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Abstract

The present paper considers an extension of the exponential distribution
based on mixtures of positive distributions. We study the main properties
of this new distribution, with special emphasis on its moments, moment
generator function and some characteristics related to reliability studies. We
also discuss parameter estimation considering the maximum likelihood and
moments approach. An application reveals that the model proposed can be
very useful in fitting real data. A final discussion concludes the paper.
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Resumen

En el presente paper se considera una extensión de la distribución ex-
ponencial basada en mezclas de distribuciones positivas. Estudiamos las
principales propiedades de esta nueva distribución, con especial énfasis en
sus momentos, función generadora de momentos, y algunas características
relacionadas a estudios de confiabilidad. También se analiza la estimación
de parámetros a través de los métodos de momentos y de máxima verosimi-
litud. Una aplicación muestra que el modelo propuesto puede ser muy útil
para ajustar datos reales. Una discusión final concluye el artículo.
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1. Introduction

In lifetime data analysis it is usually the case that models with monotone
risk functions are preferred as is the case of the gamma distribution. For some
models there are no closed form risk functions (such as the Gamma model) and
numerical integration might be required for its computation. In recent statistical
literature modified extensions of the exponential distributions have been proposed
to contour such difficulties. For example, Gupta & Kundu (1999) and Gupta &
Kundu (2001) introduced an extension of the exponential distribution typically
called the generalized exponential (GE) distribution. Therefore, it is said that the
random variable X follows the GE distribution if its density function is given by

g1(x;α, β) = αβe−αx(1− e−αx)β−1

where x > 0, α > 0 and β > 0. We use the notation X ∼ GE(α, β) for a random
variable with such distribution.

More recently, Nadarajah & Haghighi (2011) introduced another extension of
the exponential model, so that a random variable X follows the Nadarajah and
Haghighi’s exponential distribution (NHE) if its density function is given by

g2(x;α, β) = αβ(1 + αx)β−1e{1−(1+αx)
β}

where x > 0, α > 0 and β > 0. We use the notation X ∼ NHE(α, β).

Both distributions have the exponential distribution (E) with scale parameter
α, as a special case when β = 1, that is,

g1(x;α, β = 1) = g2(x;α, β = 1) = αe−αx

where x > 0, α > 0 with the notation X ∼ E(α). Other extensions of the
exponential model in the survival analysis context are considered in the Marshall
& Olkin’s (2007) book.

The main object of this paper is to present yet another extension for the expo-
nential distribution that can be used as an alternative to the ones mentioned above.
We discuss some properties for this new distribution like its moments and moment
generating function which can be used for parameter estimation as starting values
for computing maximum likelihood estimators.

The paper is organized as follows. Section 2 delivers the density and distri-
bution functions, moments, moment generating function, asymmetry and kurtosis
coefficients and hazard function. Section 3 is devoted to parameter estimation
based on maximum likelihood and moments approach. It is recommended that
the moment estimators are used to initialize the maximum likelihood approach.
In Section 4 an application to a real data set is presented and comparisons be-
tween the proposed model and other extensions of the exponential distribution are
reported. The main conclusion is that the new model can perform well in applied
situations.
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2. Density and Properties

A random variable X is distributed according to the extended exponential
distribution (EE) with parameters α and β if its density function is given by

f(x;α, β) =
α2(1 + βx)e−αx

α+ β
(1)

where x > 0, α > 0 and β ≥ 0. We use the notation X ∼ EE(α, β).

Figures 1 and 2 depict the behavior of the distribution for some parameter
values.
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Figure 1: Plots of the EE(1, 0.8) (solid line), EE(1, 0.5) (dashed line), EE(1, 0.1) (dot-
ted line).
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Figure 2: Plots of the EE(0.5, 3) (solid line), EE(1, 7) (dashed line), EE(1.5, 10) (dot-
ted line).
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2.1. Properties

Let X ∼ EE(α, β), Y ∼ E(α) and Z ∼ Gamma(2, α). Then, the distribution
function for the random variable X is given by

FX(x) =
α+ β − (β + α+ αβx)e−αx

α+ β
(2)

The expectation and variance are given by

E(X) =
α+ 2β

α(α+ β)

