https://doi.org/10.15446/rce.v37n1.44362
1Inner Mongolia University of Technology, Science College, Hohhot, P. R. China. Professor. Email: zz.yan@163.com
2Inner Mongolia University of Technology, Science College, Hohhot, P. R. China. Postgraduate student. Email: yuxiaxue_imut@163.com
AP-design, an efficient non-rejective implementation of the πps sampling design, was proposed in the literature as an alternative Poisson sampling scheme. In this paper, we have updated inclusion probabilities formulas in the AP sampling design. The formulas of these inclusion probabilities have been greatly simplified. The proposed results show that the AP design and the algorithms to calculate inclusion probabilities are simple and effective, and the design is possible to be used in practice. Three real examples have also been included to illustrate the performance of these designs.
Key words: AP sampling design, Inclusion probabilities, Poisson sampling.
Una implementación del diseño de muestreo πpt, que no es de rechazo, ha sido recientemente propuesta como alternativa al esquema de Poisson. En este trabajo, hemos adaptado las formulas de probabilidades de inclusión en el diseño de muestreo Poisson alternativo (AP por sus siglas en inglés). Estas fórmulas han sido significativamente simplificadas. Los resultados propuestos muestran que el diseño AP y los algoritmos para calcular las probabilidades de inclusión son simples y efectivos, y que el diseño se puede usar en la práctica. Se incluyen tres ejemplos reales para ilustrar el desempeño de la propuesta.
Palabras clave: AP diseño de muestra, probabilidades de inclusión, esquema de Poisson.
Texto completo disponible en PDF
References
1. A. Grafströ, (2009), 'Non-rejective implementations of the Sampford sampling design', Journal of Statistical Planning and Inference 139(6), 2111-2114.
2. A. R. Sen, (1953), 'On the estimate of variance in sampling with varying probabilities', Journal of the Indian Society of Agricultural Statistics 5, 119-127.
3. B. Rosén, (1997a), 'On sampling with probability proportional to size', Journal of Statistical Planning and Inference 62(2), 159-191.
4. B. Rosén, (1997b), 'Asymptotic theory for order sampling', Journal of Statistical Planning and Inference 62(2), 135-158.
5. C. Asok, & B. V. Sukhatme, (1976), 'On Sampford's procedure of unequal probability sampling without replacement', Journal of the American Statistical Association 71(365), 912-918.
6. Cem Kadilar, & Hulya Cingi, (2004), 'Ratio estimators in simple random sampling', Applied Mathematics and Computation 151(3), 893-902.
7. J. Durbin, (1967), 'Design of multi-stage surveys for the estimation of sampling errors', Journal of the Royal Statistical Society. Series C: Applied Statistics 16(2), 152-164.
8. J. Hájek, (1964), 'Asymptotic theory of rejective sampling with varying probabilities from a finite population', Annals of Mathematical Statistics 35(4), 1491-1523.
9. J. Hájek, (1981), Sampling from a Finite Population, Marcel Dekker, New York.
10. J. Olofsson, (2011), 'Algorithms to find exact inclusion probabilities for 2P\pips sampling designs', Lithuanian Mathematical Journal 51(3), 425-439.
11. K. R. W. Brewer, (1963), 'A model of systematic sampling with unequal probability', Australian and New Zealand Journal of Statistics 5(1), 5-13.
12. L. Bondesson, & A. Grafström, (2011), 'An extension of Sampford's method for unequal probability sampling', Scandinavian Journal of Statistics 38(2), 377-392.
13. L. Bondesson,, I. Traat, & A. Lundqvist, (2006), 'Pareto sampling versus conditional Poisson and Sampford sampling', Scandinavian Journal of Statistics 33(4), 699-720.
14. L. Bondesson, & L. D. Thorburn, (2008), 'A list sequential sampling method suitable for real-time sampling', Scandinavian Journal of Statistics 35(3), 466-483.
15. M. P. Singh, (1967), 'Multivariate product method of estimation for finite populations', Journal of the Indian Society of Agricultural Statistics 31, 375-378.
16. M. R. Sampford, (1967), 'On sampling without replacement with unequal probabilities of selection', Biometrika 54(3-4), 499-513.
17. N. Aires, (1999), 'Algorithms to find exact inclusion probabilities for conditional Poisson sampling and Pareto \pips', Methodology and Computing in Applied Probability Sampling Designs 1(4), 457-469.
18. T. Laitila, & J. Olofsson, (2011), 'A two-phase sampling scheme and \pips designs', Journal of Statistical Planning and Inference 141(5), 1646-1654.
19. Y Tillé, (2006), Sampling Algorithms, Springer, New York.
20. Y. Zaizai,, L. Miaomiao, & Y. Yalu, (2013), 'An efficient non-rejective implementation of the \pips sampling designs', Journal of Applied Statistics 40(4), 870-886.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv37n1a09,
AUTHOR = {Yan, Zaizai and Xue, Yuxia},
TITLE = {{Algorithms to Calculate Exact Inclusion Probabilities for a Non-Rejective Approximate πpsSampling Design}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2014},
volume = {37},
number = {1},
pages = {127-140}
}