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Abstract

The Singh-Maddala distribution is very popular to analyze the data on in-
come, expenditure, actuarial, environmental, and reliability related studies.
To enhance its scope and application, we propose four parameters trans-
muted Singh-Maddala distribution, in this study. The proposed distribution
is relatively more flexible than the parent distribution to model a variety of
data sets. Its basic statistical properties, reliability function, and behaviors
of the hazard function are derived. The hazard function showed the decreas-
ing and an upside-down bathtub shape that is required in various survival
analysis. The order statistics and generalized TL-moments with their special
cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore,
the maximum likelihood estimation is used to estimate the unknown param-
eters of the transmuted Singh-Maddala distribution. The real data sets are
considered to illustrate the utility and potential of the proposed model. The
results indicate that the transmuted Singh-Maddala distribution models the
datasets better than its parent distribution.
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Resumen
La distribución Singh-Maddala es muy popular para analizar datos de

ingresos, gastos, actuariales, ambientales y de confiabilidad.
Para mejorar su alcance y aplicación se propone su extensión a la dis-

tribución de cuatro parámetros Singh-Maddala transmutada. Esta es más
flexible en la modelación de diversos conjuntos de datos. Sus propiedades
básicas, las funciones de confiabilidad y riesgos son estudiadas. La función
de riesgo es decrecientes o tiene forma de bañera invertida. Como se requiere
en varios estudios de sobrevivencia se exploran sus estadísticas de orden y los
momentos TL, con sus casos especiales L, TL, LL y LH. Se emplea máxima
verosimilitud para la estimación de los cuatro parámetros. Datos reales son
usados para ilustrar la utilidad y potencialidad del modelo propuesto. Los
resultados indican que la distribución propuesta ajusta mejor que la original.

Palabras clave: distribución Singh-Maddala transmuetada, función de riesgo
invertida, momentos, momentos TL, estimación de parámetros.

1. Introduction

The quality of the statistical analysis heavily depends on the assumed prob-
ability distribution. Therefore, the most attractive research direction for math-
ematicians and statisticians is to develop a class of suitable distributions, along
with their relevant statistical properties and methodologies. The goal is to design
the standard probability distributions which serve as true models for real world
situations. However, there are still many important symmetric and asymmetric
spaces present where the existing distributions do not follow the real data pattern.
Keeping this in mind, we selected Shaw & Buckley (2009) proposed quadratic rank
transmutation map that is applicable for both symmetric and asymmetric distri-
butions. This map is a special case of the general rank transmutation map and it
is defined by Shaw & Buckley (2009) without loss of generality. It is given as

TR12(u) = F{G−1(u)},

TR21(u) = G{F−1(u)},

where G and F are the two cumulative distribution functions on a common sample
space, and G−1 and F−1 are their quantile functions, respectively.

The two functions TR12(u) and TR21(u) map the unit interval I = [0, 1] into
itself, and under suitable assumptions they satisfy Tij(0) = 0 and Tji(1) = 1. This
rank transmutation should be continuously differentiable otherwise discontinuity
may occur in the transmuted density. Now the quadratic rank transmutation is
defined for −1 ≤ λ ≤ 1 as,

TR(u) = u+ λu(1− u),

which results in the cumulative distribution function of the transmuted probability
distribution as follows

F (x) = G(x)
[
(1 + λ)− λG(x)

]
(1)
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that yields the probability density function on differentiation and is given as

f(x) = g(x)
[
(1 + λ)− 2λG(x)

]
. (2)

Where g(x) and G(x) are the probability density and cumulative distribution
functions of the parent distribution, respectively. The parameter λ lies between
[−1, 1] and the extreme values of the λ produce two extreme cases. These cases
generate the distribution of the maximum and minimum for λ = −1 and λ = +1,
F (x) = G(x)2, and F (x) = G(x)[2−G(x)], respectively. It is also observed, when
λ = 0 that the transmuted distribution exactly approaches the parent distribution.

This recent quadratic rank transmutation map is used in many studies to ob-
tain a flexible and versatile model. Sharma, Singh & Singh (2014) proposed the
transmuted inverse Rayleigh distribution and used this density function in survival
analysis because its hazard function has the upside-down bathtub shape. Khan &
King (2014) proposed a generalized transmuted inverse Weibull distribution and
found it to found better than the parent distribution in real data application.
Similar interpretation are also observed by Shahzad & Asghar (2016), Ahmad,
Ahmad & Ahmed (2014), Khan, King & Hudson (2014), Aryal (2013), Merovci
(2013), Elbatal (2013) and Aryal & Tsokos (2011).