V ar(X) =
α3 + 5α2β + 6αβ2 + 2β3

α5 + 3α4β + 3α3β2 + α2β3

The moment generation function can also be obtained in closed form and is
given by

MX(t) =
α2(α+ β − t)

(α+ β)(t− α)2
(3)

It also follows that its density can be obtained as a mixture of two positive
ones, namely,

fX(x;α, β) =
α

α+ β
fY (x;α) +

β

α+ β
fZ(x;α) (4)

Using the representation as a mixture of two positive densities, we can provide
a general representation for the distribution moments, namely,

E(Xr) =
α

α+ β
E(Y r) +

β

α+ β
E(Zr) =

rΓ(r)

αr(1 + β)
[α+ (1 + r)β] , r = 1, 2, ..., (5)

where Γ(·) is the usual gamma function.
Using the moments above for the EE model, we can compute asymmetry (

√
β1)

and kurtosis (β2) coefficients, which are given by

√
β1 =

2(α+ 2β)3 − 12β2(α+ β)

(α2 + 4αβ + 2β2)3/2
(6)

β2 =
3(α+ 2β)2(3α2 + 12αβ + 8β2)− 72β2(α+ β)2

(α2 + 4αβ + 2β2)2
(7)

Lemma 1. Note that as β → 0, then
√
β1 → 2 and β2 → 9 which correspond

to the asymmetry and kurtosis respectively for the exponential model. General
coefficients of asymmetry and kurtosis are such that

√
2 <
√
β1 ≤ 2 and 6 < β2 ≤

9, respectively, as shown in Figures 3 and 4.
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Figure 3: Graphs for asymmetry coefficient for the EE model.

Alpha

0.0

0.5

1.0

1.5

2.0

Be
ta

0

1

2

3

4

5
6

K
urtosis

5

6

7

8

9

Figure 4: Graphs for the kurtosis coefficient for the EE model.

The hazard function for the random variable X ∼ EE(α, β) is given by

h(x) =
f(x;α, β)

1− FX(x)
=

α2(1 + βx)

β + α(1 + βx)

i) If β = 0, then h(x) = α, is the hazard function for the exponential model
∀x ∈ R.

ii) ∀β, h(x) is monotonically increasing with h(0) = α2

α+β .

iii) ∀β, h(x)→ α, as x→∞.

iv) h(x) is bounded, that is, α2

α+β < h(x) < α.
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Figure 5: Plots for the hazard function for α = 1 and β = 0.5 (solid line), β = 1
(dashed line), β = 2 (dotted line).

The Figure 5 illustrates the behavior of the hazard function for some parameter
values.

3. Inferential Considerations

In this section, we consider inference for the EE using moments and the max-
imum likelihood approach.

3.1. Method of Moments

The moment estimators for the parameters α and β are obtained by solving

α+ 2β

α(α+ β)
= x (8)

2α+ 6β

α2(α+ β)
= x2

From the first equation we obtain the moment estimators for β(β̃) as a function
of the moment estimator for α(α̃).

β̃ =
α̃(1− α̃x)

α̃x− 2
, α̃ ∈

(
1

x
,

2

x

)
(9)

using (9) and the second equation for the system given in (8) we obtain the moment
estimator for α.

α̃ =
2x±

√
4x2 − 2x2

x2
(10)

Therefore, α̃ from (10) replacing α in (9) we obtain β̃. These estimators will be
used as initial parts to get the maximum likelihood estimation in the next section.

Revista Colombiana de Estadística 37 (2014) 25–34



A New Extension of the Exponential Distribution 31

3.2. Maximum Likelihood

Let x1, x2, . . . , xn a random sample from X ∼ EE(α, β), so that we obtain the
log-likelihood function

l(α, β) = 2n log(α)− n log(α+ β)− α
n∑
i=1

xi +

n∑
i=1

log(1 + βxi) (11)

Differentiating the log-likelihood function with respect to α and β, the following
equations follow:

∂l

∂α
=

2n

α
− n

α+ β
−

n∑
i=1

xi = 0 (12)

∂l

∂β
= − n

α+ β
+

n∑
i=1

xi
1 + βxi

= 0 (13)

From (12) we obtain

β̂ =
α̂(1− α̂x)

α̂x− 2
, α̂ ∈

(
1

x
,

2

x

)
(14)

and the maximum likelihood estimator for α is obtained by resolving numerically
the following equation

n∑
i=1

xi
1− (1− xα̂)(α̂xi − 1)

=
n

α̂
(15)

The estimator α̂ is the solution to the equation (15), and replacing it in (14)

we obtain β̂. This algorithm leads to the maximum likelihood estimators for α
and β.

