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Abstract

The univariate and bivariate compound Poisson process (CPP and BCPP,
respectively) ensure a better description than the homogeneous Poisson pro-
cess for clustering of events. In this paper, new explicit representations of
the moment characteristics (general, central, factorial, binomial and ordinary
moments, factorial cumulants) and some covariance structures are derived
for the CPP and BCPP. Then, the skewness and kurtosis of the univariate
CPP are obtained for the first time and special cases of the CPP are studied
in detail. Applications to two real data sets are given to illustrate the usage
of these processes.

Key words: Bivariate distribution, Compound Poisson process, Cumulant,
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Resumen

Los procesos univariados y bivariados compuestos de Poisson (CPP y BC-
CPP, por sus siglas en inglés respectivamente) permiten una mejor descrip-
cién que los procesos homogéneos de Poisson para agrupamiento de eventos.
En este articulo, se muestran especificamente las representaciones de las car-
acteristicas de momentos (general, central, factorial, momentos binomiales y
ordinarios, acumuladas factoriales) y algunas estructuras de covarianza para
los CPP y BCPP. Adicionalmente, el sesgo y la curtosis de los procesos uni-
variados CPP son presentados y casos especiales son estudiados en detalle.
La aplicacion a dos conjuntos de datos reales es usada con el fin de ilustrar
el uso de estos procesos.

Palabras clave: acumuladas factoriales, conjuntas, distribucién bivariada,
distribucién compuesta de Poisson, momento.
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1. Introduction

Let {N;, ¢ > 0} be a homogeneous Poisson process with parameter A > 0 and let
X, 1 =1,2,..., be identically and independent distributed (i.i.d.) non-negative,
integer-valued random variables, independent of {Ny,t > 0}. Then, {S; ¢ > 0}
has a univariate CPP if it is defined as

N
Sy = ZX (1)

The univariate CPP has many applications in various areas such as transport,
ecology, radiobiology, quality control, telecommunications (see Ata & Ozel 2012,
Chen, Randolph & Tian-Shy 2005, Gudowska-Nowak, Lee, Nasonova, Ritter &
Scholz 2007, Ozel & Inal 2008, Robin 2002, Rosychuk, Huston & Prasad 2006).
However, the investigation of the properties of the univariate CPP mixtures is
much more complicated than the homogeneous Poisson process. The applications
of the univariate CPP often run into the obstacle of numerical evaluation of the
corresponding probability functions. Hence, moment characteristics of the uni-
variate CPP play a very important role in the probability theory.

Bivariate stochastic processes have also received considerable attention in the
literature, in an effort to explain phenomena in various areas of application (see
Kocherlakota & Kocherlakota 1997, Ozel 2011a, Wienke, Ripatti, Palmgren &
Yashin 2010, Wienke 2011). Paired count data in time arise in a wide context
including marketing (number of purchases of different products), epidemiology
(incidents of different diseases in a series of districts), accident analysis (the number
of accidents in a site before and after infrastructure changes), medical research (the
number of seizures before and after treatment), sports (the number of goals scored
by each one of the two opponent teams in soccer) and econometrics (number of
voluntary and involuntary job changes). In this study we consider the following
BCPP. Let {N;,t > 0} be a homogeneous Poisson process and let X;, Y;, i =
1,2,..., be independent of the process {N¢,t > 0} Then the BCPP is defined as

Ny N,
(SE” = X5 = ZY) (2)

where X;,Y;, i =1,2,..., are mutually independent random variables.

The CPP is studied in Ozel & Inal (2008) but mainly from the evaluation of
its probability function. The recursive formulas for the joint probability functions
of the BCPP in are derived by Hesselager (1996) and Sundt (1992). Ozel &
Inal (2008) defined a different kind of BCPP and obtained the joint probability
function, moments and cumulants. On the other hand, non-existence of moment
characteristics obstacles usage of them in probability theory itself and its applica-
tions in seismology, actuarial science, survival analysis, etc. Consequently, since
relative results are sparse and case oriented, the aim of this study is to obtain
the moment characteristics and covariance structures of the univariate CPP and
BCPP.
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The paper is organised as follows. In Section 2, moments, cumulants and some
relationships are derived for the first time and special cases are obtained for the
univariate CPP. In Section 3, new explicit expressions for the moments, cumulants,
covariances, and correlation coefficients of the BCPP are derived. In Section 4,
the results are illustrated on two real data sets. The conclusion is given in Section
5.

2. The Univariate Compound Poisson Process

2.1. Moments of the Univariate CPP

The moment generating function (mgf) makes it possible to compute general
(raw) moments of {S;,t > 0}. Let X;, i = 1,2,..., be i.i.d. discrete random
variables in with the probabilities P(X; = j) = p;, j = 0,1,... The common

mgf of X;,i=1,2,..., is given by M,(u) = > pju/ = po + p1u + pou® + -+ and

j=0
the megf of {S;, ¢t > 0} is given by
(At)" n
Mg, (u) = (M, ()
M, M, (u)]? 3
_ exp(A) MM(u) | MMa(w)” (3)
1! 2!

= exp(At [My(u) —1])

Let us assume that the random variable X takes finite values j = 0,1,...,m.

