
is assumed independent of (6), that is,

ν | δ0 ∼ exp(δ0), δ0 > 0 (14)

Assuming (2), (3), (7), (9) and (14), the full joint posterior distribution is
specified as,

π(θ,β,u, σ2
u, σ

2, ψ, ν | y,Dw, δ0) ∝
m∏
i=1

exp{φ−1
i (yiθi − g(θi))}

×
m∏
i=1

exp{−(1/2σ2)(h(θi)− x′iβ − ui)
2}h′(θi)

× exp{−(ψ/2σ2
u)u
′Dwu}ψm/2(σ2σ2

u)
−m/2,

× exp{−a/2σ2
u}(σ2)−(b/2+1)

exp{−c/2σ2}(σ2
u)
−(d/2+1)

× f(ψ | ν) exp{−δ0ν}

(15)

where fψ(· | ν) represents the conditional density or probability function of ψ | ν.
See item 3 of the appendix for the computational aspects.
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4. Proposed Bayesian Small-Area Models

An important point is to demonstrate the integrability of the proposed model.
Under the generalized linear model (2), link function (3) and prior assumption
given by (7) and (14), Theorem 2 from the work developed by Ghosh et al. (1998)
gives the conditions to obtain a proper posterior distribution for θ | y when P (ψ =
1 | ν) = 1 (the Gaussian MRF). Following that theorem, it is possible to find a
generalization towards the SMN case.

The next proposition gives conditions when the spatial random effect follows
an SMN RF. Its proof is given in the appendix.

Proposition 2. Consider the model (2), link function (3) and prior assumption
given by (7) and (14). Consider also the assumptions of Proposition 1 and the
following additional conditions:
i. θi ∈ (θi, θi), for some −∞ < θi < θi <∞, i = 1, . . . ,m;
ii. m− p+ a− 1 > 0;
iii. b > 0, d > 0, m+ c > 0

If the condition of integrability∫ θi

θi

exp{φ−1i (yiθi − g(θi))}h′(θi)dθi <∞,

is verified for all i = 1, . . . ,m, then posterior distribution π(θ |y) is proper.

The main interest is focused in establishing a non-Gaussian parametric spatial
random effect. A MCMC structure seems to be adequate to make inferences from
this class of model. Most full conditional distributions computed for this scheme
are known distributions, therefore, a hybrid Gibbs sampling - metropolis Hastings
algorithm is used to generate samples from the joint posterior distribution. The
algorithm given in item 3 of the appendix presents the full conditional distributions
for this particular model.

5. Applications

The proposed spatial Bayesian models will be applied assuming SMN random
effects for two real data in the epidemiological framework to control for exces-
sive smoothness in small areas with sparse data. One dataset is related to IDDM
incidence rates in the Chilean municipal districts from Metropolitan region and
the other dataset contains female lung, trachea and bronchi cancer standardized
mortality ratios in the municipal districts of the country’s northern zone. The
municipal district is the smallest administrative area in Chile. In this country
there are only few published studies related to spatial epidemiology (Andia, Hs-
ing, Andreotti & Ferreccio 2008, Ferreccio, Rollán, Harris, Serrano, Gederlini,
Margozzini, Gonzalez, Aguilera, Venegas & Jara 2007, Icaza, Núñez, Torres, Díaz
& Varela 2007, Icaza, Núñez, Díaz & Varela 2006, Torres-Avilés, Icaza, Carrasco &
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Pérez-Bravo 2010). Results from non-Gaussian spatial Bayesian modeling related
to both diseases are presented in the next subsections.

The specific model that is considered for these two applications is the Poisson
hierarchical model given by

yi | ei, λi
ind.∼ Poisson(eiλi)

log(λi) | β0, ui, σ2 ind.∼ Normal(β0 + ui, σ
2)

i = 1, . . . ,m, where y = (y1, . . . , ym)′ represents the observed sample vector asso-
ciated to m different regions under study, e = (e1, . . . , em)′ represents the popula-
tion at risk or the expected population associated to the m different regions, and
u = (u1, . . . , um)′ is the vector of random effects which is assumed to have a SMN
distribution constrained to sum zero. Diffuse prior distributions are considered
for the location and scale parameters, as those presented in (7). For the variance
parameters, σ2 and σ2

u, the hyperparameters a = b = c = d = 0.001 were assumed.
Posterior estimations are obtained from a single run of the Gibbs sampler, with

a burn-in of 1000 iterations followed by 10000 further cycles. Convergence have
been checked through trace and autocorrelation plots. Three common ways to
measure model assessment are taken into account. The first two are oriented
to penalize the observed deviance: The deviance information criterion (DIC)
(Spiegelhalter, Best, Carlin & Van der Linde 2002) and a modified BIC (Congdon
2003) will be used. A third model choice criterion is applied, proposed by Gelfand
& Ghosh (1998), which is based on a predictive check of the model, and measures
the discrepancy between the observed data and predicted observations, taking into
account quadratic loss measures. As was described in the introduction, the com-
peting models are related to Gaussian, Student-t and Slash MRF. The percentage
of spatial variability is computed using expression (8).