The rest of the paper is organized as follows: In Section 2, we have derived and
sketched the pdf and cdf of transmuted Singh-Maddala distribution. In Section
3, rth moment, moment generating function, quantile function, and random num-
ber generating process for transmuted Singh Maddala distribution are explored.
Survival analysis of the distribution such as the reliability function and hazard
rate function are obtained and presented graphically in Section 4. In Section 5,
order statistics and the densities of lowest, highest, and joint order statistics are
specified. Section 6 is about the TL-moments and its special cases. Methodology
for parameter estimation is discussed in Section 7. The real data set application
of the transmuted Singh-Maddala distribution is given in Section 8, and finally
study is concluded in Section 9.

2. Transmuted Singh-Maddala Distribution

The Singh-Maddala is a well-known distribution and is attributed to Singh &
Maddala (1976). It was initially used for modeling income data analysis, but due
to its better performance it is now popular in a range of fields including actuar-
ial science, economics, extreme value, and reliability studies. Zimmer, Keats &
Wang (1998) studied this model and concluded that the model perform better for
certain failure time data analysis. Shao, Wang & Zhang (2013) applied the ex-
tended Singh-Maddala (SM) distribution to flood frequency analysis. Brzezinski
(2014) modeled the empirical impact factor distribution and observed that the
SM distribution performance is much better than those of the models which were
previously applied to this type of data. Sakulski, Jordaan, Tin & Greyling (2014)
quantified several statistical distributions for the analysis of rainfall data such as
Extreme Value, Frechet, Log-normal, Log-logistic, Rice, SM, and Rayleigh proba-
bility distributions for summer, autumn, winter and spring seasons. Finally, they
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stated that for all seasons SM distribution fits acutely well. There is wide mono-
graphic and periodical literature available on it, for example see, Kleiber & Kotz
(2003). To enhance its applicability in various other fields, we introduced the
transmuted Singh-Maddala distribution in this section. The transmuted Singh-
Maddala (TSM) is more versatile and flexible than the SM distribution.

The TSM distribution is proposed using the quadratic rank transmutation map,
taking the SM distribution as a parent distribution. Let X be a random sample
of size n and come from the SM distribution with the pdf that has the following
form:

g(x;α, β, δ) =
αδxα−1

βα
[
1 + (x/β)α

]δ+1
, 0 ≤ x ≤ ∞. (3)

Its cdf is as
G(x;α, β, δ) = 1− 1[

1 + (x/β)α
]δ , (4)

where α and δ are the shape parameters (α, δ > 0), β is the scale parameter(β > 0).
The cdf and pdf of the TSM distribution is derived using (3) and (4) in the trans-
mutation mapping given in (1) and (2). The cdf and pdf of the TSM distribution
are obtained in the following form

F (x;α, β, δ, λ) =
[
1−

[
1 + (x/β)α

]−δ][
1 + λ

[
1 + (x/β)α

]−δ] (5)

and

f(x;α, β, δ, λ) =
αδxα−1

[
2λ+ (1− λ)

[
1 + (x/β)α

]δ]
βα
[
1 + (x/β)α

]2δ+1
, (6)

respectively.
In TSM distribution, the parameter λ is the transmutation parameter that

lies between [−1, 1]. TSM distribution becomes very appealing and applicable
due to its flexibility as it provides a more accurate fitting with the complex data.
The shapes of the pdf and cdf of the TSM distribution for various combinations
of all the four parameters are sketched in Figure 1 and Figure 2, respectively.
These figures indicate that the TSM density demonstrates more flexibility than
the parent SM distribution.

Note:∗ Here the representation α[i]β, shows the different values of the param-
eter, those starts from α and approachs β with the increment of i.
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Figure 1: The pdfs of various TSM distributions for values of the following parameters:
a) λ = −0.8[0.2]0.6∗; b) α = 2[1]7.0; c) β = 1.5[0.5]3.5; d) α = 3.0[0.5]5.0
and β = 1.5[0.5]3.5 with solid, dashed, dotted, dotdash, and longdash lines,
respectively.
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Figure 2: The pdfs of various TSM distributions for values of the following parameters:
a) λ = −0.8[0.2]0.6; b) α = 2[1]7.0; c) β = 1.5[0.5]3.5; d) α = 3.0[0.5]5.0
and β = 1.5[0.5]3.5 with solid, dashed, dotted, dotdash, and longdash lines
respectively.
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3. Basic Properties

In this Section, the main statistical properties for the TSM random variable,
X are derived.