Define the parameters A\; = Ap;, 7 =0,1,...,m, then we have

Mg, (u) = exp [-At(1 — po)] exp [Mtexp(u) + ...+ Aptexp(u™)] (4)
Thus, the rth general moment of the univariate CPP can be obtained by differ-
entiating (4)) with respect to v and substituting in u. = E (S]) = dd ~ Mg, (u) K
r=1,2,...,n, after some algebraic manipulations, the general moments of {S;,¢ >
0} are obtained as follows:
= (M&1)
wy = (A& + (Mt&o)
iy = (M61)” + 3 (M&r) (M) + (M&s) )
py = (M€1)" + 6(ME1)” (At&2) + 4 (MEs) (ME1) + 3(M&2)” + (M&a)
Hs = (M€1)” +10(M&1)° (Méa) + 10 (M&s) (M&1)” + 15 (A& (M&)”

+ 5 (At€a) (Mt€1) + 10 (Mt€2) (AMt€3) + (AE&s)

where & = E(2"), r = 1,2,...,n, is the rth general moment of X;, i = 1,2,...,
and {N¢,t > 0} is a homogeneous Poisson process with parameter A > 0 in .
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A recursive formula for the factorial moments of {S, ¢t > 0} is derived from
(3). For this aim, we observe that

dMSt (u) _ )\tMst (u) dMX (u)

du du
so that applying the Leibniz differentiation rule for » > 1 we obtain

r=1 dM,(u)

w=x [exp (M () — 1) du]

_ Atil (r - 1) d* Mg, (u) d"* My (u)

du* dur—k

u=0

u=0

Then, the following recursive formula for the general moments of {S, ¢ > 0} is
given by

gy |
,u’T:)\tZ( I )M;c Er—k
k=0

where &, r =1,2,...,n, is the rth general moment of X;, i =1,2,..., in .

Now consider the central moments pu, of {S¢,t > 0}. The generating function
Gg,(u) of p,., if the rth central moment exists, is defined by the relation

Gs, (u) = E [exp(u(S; — p))] = exp(—up)Ms, (u) (6)

where p. = p = E(S;) = Mt&;. Then, rth central moment of {S;, ¢ > 0} can be
obtained by

= B(Sc— " = 32Gs,(0) = GeplmMs ()] (D)
From and , we have
p1 = (1 + At&)
po = (1 + M€1)? + (ME)
ps = (1 + M€1)® + 3 (+ M&r) (M) + (Més)
pa = (p+ MED 4 6(u+ MED® (ME) + 4 (1 + &) (MEs) (8)

+ 3(Mt€2)? + (M)
ps = (1 + M€L)” + 10(p + M&r)® (M&) + 10(u + At&r)? (Mt€s)
+ 15 (1 + At&r) (Mt€a)? + 5 (1 + At&r) (At&a) + 10 (M) (MEs) + (M)
where &, 7 =1,2,...,n, is the rth general moment of X;, i =1,2,...

Commonly used indices of the shape of a distribution are the moment ratios
such as skewness and kurtosis. Since {S¢,¢ > 0} has finite moments of orders up
to the third, then the skewness of S; is defined as

S N 3
VB :E( ta u) _ /;52 9)
2
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where o is the standard deviation of S;. From (9), the skewness of {S;,t > 0} is
obtained using the central moments in as follows:

VA=t ME® 4 3 (1 + M) (M) + (MEs)

: 2 (10)
[(# + At&)” + (Atfz)}
Similarly, the kurtosis of {S;,# > 0} is obtained from (8] as
4
52—E{St“] fgzligfg
g H3
4 (4 MED (ME) — 20+ M€ + (MEy) (11)

[(M +Xt&1)* + ()\t§2)} i

Since Mg, (u) is exponential form in (), it is useful to consider the cumulants
(semi invariants) k,, defined formally as the coefficients of the Taylor expansion
of the logarithm of the characteristic function g, (u) and having the cumulant
generating function

_ N, ()
Cs, (1) = Ings, (w) = 3" (12
r=1
where i denotes the imaginary number (i> = —1) and the characteristic function
of {St,t > 0} is given by @g, (u) = exp [M(px(u) — 1)]. Here, px (u) the common
characteristic function of X;, i = 1,2,... Then, if X takes finitely many values

7=0,1,...,m, we get

Cs, (u) = At[ox (u) —1]
= At [po + p1 exp(iu) + p2 exp(2iu) + - - - + pu, exp(miu)] — At (13)
= At[(po — 1) + p1 exp(iu) + p2 exp(2iu) + - - - + py, exp(miv))]

Using Taylor series expansion, we obtain a cumulant generating function from

(@) as
cstwwt[pl (L) ()
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w iu)?
e S L VT R |

(iu)™
- - (14)
= Z At Z r’p
r=1 j=1
Z ME
Then, for every r =1,2,...,n we have
Ky = A& (15)