5.1. Insulin Dependent Diabetes Mellitus Incidence,
Metropolitan Region, Chile

The objective of this study is to describe spatial patterns of type 1 diabetes
in children under 15 of age, diagnosed between 2000 and 2005 with residence in
the Metropolitan Region of Chile. The Metropolitan Region is located in the
centre of Chile. According to the Chilean National Institute of Statistics (INE),
this region represents an area of approximately 15,403 km2. Total population
living at Metropolitan Region was 6,061,185 inhabitants, according to the 2002
census. Metropolitan population represents 40% of the whole country. The region
is divided into 52 districts, 18 are considered as rural and 34 as highly urbanized,
known as Greater Santiago, in the centre of the region, with the 96.9% of the
metropolitan population. With respect to the population at risk, children under
15 years of age represent the 24.9% of the metropolitan region population, which is
composed by 1,509,218 children. A population-based registry of type 1 diabetes in
children under than 15 years of age has been available in the Metropolitan Region
since 2000. See Carrasco, Pérez-Bravo, Dorman, Mondragón & Santos (2006)
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for details about the registry. Torres-Avilés et al. (2010) show an aggregation
on incidence rates in urban areas of the Chilean Metropolitan Region, using the
Bayesian methodology proposed by Mollié (2000).

Table 1: IDDM model selection criteria, DIC, BIC and predictive check.

Model DIC Dbar pD BIC Predictive (G & G)
Gaussian 846.778 534.886 311.892 1151.067 13240.408
Student-t 852.687 537.371 315.315 1160.315 13335.069
Slash 836.498 529.097 307.401 1136.405 13301.901

Model selection criteria results are presented in Table 1. According to pre-
viously mentioned goodness of fit criteria, small values imply better adjustment.
Therefore, a spatial model that includes Slash random effects with 7 d.f. is a strong
candidate to model geographic dependence. This result seems to be adequate due
to those extreme values, which match with the higher socioeconomic areas of the
region, as is explained in next paragraphs. The predictive measure G&G disagrees
with the other methods; this can be interpreted as a “failure of the model for
prediction”, pointing out a better performance of the usual Gaussian MRF.

Table 2: Posterior mean, standard deviation and 95% HPD credibility intervals for
unknown parameters when a Gaussian MRF, Student-t MRF and Slash MRF
are assumed.

Gaussian MRF Student-t MRF Slash MRF

β0
−9.721 (0.004) −9.760 (0.006) −9.752 (0.002)
(−9.844,−9.634) (−9.876,−9.631) (−9.841,−9.656)

σ2 0.346 (0.013) 0.291 (0.016) 0.275 (0.014)
(0.162,0.574) (0.089,0.537) (0.090,0.507)

σ2
u

0.230 (0.016) 0.071 (0.001) 0.067 (0.001)
(0.102,0.547) (0.035,0.117) (0.032,0.112)

% Spatial
Variability

0.441 (0.011) 0.537 (0.0114) 0.546 (0.012)
(0.242,0.649) (0.332,0.749) (0.338,0.749)

ν
- 10.475 (16.482) 7.346 (6.226)
- (3.958,18.277) (3.038,12.389)

Robust Bayesian models proposed in the previous section were applied to this
problem. Inferences over unknown parameters are displayed in Table 2, when
Gaussian MRF, Student-t MRF and Slash MRF are assumed to control spatial
variability. Similar values are estimated for β0 and σ2, under the three MRF
models, showing the models’ robustness. In contrast, σ2

u presents different values,
depending on the distribution assumed for the MRF. The non-Gaussian model
(Slash MRF) increases the degree of spatial aggregation from 44.1 % to 54.6 %,
that is, the excess of spatial variability presented in these data seems mostly due
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to a clustering effect. Notice that the estimated degrees of freedom are small,
which implies that the excess of variability is better captured by one of the SMN
RF model.