3.1. Moments

Theorem 1. Let the random variable X follow the TSM distribution, then its rth
conventional moment has the following form

m′r = E(Xr) = βrΓ
(

1 +
r

α

)[λΓ(2δ − r/α)

Γ(2δ)
+

(1− λ)Γ(δ − r/α)

Γ(δ)

]
. (7)

Proof . By the definition, the rth conventional moment of TSM distribution is
given by

m′r = E(Xr) =

∫ ∞
0

xrf(x)dx

=

∫ ∞
0

αδxα+r−1

βα
(
1 + (x/β)α

)(2δ+1)

[
2λ+ (1− λ)

(
1 + (x/β)α

)δ]
dx

=
2λαδ

βα

∫ ∞
0

xα+r−1[
1 + (x/β)α

](2δ+1)
dx+

(1− λ)αδ

βα

∫ ∞
0

xα+r−1[
1 + (x/β)α

](2δ+1)
dx.

For convenience, y = (x/β)α is substitute in the above expression, and by
taking the simple steps, we obtain m′r = λβrB(1 + r/α, 2δ − r/α) + (1− λ)B(1 +
r/α, 2δ − r/α), where B(., .) is the beta type-II function, which is defined as∫ ∞

0

xa (1 + x)
−(b+a)

dx = B(a, b) = Γ(a)Γ(b)/Γ(a+ b),

Taking the simple step, we obtain the required result and this result only holds
r < αδ.

The mean and variance of the TSM distribution is obtained by using the result
(7), in the following form

E(X) = βΓ
(

1 +
1

α

)[λΓ(2δ − 1/α)

Γ(2δ)
+

(1− λ)Γ(δ − 1/α)

Γ(δ)

]
(8)

and

V ar(X) = β2Γ
(

1 +
2

α

)[λΓ(2δ − 2/α)

Γ(2δ)
+

(1− λ)Γ(δ − 2/α)

Γ(δ)

]
− β2

[
Γ
(

1 +
1

α

)]2[λΓ(2δ − 1/α)

Γ(2δ)
+

(1− λ)Γ(δ − 1/α)

Γ(δ)

]2
,

(9)

respectively.
The moment ratios such as the coefficient of variation (CV ), skewness (Sk)

and kurtosis (Kr) can be obtained by using (7) and (9) in the usual formulas.
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3.2. Quantile Function

The random variable X follows the pdf given in (6). The quantile function,
say Q(q), is the inverse of the equation F (Q(q)) = q,[

1− (1 + (Q(q)/b)α)−δ
][

1 + λ(1 + (Q(q)/b)α)−δ
]

= q.

Now simplifying it for Q(q), we get

Q(q) = β

[(
2(1− q)

1− λ+
√

(1 + λ)2 − 4λq

)δ
− 1

]1/α
.

To obtain the quartiles, deciles and percentiles of the TSM distribution simply
replace q with the desired value. The median of the TSM distribution is a special
case of the above expression and is given as

Median = β
[(

1− λ+
√

1 + λ2
)1/δ − 1

]1/α
.

3.3. Random Data Generation

One can generate random data from the distribution function of the TSM
distribution by using the inversion method[

1− (1 + (Q(q)/b)α)−δ
][

1 + λ(1 + (Q(q)/b)α)−δ
]

= u

This yields

X = β

[(
2(1− u)

1− λ+
√

(1 + λ)2 − 4λu

)δ
− 1

]1/α
, (10)

where u is a standard uniform variate. The X in (10) follows the TSM distribution
and can be readily used to generate the random data by taking suitable values of
the parameters α, β, δ and λ.

4. Survival Analysis

In lifetime data analysis reliability and hazard rate functions are most com-
monly used to describe the life of a component or system. This section discusses
these functions.