Here, & = E(X"), r =1,2,...n, is the rth general moment of X;, i =1,2,...
We also obtain a relationship between the general moments and the ordinary
cumulants of {S,t > 0} as follows:

py = K1

po = Ki + Ko

py = K3 4 3K1kg + K3 (16)
py = K]+ 6KTKy + dr1ks + 3K3 + Ky

ps = K5+ 10k3 ko + 10k% k3 + 15k1K3 + Br1kg + 10kgk3 + K5

In problems with discrete random variables one often uses the factorial mo-
ments. Let pq be the rth factorial moment of {S;,¢ > 0} in (1)). [ can be ob-
tained by inverting the factorial moment generating function (fmgf) of {S;,t > 0}

d'r‘

du TPSt(1+u) (17)

u=0

K] =
where fmgf of {S¢,t > 0} is

Ps, (14 u) = exp[—At(1 — po)] exp[Aitexp(l + u) + Aot exp((1 + u)?)
+ o4 Amtexp((1+uw)™)]  (18)

Here, the random variable X has finite values j = 0,1,...m. Differentiating
and substituting in , after some manipulations, we obtain the factorial
moments as follows:
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ppy = (Aty)
ppg) = ()2 + (M)
pug) = (AEE))® + B(AEE)) (At p2y) + (AtE(s)) 19)
pra) = (NEE))" + 6(NEE)) 2 (Nt jg)) + 4(AEE(3)) (MtE)) + B(AEE () + (At pay)
s = (M€ )5 + 10(>\tf[1])3(/\t§[2]) + 10(>\t5[3])(>\t5[1])2 + 15(>\t5[1])(>\t5[2])2
+ 5(AtE[a) (ALE[1)) + LO(NLE[2)) (AEE[3)) + (ALs))

where &) = E[(X)(X — 1) (X — (r —1))], » = 1,2,...,n, is the rth factorial
moment of X;, ¢ = 1,2,... If E(X") < oo, factorial moments of {S;,¢ > 0} can
also be calculated recursively. We observe that

dgs, (u) dgx (u) dgx (u)
2 =\ At -1 =\t
i exp[Mt(gx (u) — 1] = gs:(u) =
Now using the Leibniz formula for the derivatives of higher orders, we get
d” gst A" gs, (u) "+ gx (u)
- )‘tz ( ) dur—Fk—1 duk+1 (20)
dr dr
From and the relations pj,) = %T(u) u=17 & = i]l);fu) u=17 we have
—/r—1
A=Y ( . )N[r—k—ué[kﬂ] (21)
k=0

The logarithm of the fmgf is called factorial cumulant generating function
(fcgf). The coefficient of v”/r! in the Taylor expansion of this function is the rth

. . X K[ u”
factorial cumulant k). The fegf is given by In P(1 +u) = > —— where £
r=1 T

denotes the rth factorial cumulant. Then, the factorial cumulants of {S;,¢ > 0}
are given by

Kir] = Aty (22)
where ) = E[(X)(X —1)...(X = (r —1))], » = 1,2,...,n, is the rth factorial
moment of X;, i =1,2,....

Let us point out that the factorial cumulants are related to the ordinary cumu-
lants in the same way as the factorial moments are related to the general moments
for {S¢,t > 0}. A relationship of the factorial cumulants with the ordinary cumu-
lants is also obtained for {S;,t > 0} as follows:

Ky =

KR[2] = K2 — K1

K[3] = K3 — ko + 21 (23)
Kl4] = K4 — 6r3 + 11ko — 6K

K[5] = K5 — 10k4 4 35Kk3 — 50Ko + 24K4
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The binomial moments, closely connected with u,, are defined as B, =

1 .
E(St) = —JHIr- The binomial moment generating function is Bg, (u) = Zo Bjuw =
J:

J

E P i = Pg,(1+ u), so that, if Mg, (u) exists, then
1 dr
Br: |d TPs,(].*FU) o

Hence, rth binomial moments of {S;,¢ > 0} is obtained as follows:

B, — Pm)
1
[(At€)® + (M)
p, = L)+ (e
By — [(AtE))® + 3(AtEy) (AtEj)) + (AtE(5))]
3!
24
5 L)+ 6000t + 100 M)+ 300E)* + )]
4!
B — [(AE&11))° + LO(AEE[1))® (At p2)) + LO(AEE(5)) (At pry)? + 15(AtE ) (At(2)?]
5!
n [5(AtE1a)) (AtE)) + 10Nt 2)) (AtEs)) + (AEEjs))]
5!

where §,) = E[(X)(X —1)...(X = (r —1))], 7 = 1,2,...,n, is the rth factorial
moment of X;,i=1,2,....

2.2. The Covariance Structure of CPP

In this section, we derived the covariance between {Ny,t > 0} and {S;,¢ > 0}
for the case that {IVy, ¢ > 0} is a homogeneous Poisson process with parameter

A > 0and X;, i = 1,2,.... are discrete random variables with finite values
j=0,1,... The characteristic function of the random vector Ny, S; is defined as
©n,.s, (u,v) = E [exp(iulNy + ivS;)] = E [E(exp(iulNy + ivSy)| Ny)] (25)

where i is the imaginary number. (25) can be written as

Ny
©N,.s, (u,v) = E | E(exp(iulNy + v ZXZ' )| Ny = n)]
i=1

= F |exp(iulVy) Hexp ivX-)]