Figure 1: IDDM incidence rate (IR) variability: Raw estimates, Mollié’s convolution
model (Gaussian MRF), Student-t convolution model (Student-t MRF) and
Slash convolution model (Slash MRF).

Figure 1 shows that fully Bayesian estimates of IDDM incidence rates present
less variation than raw incidence rate. The three Bayesian variation plots seem to
have a similar behavior, due to the presence of several municipal districts with high
incidence rates, which are considered as outliers. Comparing the four box-plots,
the three fitted models (Gaussian, Student-t and Slash) present and additional
municipal district, named Las Condes, as part of the higher incidence group. The
normal MRF assumption leads to estimate smoother rates; however, Student-t,
and Slash MRF’s present slight variability differences. Those differences allow
controlling the excess of smoothness, i.e., non-Gaussian shrinkage gives a more
adequate estimate of the pattern of underlying risk of disease than that provided
by the Mollié’s convolution estimates.

From Figure 2, high incidence estimates remain in municipal districts with high
socioeconomic level, such as Vitacura and Providencia, located at the northeast
side of the map. These results were already found by Torres-Avilés et al. (2010).
Slight differences are seen when Slash MRF (d) and Student-t MRF (c) models are
assumed, but these differences are clinically important since are in rural municipal
districts with zero cases of diabetes located at southwest side of the map.
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Figure 2: IDDM incidence rate by district: a) Raw incidence rates. b) Mollié’s con-
volution model (Gaussian MRF). c) Student-t convolution model (Student-t
MRF). d) Slash convolution model (Slash MRF).

5.2. Female Trachea, Bronchi and Lung Cancer Mortality,
Chilean Northern Regions

Bayesian methods that have been applied to several real problems to estimate
relative risks of cancer mortality in small-areas can be found in the literature, e.g.,
Ghosh et al. (1998) and Pascutto et al. (2000), and Mollié (2000). In particular,
this application is related to estimate female lung, bronchi and trachea cancer
mortality relative risks in the northern regions of Chile. The northern region of
Chile represents an area of approximately 300,904 km2. According to the 2002
census there were 819,177 women inhabitants in this part of the country. The
region is divided into 43 districts, many of them (20 or 47%) with less than 10,000
inhabitants. The aim of this study is to describe the geographical distribution of
this class of mortality, which has presented smoothness problems in comparison
with the usual model.

Mortality statistics for the years 1997-2004 published by the Chilean Ministry
of Health were used. The SMR was calculated for 341 districts in the country.
Results show an excess of mortality caused by trachea, bronchi and lung cancer
in the region. A previous work can be found, where the analysis for both sexes
was done for the whole country and published by Icaza et al. (2007). The problem
arised when Mollié’s model estimates for women cancer mortality risks were too
smooth and high in municipal districts where zero cases occurred.
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Table 3: Cancer mortality model selection criteria, DIC, BIC and predictive check.

Model DIC Dbar pD BIC Predictive (G&G)
Gaussian 4821.381 3064.272 1757.108 8187.896 381675.00
Student-t 4805.212 3058.344 1746.869 8152.110 381671.59
Slash 4792.151 3052.174 1739.977 8125.845 381950.00

Table 4: Posterior mean, standard deviation and 95% HPD credibility intervals for
unknown parameters when a Gaussian MRF, Student-t MRF and Slash MRF
are assumed.

Gaussian MRF Student-t MRF Slash MRF

β0
−0.348 (0.001) −0.372 (0.001) −0.391 (0.001)
(−0.409,−0.300) (−0.441,−0.313) (−0.425,−0.331)

σ2 0.092 (0.0003) 0.087 (0.0004) 0.085 (0.0003)
(0.060,0.129) (0.054,0.128) (0.055,0.128)

σ2
u

0.197 (0.001) 0.203 (0.001) 0.203 (0.001)
(0.153,0.238) (0.150,0.253) (0.153,0.244)

% Spatial
Variability

0.770 (0.001) 0.788 (0.001) 0.788 (0.002)
(0.708,0.841) (0.740,0.848) (0.715,0.863)

ν
- 26.406 (116.944) 32.049 (87.516)
- (15.742,53.499) (15.585,50.462)

For this application, Table 3 shows a better fit for the model that includes
the Slash spatial random effect with approximately 32 degrees of freedom, as can
be seen in Table 4. Once again, the Slash can not be considered as a predictive
alternative, in contrast to a parsimonious model such as the Student-t or the
Gaussian MRF. One important result is referred to the 79% estimated proportion
of spatial variability associated to this model. Notice that this proportion is almost
the same for the three proposed models. This could be related to the estimated
degrees of freedom. One important issue is related to the estimation for the other
parameters, such as β0 or baseline risk, which is not affected by the model.