4.1. Reliability Function

The reliability function R(t) provides the probability of an item functioning for
a specific quantity of time without failure. The reliability function and cdf, F (t)
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are reverse of each other. As R(t) and F (t) represent the probability of survival
and failure respectively, the reliability function of the TSM distribution is given
by

R(t) = 1− F (t) =
[
1 +

( t
β

)α]−2δ[
λ+ (1− λ)

[
1 +

( t
β

)α]δ]
. (11)

4.2. Hazard Function

Hazard function is the ratio of pdf and the reliability function. Hazard rate is
important property of a random variable from survival analysis. It is used to find
the conditional probability of failure, given that it has survived at time t. The
hazard rate for the TSM distribution is given by

h(t) =
f(t)

R(t)
=

αβ
(
t
β

)α−1[
2λ+ (1− λ)

[
1 +

(
t
β

)α]δ ]
β
[
1 +

(
t
β

)α] [
λ+ (1− λ)

[
1 +

(
t
β

)α]−δ] . (12)

It can be observed that when α < 1, the behaviour of the hazard function
decreases and then move constantly. When α > 2, the behavior of the hazard
function is upside-down bathtub shaped (increasing to maximum and then de-
creasing). Thus, the TSM distribution shows a decreasing, increasing, or unimodal
hazard rate in specified ranges of the parametric values. The various shapes of
hazard function are presented in Figure 3 and 4 assume different combinations of
parametric values.
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Figure 3: The hazard functions of the TSM distribution when α < 1.
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Figure 4: The hazard functions of the TSM distribution when α > 2.

Many survival studies eventually necessitated the hazard functions that in-
stantly increased to maximum at the beginning of life and then gradually decreased
until they stabilized.

5. Order Statistics of Transmuted Singh Maddala
Distribution

Order statistics of a random variable that satisfie the condition of ordering
X1:n ≤ X2:n ≤ · · · ≤ Xn:n, are independently identically distributed. The order
statistics of the extreme (smallest and largest), median, and joint observations are
of great interest. Usually, interest lies in the lowest temperature in winter, the
median income distribution in a country, the highest flood flow in dams and joint
breaking strength. We derived the density of the order statistics in this section.

The density of the rth order statistics is defined by Arnold, Balakrishnan &
Nagaraja (1992) and is given as

fx(r)
(x(r); .) = Cr,n[F (x(r); .)]

r−1[1− F (x(r); .)]
n−rf(x(r); .), (13)

Where Cr,n = n!/[(r − 1)!(n− r)!].
The rth order statistics for the TSM distribution is obtained by substituting (5)
and (6) in (13), and is given by

fx(r)
(x(r); .) = Cr,n

αδ

βα

r−1∑
i=0

r−1∑
j=0

n−r∑
k=0

(
r − 1

i

)(
r − 1

j

)(
n− r
k

)
(−1)

i

× λn+j−r−k (λ− 1)
k
xα−1(r)

[
1 +

(
x(r)/β

)α]2δ(n−j+1)+δ (i+j+k)+1

×
[
2λ+ (1− λ)

[
1 +

(
x(r)/β

)α]δ]
.

(14)
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The density of the smallest order statistic X(1) has the following form

fX(1)
(x(1)) =

nαδ

βα

n−1∑
i=0

(
n− 1

i

)
λn−i−1 (λ− 1)

i
xα−1(1)

[
1 +

(
x(1)/β

)α]−δ(2n+i)−1
×
[
2λ+ (1− λ)

[
1 +

(
x(1)/β

)α]δ]
.

The density of the nth order statistic, X(n) is obtained from (14) in the following
form

fx(n)
(x(n); .) =

nαδ

βα

n−1∑
i=0

n−1∑
j=0

(
r − 1

j

)(
n− 1

k

)
(−1)

i
λjxα−1(n)

×
(
1 +

(
x(n)/β

)α)−δ(i+j+2)−1 [
2λ+ (1− λ)

[
1 +

(
x(n)/β

)α]δ]
.

The joint pdf of X(r) and X(s) (1 < r ≤ s ≤ n) for the TSM distribution is derived
by using the general expression defined by Balakrishnan & Cohen (1991). So, the
joint pdf is obtained in the following form

fX(r)X(s)
(u, v) = Cr,s,n

(αδ)2(uv)α−1

β2α

s−r−1∑
i=0

r+i−1∑
j=0

r+i−1∑
k=0

s−r−i−1∑
l=0

s−r−i−1∑
m=0

n−s∑
t=0

×
(
s− r − 1

i

)(
r + i− 1

j

)(
r + i− 1

k

)(
s− r − i− 1

l

)
×
(
s− r − i− 1

m

)
(−1)i+j+l (λ− 1)

t
λk+m+n−s−t

× [1 + (u/β)
α

]
−δ (j+k+2)−1

(1 + (v/β)
α

)
−δ(l+m+t)−2δ(n−s+1)−1

×
[
2λ+ (1− λ) [1 + (v/β)

α
]
δ
]
,

where Cr,s,n = n!
[(r−1)!(s−r−1)!(n−s)!] .