=F expzuNt< ox(v )1

= F [exp(iulNy) '’ (v)
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where px (v) is the characteristic function of X;, i = 1,2, ... Since {IVy,t > 0} has
a homogeneous Poisson process with parameter A\, we get

el © [/\tgpx(v)exp(iu)]k
PN, (1, ) = exp( At)kzzo k! (27)

= exp[M(px (v) exp(iu) — 1)]

To derive the covariance, we have E(N;) = At and E(S;) = ME(X). In order

to complete the derivation of the covariance of V; and Sy, we need to evaluate
62

E(N.S;) = %(u,v) . The derivative of ¢y, s, (u,v) with respect to

uOv

8<10Nt75t (u7 U)

u=v=0
u is = iMpx(wen,,s, (u,v) and the derivative of the latter with

respect to v is

0? u, v ) . .
Tomsl0) _ iy ()atexplin)d (0)om, s, (1, v) + Mgl ()pn, 5, (u,0)

= iAtpn,,s, (u,v)@x (V) [px (V) At exp(iu) + 1]
Since ¢n,,s,(0,0) = ¢x(0) =1 and s (0) = iE(X), it follows that

0%en, 5. (u, v)

2
R = xt(M + 1) B(X)

u=v=0
Therefore, E(Ny,S;) = At(M 4+ 1)E(X) and the covariance of {N;,t > 0} and
{S;,t > 0} is given by

Cou(Ny, S;) = ME(X) = A€, (28)

Hence, the coefficient of correlation is

— Corr _ Cov(Ny, St) _ &
p = Corr(N:, 5) VVar(N)Var(Sy) V& (29)

where Var(N;) = Mt and Var(S;) = ME(X?) = M.

2.3. Special Cases of the Univariate CPP

In this section we study some special cases of the univariate CPP. Expres-
sions for various moments and cumulants are presented. The Neyman type A,
B and Polya-Aeppli are four major CPPs. The Neyman type A and B processes
are defined by Neyman (1939) as ‘contagious’. This definition implies that each
favourable event enhances the probability of each succeding event. The Polya-
Aeppli process is derived by Getis (1974) to model the clustered point process.
Note that some examples of such processes with their corresponding probability
functions are discussed in Ozel & Inal (2012).
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Example 1. The Neyman Type A Process: Let {Ny,t > 0} be a homogeneous
Poisson process with parameter A > 0 and let X;, ¢« = 1,2,... be Poisson dis-
tributed with parameter v in , then {S;,t > 0} is called a Neyman type A or
Poisson-Poisson process. First four moments and cumulants of the Neyman type
A process are given in Table[T].

TABLE 1: First four moments and cumulants of the Neyman type A process.
By (M)
Wy ()2 + At + ?)]
ph o (At)3 4 3(Atw) [At(v 4+ v2)] + [At(v + 302 4 v3)]
py ()t 4 6(0t0)2 At (v + v2)] + 4(At) (M (v + 302 4 3)] + [At(v + Tv? + 603 + v?)]
i (2Atv)
ua  (2Mt0)2 + [Mt(v + v?)]
s (200)3 + 6(Mtv) [M(v + v2)] + [M(v + 302 4+ v3)]
pa  (22t0)E 4+ 6(20t0)2 At (v + v2)] + 42 t0) (Mt (v + 302 4+ v3)] + [At(v + Tv? + 603 + v?))
K1 (Atw)
K2 (v + v?)]
k3 [M(v+ 302 +03))
ke [At(v+ To2 + 603 + v?))

ppp (Ato)

nig)  (Atv)® + (Atw)

Hi3] (Atw)3 4+ 3(Mtw)? + (Mtw)

pap ()t 4+ 6(Mw)3 + 7(Atv)? + (M)
K1) (Atw)

K[2] (Atw)

K[3] (Atw)

K[4] (Atv)

B1 ()\tv)

By [(Mtv)? + (Atw)]/2!
Bz [(Mtv)3 + 3(Mtv)2 + (Atw)]/3!
By [(Mtv)* 4+ 6(Mtv)3 + T(Mtv)2 + (Atw)] /4!

Example 2. The Neyman Type B Process: Let {N¢,t > 0} be a homogeneous
Poisson process with parameter A > 0 and let X;, « = 1,2,... be binomial dis-
tributed with parameters m and p in , then {S;,t > 0} has a Neyman type B
or Poisson-binomial process. First four moments and cumulants of the Neyman
type B process are presented in Table [2]

Example 3. The Pélya-Aeppli Process: Let {N¢,t > 0} be a homogeneous Poisson
process with parameter A > 0 and let X;, ¢ = 1,2,... be geometric distributed
random variables with parameter 6. Then, {S;,t > 0} has a Polya-Aeppli or
geometric Poisson process. First four moments and cumulants of the Polya-Aeppli
process are given in Table [3]
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TABLE 2: First four moments and cumulants of the Neyman type B process.

pwy (Atmp)

py  (Mtmp)® + Xt[mp +m(m — 1)p?]