Standardized mortality ratios and Risk estimations are compared in Figure
3. It is important to add that variability estimation is reduced when any of the
Bayesian models is considered. All of them show an improvement in contrast to the
SMR, and a district called Mejillones is separated from the rest of the distribution,
showing the highest risk in the north for this mortality.

Figure 4 displays the cancer mortality relative risk estimation using three dif-
ferent models, with Mollié’s convolution model (b), Student-t MRF (c) and Slash
MRF (d) as spatial random effects. Models were tested and the best fit was se-
lected among the three different proposed spatial structures.
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Figure 3: Female trachea, bronchi and lung cancer SMR variability: Standardized mor-
tality ratio, Mollié’s convolution model (Gaussian MRF), Student-t convolu-
tion model (Student-t MRF) and Slash convolution model (Slash MRF).

Figure 4: Female trachea, bronchi and lung cancer SMR by district: a) Standardized
mortality ratio (SMR). b) Mollié’s convolution model. c) Student-t convolu-
tion model (Student-t MRF). d) Slash convolution model (Slash MRF).

According to the DIC and BIC criteria, the selected Slash MRF model pre-
sented better fitted rates, even when Figure 4(d) shows that the first and darkest
area in the extreme north, the most populated municipal district (Arica) in that
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region, presents the highest rates compared to its closer neighbors. It was not pos-
sible to reduce the effect produced by the larger areas in the next darkest zones,
which correspond to Tarapacá and Antofagasta regions, which are located in the
Atacama Desert. The over-smoothing effect lead to flat true variations in risk,
even by the selected model.

6. Concluding Remarks

In this work, a non-Gaussian Bayesian-small area estimation is proposed as an
alternative to usual parametric models. This approach is particularly useful to ob-
tain estimations of rates or relative risks when subjective geographical dependence
is assumed and related results are too smooth for the region under study.

Conditions are required to ensure the propriety of these intrinsic spatial random
effect posterior distributions, which must be associated to sum zero constraint
and existence of mixing random variable expectations. When spatial correlation
structure was available, Proposition 2 provided sufficient conditions to guarantee
posterior distribution integrability for Bayesian GLM.

The general methodology is applicable to situations where small area param-
eters must be estimated. Variability parameters are of interest, since their in-
corporation in the proposed hierarchical models allowed the computation of the
marginal spatial proportion of variability, through the empirical marginal standard
deviation function, to quantify excess of variability explained by the spatial effect.
This fact has direct relation with the spatial random effect contribution considered
for the analysis. As mentioned in Banerjee et al. (2004, p. 166), differences may
exist in percentage of variability estimation, when other prior distributions are
considered. A prior sensitivity analysis is not studied in this work.

Considering the complex structure of Chilean geography, better results were
obtained using our proposed strategy. Both applications were best modeled by
Poisson regression with spatial random effects following a joint Slash distribution.
It can be seen that β0 does not produce changes when the three models are fitted
to both applications. That is an important consideration that shows the non-
Gaussian properties of the Student-t MRF and Slash MRF.

In the future, several topics can be explored in the spatial context. Diagnostic
approaches and extensions of model assumptions which include asymmetry in the
distribution of the random effects are related topics to be developed. Simulation
studies to validate proposed models under different scenarios can also be made.

Bayesian space time models can be proposed, with the subsequent problem
of sparseness of data that could affect estimation in municipal districts with low
population. Therefore, non-Gaussian models will become more necessary. Tem-
poral trends and geographical patterns are estimated simultaneously, allowing for
additional random effects to represent temporal and spatio-temporal interaction
variations.
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Appendix

1. Proof of Proposition 1. As was showed by Assunção et al. (2002), the∑m
i=1 ui = 0 constraint makes the Gaussian kernel (4) proper; i.e., on the

set C = {u ∈ Rm :
∑m
i=1 ui = 0}, we have∫

C

1

(σ2
u)m/2

exp

{
− 1

2σ2
u

u′Dwu

}
du <∞

Hence, under the
∑m
i=1 ui = 0 constraint, by applying the Fubini’s theorem

and the change variable y = ψ1/2x, we have in (9) that∫
C

π(u | σ2
u,Dw, ν)du =

∫ ∞
0

ψm/2
∫
C

1

(σ2
u)m/2

exp

{
− ψ

2σ2
u

u′Dwu

}
dudF (ψν)