6. Generalized TL-Moments

The TL-moments are a worthwhile contribution to extreme values analysis.
These moments, based on order statistics, describe the shape of the probability
distribution in a better way than conventional methods. Elamir & Seheult (2003)
introduced the rth generalized TL-moments as follows

T (s,t)
r = r−1

r−1∑
k=0

(−1)k
(

r − 1

k

)
E (Xr+s−k:r+s+t) , r = 1, 2, . . . ; t, s = 0, 1, 2 . . . (15)

where T (s,t)
r is a linear function of the expectations of the order statistics s and

t. The s and t are the possible trimming lowest and highest values, respectively.
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The expression of the expected value of the (r + s − k)th order statistics of the
random sample of size (r + s+ t) is given as

E (Xr+s−k:r+s+t) =
(r + s+ t)!

(r + s− k − 1)(t+ k)!

∫ ∞
0

[F (x)]r+s−k−1 [1 − F (x)]t+k dF (x), (16)

where F is the cdf.
The generalized TL-moments for TSM distribution are derived by substituting

(5), (6) and (16) in (15), and we get

T
(s,t)
r =

r−1∑
k=0

r+s−k−1∑
i=0

t+i+k∑
j=0

(
r + s− k − 1

i

)(
r − 1

k

)(
t + i+ k

j

)
(−1)i+kδβ

× λt+i+k−j
(r + s+ t)! (1 − λ)j Γ(1 + 1/α)

r ( r + s− k − 1)! (t + k)!

[
2λΓ

[
2δ(t+ i+ k + 1) − δj − 1/α

]
Γ
[
2δ(t+ i+ k + 1) − δj + 1

]
+

(1 − λ)Γ
[
2δ(t+ i+ k + 1) − δ(j + 1) − 1/α

]
Γ
[
2δ(t+ i+ k + 1) − δ(j + 1) + 1

] ]
.

(17)

This general expression of TL-moments is used to obtain its special cases such as
L-moments, TL-moments, LH-moments and LL-moments. First, two TL-moments
T

(s,t)
1 and T (s,t)

2 are used to calculate the location and dispersion of the data, re-
spectively; the ratio of TL-moments τ (s,t)1 = T

(s,t)
2

/
T

(s,t)
1 , τ (s,t)3 = T

(s,t)
3

/
T

(s,t)
2

Zand τ
(s,t)
4 = T

(s,t)
4

/
T

(s,t)
2 are the CV , Sk, and Kr, characteristic of the prob-

ability distribution, respectively. In this way, first four TL-moments are used to
summarize the characteristics of the probability distribution.

The L-, TL-, LH-, and LL-moments are independently introduced by different
authors, but they became the special cases of the generalized TL-moments. These
moments are derived for the TSM distribution using (17) in the following sub-
sections.

6.1. The TL-Moments (1,1)

Generally, it is possible to trim any number of the smallest and largest values
from the ordered observation. As a special case, only extreme values (s = t =
1) from both sides are trimmed to derive the rth TL-moments. The following
expression is obtained

T 1
r =

r−1∑
k=0

r−k∑
i=0

i+k+1∑
j=0

(
r − k
i

)(
r − 1

k

)(
i+ k + 1

j

)
(−1)i+kλi+k−j+1δβ

× (r + 2)! (1− λ)
j

Γ(1 + 1/α)

r ( r − k)! (k + 1)!

[
2λΓ

[
2δ(i+ k + 2)− δj − 1/α

]
Γ
[
2δ(i+ k + 2)− δj + 1

]
+

(1− λ)Γ
[
2δ(i+ k + 2)− δ(j + 1)− 1/α

]
Γ
[
2δ(i+ k + 2)− δ(j + 1) + 1

] ]
.