s (Atmp)3 + 3(Atmp)? + (\tmp) + 6[Atmp(m(m — 1)p?)] + [M(m(m — 1)(m — 2)p3)]
(Atmp)? + 6(Atmp)2[Mt(mp + (m — 1)p?)] + 4(Atmp) At(mp + 3m(m — 1)p?
+m(m — 1)(m — 2)p°)

wh ()t 4 6(At0)2 At (v + v2)] + 4(At) (At (v + 302 + 03)] + [At(v + Tv? + 603 + v?)]

w1 (2Atmp)

p2 (2Mmp)® + [At(mp + m(m — 1)p?)]

uz (2Xtmp)® + 3(Atmp) [Xt(mp + m(m — 1)p?)] + [Mt(mp 4 3m(m — 1)p?
+m(m — 1)(m — 2)p)

ua  (2xtmp)t + 6(2xtmp)2[At(mp + m(m — 1)p?)] + 4(2xtmp) Mt(mp + 3m(m — 1)p?
+m(m — 1)(m — 2)p*)] + 3[At(mp + m(m — 1)p*)]* + [\t(mp + Tm(m — 1)p?
+6m(m — 1)(m — 2)p° + m(m — 1)(m — 2)(m — 3)p*)

k1 (Atmp)

k2 [(mp + mim — 1)p?)]

k3 [At(mp +3m(m —1)p* +m(m —1)(m — 2)p?)]

ka_ [(mp + Tr(m — Dp? + 6m(m — 1)(m — 2)p® + m(m — 1)(m — 2)(m — 3)(m — )p")

ppy (Atmp)

pig (Atmp)® + (Xtm(m — 1)p?)

g (Atmp)® + 3(Atmp(mp +m(m — 1)p?))
+(At(mp + 3m(m — )p? + m(m — 1)(m — 2)p3)

pp  (Atmp)* 4 6(Atmp)3[At(mp + m(m — 1)p?)] 4 4(Atmp)[At(mp + 3m(m — 1)p?
Sm(m — 1)(m — 2)p%)] + 3(mp -+ m(m — DpA)]? + [Ne(mp + Tm(m — 1)p?
+6m(m — 1)(m — 2)p° + m(m — 1)(m — 2)(m — 3)p*)

k) (Atmp)

K[2] tm(m — 1)p?]

K[3] tm(m — 1)(m — 2)p?)

K[4] tm(m — 1)(m — 2)(m — 3)p?]

B1  (Atmp)

By [(Atmp)? + (Mtm(m — 1)p?)]/2!

Bz [(Atmp)3 + 3(Atmp)[Mtm(m — 1)p?] + Mtm(m — 1)(m — 2)p3]]/3!

By [(Mtmp)* + 6(Atmp)2 [Xtm(m — 1)p?] + 4(Atmp) [Mtm(m — 1)(m — 2)p?]

+3[Atm(m — 1)p?]2 + [Mtm(m — 1)(m — 2)(m — 3)p]] /4!

Note that the random variable X has infinite values both the Neyman type
A and the Polya-Aeppli process. However, the moments and cumulants of these
processes can be obtained using , and . This is due to the probability
P(X; =j) and \; = Ap; approach zero for j — oc.
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TaBLE 3: First four moments and cumulants of the Polya-Aeppli process.
py o [Me(1—6)/0]
o (ML —0)/6] + [At(1—6)(2 — 6)/6%]
)/0
)/0

py  [A(1—6)/6]3 + 3[At(1 - 6) /6] [At(l —0)(2-0)/6%] + [Xt(1 - 0)(6 + 0(0 — 6))/6°]
wy (L= 0)/0]* + 6[At(1 — 0) /012 [Mt(1 — 6)(2 — 0)/02] + 4[\t(L — 0) /0] [Mt(1 — 0)
(64 0(0 —6))/6%] + 3[At(1 — 0)(2 — 0)/6%)2 + [Mt(2 — 0)(1 — 0)(12 + (6 — 12)6)/6%]

p1 [2A(1—0)/6]

p2 [2Xt(1—0)/60)* + [\t(1 - 0)(2 - 0)/6%)]

s [2At(1 —0)/6)3 + 3[2Xt(1 — 0)/0][Mt(1 — 0)(2 — 6)/6%] + [At(1 — 0)(6 + 6(6 — 6))/65]
pa [2Xt(1 = 0)/6]* + 6[2Xt(1 — 0)/0)2[At(1 — 6)(2 — 0)/6%] + 4[2Xt(1 — 6) /0] [Mt(1 — 0)(6+

0(6 — 6))/63] + 3[At(1 — 0)(2 — 0)/62]2 + (2 — 0) (1 — 0) (12 + (6 — 12)0) /6%]
k1 M(1—0)/0]
K2 (2= 0)(1—6)/67]
k3 (A1 —0)(6+0(0—6))/6%

[

K4 (1 —0)(2 — 0)(12 + 0(6 — 12))/64]

ppy (A1 —0)/6]

pgp (1 —0)/6) + [At(2 - 0)(1 - 0)/6%]

p A —0)/60]3 + 3[At(2 — 0)(1 — 0)/02][At(1 — 0)/6] + [At(1 — 6)(6 + (6 — 6)6) /6]
prap M —0)/01* + 6[At(1 — 0)/012[At(2 — 0)(1 — 0)/6%] + 4[At(1 — 0)/0)(At(1 — 6)

(64 (6 —6)0)/63] + 3[At(2 — 0)(1 — 0)/6%)% + [Mt(2 — 0)(1 — 0)(12 + (6 — 12)6)/6%]

Ky (A1 —0)/0]

K[2] 2[At(1 — 9)/0]2

K[3] 6[)\t(1 — 9)/9]3

Kl 24[e(1—0)/0]

By [M(1-0)/0]

Ba  [(At(1 —6)/60)% 4+ 2(At(1 — 6)/6)2]/2!