4. Real Data Illustration

We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that
are subject to constant pressure at the 90% stress level until all had failed, so we
have complete data with the exact times of failure. For previous studies with the
data sets see Andrews & Herzberg (1985) and Barlow, Toland & Freeman (1984).
These data are:
0.0251,0.0886,0.0891,0.2501,0.3113,0.3451,0.4763,0.5650,0.5671,0.6566,0.6748,0.6751,
0.6753,0.7696,0.8375,0.8391,0.8425,0.8645,0.8851,0.9113,0.9120,0.9836,1.0483,1.0596,
1.0773,1.1733,1.2570,1.2766,1.2985,1.3211,1.3503,1.3551,1.4595,1.4880,1.5728,1.5733,
1.7083,1.7263,1.7460,1.7630,1.7746,1.8275,1.8375,1.8503,1.8808,1.8878,1.8881,1.9316,
1.9558,2.0048,2.0408,2.0903,2.1093,2.1330,2.2100,2.2460,2.2878,2.3203,2.3470,2.3513,
2.4951,2.5260,2.9911,3.0256,3.2678,3.4045,3.4846,3.7433,3.7455,3.9143,4.8073,5.4005,
5.4435,5.5295,6.5541,9.0960.
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Using results from Section 3.1, moment estimators were computed leading to
the following values: α̃ = 0.889 and β̃ = 2.563, which were used as initial estimates
for the maximum likelihood approach.

Table 1 presents basic descriptive statistics for data set. We use the notation√
b1 and b2 to represent sample asymmetry and kurtosis coefficients.

Table 1: Descriptive statistics for rupture time.
Data set n X S

√
b1 b2

Kevlar 76 1.959 1.574 2.019 8.600

Table 2: Parameter estimates for GE, NHE and EE models for the stress-rupture life
data set.

Parameter estimates GE NHE EE
α 0.703 0.195 0.954

β 1.709 2.007 6.366

AIC 248.488 253.476 247.3

For comparing model fitting, Akaike (1974), namely

AIC = −2 ∗ ˆ̀(·) + 2 ∗ k

where k is the number of parameters in the model under consideration. The AIC
specifies that the model that best fits the data is the one with the smallest AIC
value.

Table 2 shows parameter estimators for distributions GE, NHE and EE using
maximum likelihood (MLE) approach and the corresponding Akaike information
criterion (AIC). For these data, AIC shows a better fit for the EE model. Figure 6
reveals model fitting for the three models, and Figure 7 compares the distribution
functions for the three models with the empirical distribution function.
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Figure 6: Models fitted by the maximum likelihood approach for the stress-rupture data
set: EE(α̂, β̂) (solid line), NHE(α̂, β̂) (dashed line) and GE(α̂, β̂) (dotted
line)
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Figure 7: Empirical c.d.f. with estimated EE c.d.f. (solid line), estimated NHE c.d.f.
(dashed line) and estimated GE c.d.f. (dotted line).

5. Concluding Remarks

This paper introduces a new model positive data. It is shown that the model
can be represented as the mixture of two distributions. The scale-exponential
distribution can be seen as a particular case of the new model. It is shown that
the distribution function, hazard function and moment generating function can be
obtained in closed form. Moment estimators are derived and maximum likelihood
estimators can be computed using Newton-Raphson type algorithms. The moment
estimators can be used as starting values for the maximum likelihood estimators.
Asymmetry and kurtosis coefficients are derived and their ranges are plotted. It
is illustrated the fact that the model proposed has more flexibility in terms of
coefficients of asymmetry and kurtosis. A real data application has demonstrated
that the model studied is quite useful for dealing with real data and behaves better
in terms of fitting than other models proposed in the literature such as the GE
and NHE models.
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