To derive the first four TL-moments, substitute r = 1, 2, 3, 4.
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6.2. The L-Moments

When none of the observation is trimmed (s = t = 0) from the ordered sample,
the generalized TL-moments reduced to L-moments. Basically L-moments intro-
duced by Hosking (1990). The rth L-moments for a TSM distribution is given
as

T 0
r =

r−1∑
k=0

r−k−1∑
i=0

i+k∑
j=0

(
r − k − 1

i

)(
r − 1

k

)(
i+ k

j

)
(−1)i+kδβ

× λi+k−j (r)! (1− λ)
j

Γ(1 + 1/α)

r ( r − k − 1)! (k)!

[
2λΓ

[
2δ(i+ k + 1)− δj − 1/α

]
Γ
[
2δ(i+ k + 1)− δj + 1

]
+

(1− λ)Γ
[
2δ(i+ k + 1)− δ(j + 1)− 1/α

]
Γ
[
2δ(i+ k + 1)− δ(j + 1) + 1

] ]
.

6.3. The LH-Moments

LH-moments were proposed by Wang (1997), and these moments describe the
upper part of the data more precisely. These moments give more weight to the
upper values (s = s, t = 0) of the data and the theoretical LH-moments for the
TSM distribution are derived as given below

T (s)
r =

r−1∑
k=0

r+s−k−1∑
i=0

i+k∑
j=0

(
r + s− k − 1

i

)(
r − 1

k

)(
i+ k

j

)
(−1)i+kδβ

× λi+k−j (r + s)! (1− λ)
j

Γ(1 + 1/α)

r ( r + s− k − 1)! (k)!

[
2λΓ

[
2δ(i+ k + 1)− δj − 1/α

]
Γ
[
2δ(i+ k + 1)− δj + 1

]
+

(1− λ)Γ
[
2δ(i+ k + 1)− δ(j + 1)− 1/α

]
Γ
[
2δ(i+ k + 1)− δ(j + 1) + 1

] ]
.

6.4. The LL-Moments

LL-moments progressively reflect the characteristics from the lower part of dis-
tribution. Bayazit & Onoz (2002) introduced these moments, and later it became
the special case of the generalized TL-moments, when s = 0 and t = t in (17).
The following is the expression of the rth LL-moments

T (t)
r =

r−1∑
k=0

r−k−1∑
i=0

t+i+k∑
j=0

(
r − k − 1

i

)(
r − 1

k

)(
t + i+ k

j

)
(−1)i+kδβ

× λt+i+k−j (r + t)! (1− λ)
j

Γ(1 + 1/α)

r ( r − k − 1)! (t + k)!

[
2λΓ

[
2δ(t+ i+ k + 1)− δj − 1/α

]
Γ
[
2δ(t+ i+ k + 1)− δj + 1

]
+

(1− λ)Γ
[
2δ(t+ i+ k + 1)− δ(j + 1)− 1/α

]
Γ
[
2δ(t+ i+ k + 1)− δ(j + 1) + 1

] ]
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The LH and LL-moments can be evaluated for any value of t and s, but the
preferable value for both is upto 4.

7. Parameter Estimation by Maximum Likelihood

In this section, interest is to estimate the parameters of the TSM distributiom
by maximum likelihood estimation. LetX1, X2, . . . , Xn be a random sample drawn
from TSM(α, β, δ, λ) with a distribution of size n. Then, the sample likelihood
function for θ = (α, β, δ, λ)T is given as

L(X, θ) =
(αδ
β

)n n∏
i=1

xα−1i [1 + (xi/β)
α

]
−2δ−1

[
2λ+ (1− λ) [1 + (xi/β)

α
]
δ
]
.

The sample log-likelihood function corresponding to the above expression is ob-
tained as

`(X, θ) = n lnα+ n ln δ − nα lnβ + (α− 1)

n∑
i=1

lnxi − (2δ + 1)

×
n∑
i=1

ln [1 + (xi/β)
α

] +

n∑
i=1

ln
[
2λ+ (1− λ) [1 + (xi/β)

α
]
δ
]
.