Bz [(At(1—0)/6)° + 6(At(1 — 0)/0)(Xt(1 - 0)/0)* + 6(At(1 — 0)/6)%]/3!

By (A1 —0)/0)* + 12(Mt(1 — 60)/0)2(Mt(1 — 0)/0)2 + 24(At(1 — 6)/0) (Mt (1 — 6)/6)3
+12(At(1 — 0)/60)% + 24(At(1 — ) /6)*] /4!

3. The Bivariate Compound Poisson Process

In this section, we turn now to the consideration of factorial moments, cu-
mulants, and the coefficient of correlation for the BCPP. Let {N;,t > 0} be a
homogeneous Poisson process with parameter A > 0 and let X;, ¥;,2=1,2,..., be
mutually i.i.d. discrete random variables taking finite values with the probabilities
PX;=j)=p;,7=0,1,...mand P(Y; =k)=qy, k=0,1,...£in . We start
by finding factorial moments pj,. 4 for r = 1,2,..., s = 1,2,... For this purpose,
we first compute the joint probability generating function (pgf) St(l) and 5,5(2) as
follows

Js g2 (u1,ug) = Z Z P <ZX = sl,ZY = 52> utus?
= Z Z Z (ZX = sl,ZY = 52> P, (n)ui*u3?

=0n
where Py,(n) = P(N; = n), n = 0,1,..., is the probability function of the
homogeneous Poisson process. Since X;, Y;, ¢ =1,2,...arei.i.d. random variables,

we get
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gSf(l),Sf(z) (ula UQ) = PN, (0) + PN, (1)

Z Z (X1 =81)P(Y1 = s2)ui'us> + -

51—0 52—0
= P, (0) + v, (D)gx, (g, (uz) (30)
+ P (2)9x14+x2 (U1) gy v, (u2) + -+
= pn,(0) + pn, (1)gx (u1)gy (u2)
+ N, (2)[gx (w1)?[gy (u2)]® + - -
where gx(u1), gy (u2) are the common pgfs of X;, Y;, i = 1,2,..., respectively.
Using , it is more convenient to deal with
95 5@ (u1,u2) = gn, [9x (u1)gy (u2)]
= exp[At[gx (u1)gy (uz) — 1]]
= exp(—At) exp[At(pogo + Poqauz + - -+ + poqiuh + prgotiy
+ L@ty + -+ prgiun i + prqottl + -+ + Py ub)]

(31)

The joint pgf in can be differentiated any number of times with respect
to r and s and evaluated at (0,0) yielding

ar+sgst(1) ,Siz) (ul, u2)

Hirs) = oufous

(32)

U1:UQ:1

Differentiating and substituting in , after some algebraic manipula-
tions, the factorial moments of St(l) and St(z) are given by

pia) = (M) (Atspy) + (A5
fiz,1) = (M) (M) + (A (M€ spy) + (At€jg) (Mtspay) + (AtEgzis))
pi2,2) = (M) (Mtspay)? + (A€y) (Msy) (A€ysiay) + (Atp)) (Abspry)?

+ (M) (M€zis) + (M€ (M) + (M) (At si))
+ (AtEmsny)” + (Atga) (bspay) + (Atgaspa))
= (At&p))* (Mts)® + (At€py) (M) (A yspy) + (Atgy) (Msy)?
Atsa))® (MEars) + (M) (Mt€npsny)® + (At€py) (Mbs) (A€ <))
XtEr1))? (M) (Mtspay) + (M) (Mspz) (Atsy) + (Absiy) (M€ 2y572))
At€(2) (A€ 115101) (Mtsay) + (Atspa)) (A€ 2ysay) + (A& 1ap) (At (1) S21)
AtEysgs)) (Msay) + (Asga ) (At€ny)* + (AtEay) (Mtspa)) + (Ata)sis))
where ;) = E[X(X —1)...(X—=(r—1))], r = 1,2,..., is the rth factorial moment
of Xi, i =1,2,... and where ¢ = E[Y(Y —1).. (Y (s—=1))], s =1,2,.

is the sth factorial moment of Y;, i = 1,2, ... in . Note that i g = fifs.r] for
r=12,...,s=1,2,...

(33)

+(
+(
+(
+(
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Similar to univariate CPP, let X, Y;, i = 1,2,..., have finite values with the
probabilities P(X; = j) = p;, j = 0,1,...m and P(Y; = k) = qx, k =0,1,...L.
and can be used when P(X; = j) = p; and P(Y; = k) = ¢i approach to
zero for j, k — oo.