∝
∫ ∞
0

ψ1/2dF (ψ | ν) <∞ >
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2. Proof of Proposition 2. From (2), (3), (7), (9) and (14) we have for the
full joint posterior distribution that

π(θ,β,u, σ2
u, σ

2, ψ, ν | y,Dw, δ0) ∝
m∏
i=1

exp{φ−1
i (yiθi − g(θi))}

×
m∏
i=1

exp{−(1/2σ2)(h(θi)− x′iβ − ui)
2}h′(θi)

× exp{−(ψ/2σ2
u)u
′Dwu}ψm/2(σ2σ2

u)
−m/2,

× exp{−a/2σ2
u}(σ2)−(b/2+1)

exp{−c/2σ2}(σ2
u)
−(d/2+1)

× f(ψ | ν) exp{−δ0ν}

where f(· | ν) is the conditional density (or probability) function of ψ | ν.
Integrating with respect to β, σ2 and σ2

u, we obtain

π(θ,u, ψ, ν | y,Dw, δ0) ∝
m∏
i=1

exp{φ−1i (yiθi − g(θi))}h′(θi)

× ψm/2(a+ ψu′Dwu)−(m+b−1)/2

× f(ψ | ν) exp{−δ0ν}

Notice that this last result has a multivariate Student-t kernel. Now, inte-
grating over u ∈ Rm under the constraint

∑m
i=1 ui = 0, the following result

is obtained,

π(θ, ψ, ν | y,Dw, δ0) ≤ K
m∏
i=1

exp{φ−1i (yiθi − g(θi))}h′(θi)

× f(ψ | ν) exp{−δ0ν}

where K is a constant that does not depend on θ or any of the parameters
previously integrated. Finally, integration over ψ and then over ν leads to
the desire result.>

3. Proposed MCMC Algorithm. To implement the Gibbs sampling, the full
conditional distributions associated with the full joint posterior distribution
(15) are given in the following, in which h(θ) = (h(θ1), . . . , h(θm))′ denotes
the link vector and X is the m×p design matrix which has rows x1, . . . ,xm.

a) β | X, σ2,u ∼ Normal(β̂, σ2(X′X)−1), where

β̂ = (X′X)−1X′(h(θ)− u)
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b) u | θ,β, σ2, σ2
u, ψ,X,Dw ∼ Normal(µu,Vu), where

µu =
1

σ2
Vu (h(θ)−Xβ) ,Vu =

(
1

σ2
Im +

ψ

σ2
u

Dw

)−1
and Im is the identity matrix of size m

c) σ−2 | θ,β,X,u, c, d ∼ Gamma(a∗, b∗), where

a∗ =
1

2
[m+ a] and b∗ =

1

2
[(h(θ)−X′β − u)′(h(θ)−X′β − u) + b]

d) σ−2u | u, ψ,Dw, c, d ∼ Gamma(c∗, d∗) where,

c∗ =
m+ c

2
and d∗ =

1

2
(ψ(u′Dwu) + d)

e) Choice of a distribution for the scale random factor ψ:

i. If ψ | ν ∼ Gamma(ν/2, ν/2), then

ψ | u, σ2
u,Dw, ν ∼ Gamma

(
1

2
(ν +m),

1

2σ2
u

(u′Dwu) + ν

)
ii. If ψ | ν ∼ Beta(ν/2, 1), then

ψ | u, σ2
u,Dw, ν ∼ Gamma

(
1

2
(ν +m),

1

2σ2
u

(u′Dwu)

)
1(0,1)(ψ)

where 1A represents the indicator function. Notice the presence
of a truncated Gamma distribution in the [0, 1] interval. To draw
from this distribution, the Damien & Walker (2001) algorithm can
be performed.

f) Degrees of freedom are estimated from

fa. If ψ | ν ∼ Gamma(ν/2, ν/2), then

π(ν | ψ, δ0) ∝ Γ(ν/2)−1νν/2 exp{−ν(δ0 + 0.5(ψ − ln(ψ)))}

fb. If ψ | ν ∼ Beta(ν/2, 1), then

ν | ψ, δ0 ∼ Gamma(2, δ0 − ln(ψ/2))1(0,1)(ψ)

g) π(θi | y,β,X, σ2,u) ∝ h′(θi) exp{φ−1i (yiθi + g(θi) − 1
2 (h(θi) − x′iβ −

ui)
2)}

The algorithm must be iterated until convergence is detected in order to
start to take a sample.
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