(18)

Taking the first order derivatives (Dα, Dβ , Dδ, Dλ) of (18) with respect to the
parameters, and matching the resulting expressions equal to zero to find the max-
imum likelihood estimators. The first order derivatives are as follows

Dα =
n

α
− n lnβ +

n∑
i=1

lnxi − (2δ + 1)

n∑
i=1

(xi/β)
α−1

ln (xi/β)

[1 + (xi/β)
α

]

+

n∑
i=1

δ (1− λ) (xi/β)
α

[1 + (xi/β)
α

]
δ

ln (xi/β)

2λ+ (1− λ) [1 + (xi/β)
α

]
δ

= 0

(19)

Dβ =
nα

β
+ (2δ + 1)

n∑
i=0

αxi (xi/β)
α

[1 + (xi/β)
α

]

+

n∑
i=1

αδxi (1− λ) (xi/β)
α−1

[1 + (xi/β)
α

]
δ

β2
[
2λ+ (1− λ) [1 + (xi/β)]

δ ] = 0

(20)

Dδ =
n

δ
+ 2

n∑
i=0

ln (1 + (xi/β)
α

) +

n∑
i=1

αδ (1− λ) (xi/β)
α

[1 + (xi/β)
α

]
δ−1

β
[
2λ+ (1− λ) [1 + (xi/β)

α
]
δ ]

= 0

(21)

Dλ =

n∑
i=1

2− [1 + (xi/β)
α

]
δ

2λ+ (1− λ) [1 + (xi/β)
α

]
δ

= 0 (22)
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The exact closed forms of maximum likelihood estimators are not possible, so
the estimates α̂, β̂, δ̂, and λ̂ of parameters α, β, δ and λ, respectively are obtained
by analytically solving the above four nonlinear equations. Solving the nonlinear
system of equations is conveniently possible by quasi-Newton algorithm.

Let Dθ = (Dα, Dβ , Dδ, Dλ)
T be the TSM-score vector, then by definition, the

TSM-expected information for θ can be computed as Iθ = E
[
DθD

T
θ

]
. Thus, the

elements Iθiθj = E
[
DθiD

T
θj

]
from the matrix are derived, shown in Appendix, and

it is observed that the matrix is not singular. In particular, the diagonal elements
of the inverse Fisher information matrix can be taken to obtain the standard errors
of the parameter estimates. Under general regularity conditions, the asymptotic
distribution of

(
θ̂ − θ

)
is multivariate normal N4

(
0, I−1θ

)
. Consequently, the

approximately multivariate normal distribution for θ̂ can be used to obtain the
two sided confidence intervals for the parameters in θ. Furthermore, likelihood
ratio (LR) statistic can be used to compare the TSM distribution with its special
model. Let the as consider the partition θ =

(
θTi , θ

T
r

)T , where θTi = (α, β, δ), and
θTr = (λ). The LR statistic to test the null hypothesis H0 : λ = 0 versus the
alternative hypothesis Ha : λ 6= 0 is given by w = 2

[
`
(
θ̂
)
− `
(
θ̃
)]

, where `
(
θ̂
)
,

and `
(
θ̃
)
are the estimates under the restricted and unrestricted log-likelihood,

respectively. Moreover, the sub-matrix of the full information matrix, when λ = 0
coincides with the SM-information matrix. In this case, the columns of the matrix
are linearly independent and none of the column is of 0s. In this case, it also leads
to a nonsingular information matrix.

8. Numerical Computations

8.1. Simulation Study

A simulation study has been carried out for two purposes: first, to investigate
the precision and accuracy of the estimates; second, to explore the impact of
sample size on estimation techniques. Keeping this in mind, we present empirical
analysis based on simulated data; the generation of the TSM distribution can
be easily obtained through the derived result (10). The data is simulated using
the R-language, assuming different sample sizes, n ∈ (25, 50, 100 and 200), and
assuming different values of each parameter. Each sample is repeated 1000 times.
For each estimate θ̂ =

(
α̂, β̂, δ̂, λ̂

)
, we computed the bias and the mean square

error (MSE), respectively as

Bias
(
θ̂
)

=
1

n

n∑
i=1

(
θ̂i − θ

)

MSE
(
θ̂
)

=
1

n

n∑
i=1

(
θ̂i − θ

)2
.
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The results are presented in Tables 1 and 2. These tables are self-explanatory. In
general, the accuracy and efficiency is attained as the sample size increase.