The joint cumulant generating function of Sgl) and St(Q) is given by

K(ug,ug) = =Xt + M[(pogo + - - + pogr exp(ul)) + (p1go exp(uy) + - - -
+ p1gr exp(u1) exp(u3)) + (Pmgo exp(uf") + - -
+ PmQr eXp("jln) exp(ug))] (34)

From we have
Krs = At(&r6s), T=1,2,...,s=1,2,... (35)

where . = E(X"), r=1,2,..., and ¢; = E(Y*®), s = 1,2,..., are expected values
of X; and Y;, 1 =1,2,..., respectively.

The covariance of St(l) and St(z) is obtained using
Cov (50, 5) = E (sVs?) — B (sV) B ()

= MM+ D — (MEn)(May) (36)
= M6

Then, the coefficient of correlation for Sél) and St(Q) is given by

p=Corr (551), St(Q)) = Cov (St(l)’ St(2)> _ At€161

v (s07) var (s7)  VIECOTBEG)

o §161

A% §2§2

(37)

4. Numerical Examples

To illustrate the usage of the univariate CPP and BCPP, we present two data
sets. The first data is taken from Meintanis (1997) and Ozel & Inal (2010). It
corresponds to the number of traffic accidents and fatalities recorded on Sundays
of each month over the period 1997-2004 in the region of Groningen. In this
study the same data is used to show applicability of the univariate CPP the with
following random variables: N; is the number of Sunday accidents which occurs in
Groningen between years 1997-2004; X;, i = 1,2, ..., are the number of fatalities
the ith type of accident; S; = va’ X is the total number of fatalities in the time
interval (0, t].
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The homogeneous Poisson process provide an adequate fit to the number of
Sunday accidents (p — value < 0.01, x? = 2.94) for A\ = 9.84 (in month). The
independency of X;, i =1,2,..., and {N¢,t > 0} is shown using the Spearman’s p
test (Spearman’s p = 0.084; p = 0.432). Then, we have to decide the best distri-
bution of X;, 7 = 1,2,... among the Poisson, binomial and geometric distributions
for the number of fatalities. For this aim, a goodness of fit test can be performed to
choose the correct distribution (Agresti 2002). However, one can take into consid-
eration the number of values of X;,i =1,2,...If X;, ¢ = 1,2, ... have finite values,
the binomial distribution can be used. Similarly, geometric or Poisson distribution
can be more suitable when X;, ¢ = 1,2,... have infinite values. The goodness of
fit test is applied to decide the best distribution. It is found seen that the Poisson
distribution with parameter v = 0.53 (p — value < 0.001, x? = 0.20), the binomial
distribution with parameters m = 4, p = 0.12 (p — value < 0.01, x* = 1.52) and
the geometric distribution with parameter § = 0.62 (p —value < 0.001, x? = 0.06)
fit the data. Then it can be said that {S;,t > 0} has a Polya-Aeppli process.
Note that the goodness-of-fit are applied sequentially without taking into account
the dependence amongst these tests, which of course influences the overall size of
the test, i.e., when we test all hypothesis each at level «, the computation of the
overall level becomes more complicated.

The moments and cumulants for the Polya-Aeppli process are computed from
Table |3| for the parameters A = 9.84; 8 = 0.62 and several values of t. The results
are presented in Table |4l Then, the values of the skewness, kurtosis, Cov(Ny, St)
and Corr(Ny, S;) are computed for the Polya-Aeppli process and the results are
given in Table [f]

TABLE 4: The moments and cumulants of the Pélya-Aeppli process for the traffic acci-
dents in Groningen.

t 1 M My By M1 H[2] H3] H[4]
0.5 3.02 15.81 109.04 922.47 3.02 12.79 67.66 396.66
1 6.03 49.80 613.16 7885.24 6.03 43.77 366.71 3352.23
2 12.06 172.34 3246.47 64054.05 12.06 160.28 2317.11 35671.34
3 18.09 367.62 9216.11 241607.41 18.09 349.53 7167.36 154264.24
4 24.12 635.66 19838.25 645397.44 24.12 611.53 16233.64 448189.00
H1 H2 H3 H4 adel| Kl2] R3] Kl4]
0.5 6.03 43.08 340.80 3513.44 3.02 18.19 164.52 1984.45
1 12.06 164.95 2458.88 41475.28 6.03 72.75 1316.17 31751.14
2 24.12 620.87 16855.10 487496.27 12.06 290.98 10529.37 508018.17
3 36.19 1367.78 53718.02 2201987.32 | 18.09 654.71 35536.61  2571841.99
4 48.25  2405.66 123577.01 6556890.97 | 24.12 1163.92 84234.93 8128290.74
K1 Ko K3 K4 B1 Bs Bs By
0.5 3.02 6.71 20.90 86.33 3.02 6.39 11.28 16.53
1 6.03 19.45 41.80 172.67 6.03 21.88 61.12 139.68
2 12.06 38.91 83.61 345.33 12.06 80.14 386.18 1486.31
3 18.09 58.36 125.41 518.00 18.09 174.77 1194.56 6427.68
4 24.12 77.82 167.21 690.66 24.12 305.77 2705.61 18674.54
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TaABLE 5: The skewness, kurtosis, covariance, and the coefficient of correlation of the
Polya-Aeppli process for the traffic accidents in Groningen.

t VB B2 Cov(N¢,St)  Corr(Ng, St)
0.5 0.002131 -1.107261 3.015484 0.52475

1 0.000274  -1.475558 6.030968

2 0.000035 -1.735354 12.061935

3 0.000010  -1.822979 18.092903

4 0.000004 -1.867004 24.123871

A second data set comes from earthquakes in Turkey which is given by Ozel
(2011a) and Ozel (2011b). The mainshocks with surface wave magnitudes M, >
5.0 that occurred in Turkey between 1900 and 2009, their foreshock and aftershock
sequences are considered. For the construction of a model to explain the total
number of foreshocks and aftershocks with the BCPP in , the following random
variables are defined: N; is the number of mainshocks that occurred in Turkey
between 1903 and 2009; X;, ¢ = 1,2,... are the number of foreshocks of ith
mainshock; Y;, i = 1,2,... are the number of aftershocks of the ith mainshock;

N, Ny
and (Sgl) => X, St(2) => Yl) is the total number of foreshocks and aftershocks

for the mains}:ocks. The gocz)dness of fit test is performed to compare the observed
frequency distribution to the theoretical Poisson distribution. Chi-square value
(x> = 0.051 with df = 9, p — value = 0.525) indicates that {N;,¢t > 0} fits
the Poisson process with parameter A = 1.037 (in years) at the level of 0.05.
Spearman’s p test verifies the absence of correlation between N; and X;,i=1,2,...
(Spearman’s p = 0.071; p = 0.412). No correlation is also found between Ny and Y;,
i=1,2,... (Spearman’s p = 0.034; p = 0.589). Similarly, it is shown that there is
no statistically significant dependence between X; and Y;, i = 1,2, ... (Spearman’s
p = 0.048; p = 0.493). As discussed by Ozel (2011b), if the occurrence of foreshock
sequences is assumed to be independent of the occurrence of mainshocks, then
the distribution of foreshocks can be treated as a binomial distribution. The
goodness-of-fit test for the binomial distribution provided an adequate fit with a
p-value of 0.999 and chi-squared value x? = 0.003 with 34 degrees of freedom.
This means that the binomial distribution with parameters (m = 35, p = 0.15)
fits the probability function of X;, i = 1,2,... It is pointed out that the number
of aftershocks of a mainshock has a geometric distribution (Christophersen &
Smith 2000). After obtaining the frequency distribution of aftershocks and the
goodness-of-fit test (x? = 1.587 with df = 35), it is seen that Y;, i = 1,2,...
have a geometric distribution with parameter § = 0.175. Then, we can write

M) _ 5y @) _ 1) @)
Syl =>X;,5" =>Y;| and suggest that (S;’,S;”’) has a BCPP. So, the

joint factorial moments and cumulants are calculated from and for the
parameters A = 1.037; § = 0.175; (m = 35, p = 0.15) and several values of . Then,
Cov (St(l), St(Q)) and Corr (St(l), St(2)> are computed from and and the

results are presented in Table [6]
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TABLE 6: The moments, cumulants, covariance, and coeflicient of correlation of the
BCPP for the earthquakes in Turkey.

t ppny Hi2,1] H[2,2] H[2,3] K1,1 K2,1 K2,2 K2,3 Cov(Ny, St) Corr(Ny, St)
0.5 19.49 152.43 546.09 26543.35 12.83 78.28 816.35 3422.87 12.83 0.6237
1 52.28 551.27 713.82 128434.33 25.67 156.56 1632.71 6845.74 25.67

2 157.79 2522.87 11344.95 1118387.43 51.33 313.12 3265.42 13691.49 51.33
2.5 230.51 4313.00 27684.65 2578433.75 64.16 391.40 4081.77 17114.36 64.16
3 316.54 6784.23 57395.00 5330414.38 77.00 469.68 4898.13 20537.23 77.00

5. Conclusion

In this paper, the moments, cumulants, skewness, kurtosis and covariance of
the univariate CPP are derived. Some special cases of the univariate CPP are
provided and a numerical example based on the traffic accidents in Groningen is
given. Then, BCPP is defined and some important probabilistic characteristics
such as moments, cumulants, covariances, and the coefficient of correlation for the
BCPP are obtained.

Earthquake is an unavoidable natural disaster for Turkey. Application to the
earthquake data in Turkey is presented to illustrate the usage of the BCPP and its
properties. Earthquakes could be regarded as discrete events, representing some
real but not well-known tectonic process. Following that scheme and keeping in
mind the highly random characteristics of all earthquake parameters, it is quite
natural to consider a sequence of earthquakes as a stochastic process. The stochas-
tic modeling of the earthquake occurrence has proved very useful in earthquake
prediction studies, in understanding the nature of the earthquake phenomena, and
in assessing seismicity and seismic hazard. Existing approaches in the research of
seismic hazard assessment are generally based on the homogeneous Poisson pro-
cess. However, new studies have been done using CPP and BCPP and give more
information than homogeneous Poisson process. For this reason, the factorial mo-
ments and cumulants of BCPP, which are obtained in this study, can be a good
tool to understand earthquake behaviour.

[Recibido: marzo de 2012 — Aceptado: marzo de 2013]
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