Table 1: Average estimates for various choices of the parameters and sample size.

n α β δ λ α̂ β̂ δ̂ λ̂

25 2.5 2.0 2.0 −0.5 2.6784 2.3462 2.5239 −0.0688

0.5 2.0897 1.9120 2.5087 0.0730

3.5 2.0 2.0 −0.5 4.0372 2.2811 1.2898 −0.0758

0.5 3.8497 1.9651 2.5701 0.0603

2.5 3.0 2.0 −0.5 1.8855 2.3270 2.6322 −0.0529

0.5 1.9510 2.5608 1.7446 0.0746

2.5 2.0 0.5 −0.5 2.5788 1.7363 0.2978 −0.0762

0.5 2.3554 2.5029 0.3170 0.0807

50 2.5 2.0 2.0 −0.5 2.7472 2.4980 2.4219 −0.0659

0.5 3.1863 1.4570 1.6298 0.0388

3.5 2.0 2.0 −0.5 2.6634 2.5811 2.8039 −0.0427

0.5 3.6497 1.5519 1.5268 −0.0349

2.5 3.0 2.0 −0.5 1.6488 3.2087 2.7276 −0.0691

0.5 1.9257 2.5297 1.1607 0.0817

2.5 2.0 0.5 −0.5 2.0355 1.2383 0.4825 −0.0735

0.5 2.3171 1.8640 0.4398 0.1840

100 2.5 2.0 2.0 −0.5 2.1886 1.8115 2.5297 −0.0597

0.5 1.6492 2.1013 2.5552 0.0485

3.5 2.0 2.0 −0.5 1.6241 1.7684 1.7972 −0.0605

0.5 3.8894 1.6730 1.6799 0.0207

2.5 3.0 2.0 −0.5 2.4683 2.2831 2.5560 −0.0626

0.5 2.6784 3.3462 2.5239 0.0688

2.5 2.0 0.5 −0.5 2.0897 1.9120 1.5087 −0.0860

0.5 2.3372 1.2811 1.8982 0.0758

200 2.5 2.0 2.0 −0.5 3.6497 1.9651 2.3701 −0.0663

0.5 2.8855 2.3270 1.8322 0.0524

3.5 2.0 2.0 −0.5 3.2510 1.8608 1.7446 −0.0406

0.5 3.7108 1.7363 2.1978 0.0632

2.5 3.0 2.0 −0.5 2.3554 3.1029 2.1970 −0.0870

0.5 2.7472 2.9480 1.8219 0.0595

2.5 2.0 0.5 −0.5 2.1863 1.9570 1.2298 −0.0488

0.5 2.6634 2.5811 0.8039 0.4267
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Table 2: Mean square errors for various choices of the parameters and sample size.

n α β δ λ α̂ β̂ δ̂ λ̂

25 2.5 2.0 2.0 −0.5 0.0567 0.0790 0.1781 0.0095

0.5 0.0967 0.0624 0.0818 0.0589

3.5 2.0 2.0 −0.5 0.1399 0.2436 0.1206 0.0256

0.5 0.2180 0.0808 0.0929 0.0026

2.5 3.0 2.0 −0.5 0.1850 0.1804 0.2058 0.0656

0.5 0.0663 0.0390 0.0775 0.0134

2.5 2.0 0.5 −0.5 0.2124 0.1228 0.1839 0.0380

0.5 0.1557 0.0572 0.0828 0.0095

50 2.5 2.0 2.0 −0.5 0.0455 0.1167 0.0695 0.0266

0.5 0.0848 0.0244 0.0725 0.0282

3.5 2.0 2.0 −0.5 0.1466 0.2162 0.0551 0.0161

0.5 0.2167 0.0842 0.2100 0.0066

2.5 3.0 2.0 −0.5 0.0653 0.0371 0.0834 0.0277

0.5 0.0845 0.1439 0.1362 0.0857

2.5 2.0 0.5 −0.5 0.1954 0.0851 0.0590 0.0564

0.5 0.0983 0.0433 0.1142 0.0503

100 2.5 2.0 2.0 −0.5 0.0105 0.0731 0.1441 0.0681

0.5 0.0762 0.0986 0.0691 0.0198

3.5 2.0 2.0 −0.5 0.1048 0.1611 0.0492 0.0805

0.5 0.0656 0.0722 0.0608 0.0380

2.5 3.0 2.0 −0.5 0.0401 0.1376 0.1281 0.0631

0.5 0.0567 0.0790 0.0781 0.0095

2.5 2.0 0.5 −0.5 0.0767 0.0924 0.0818 0.0589

0.5 0.1399 0.1436 0.1206 0.0256

200 2.5 2.0 2.0 −0.5 0.0180 0.0082 0.0929 0.0026

0.5 0.0085 0.0804 0.0058 0.0656

3.5 2.0 2.0 −0.5 0.0663 0.0390 0.0075 0.0134

0.5 0.0124 0.0228 0.0839 0.0380

2.5 3.0 2.0 −0.5 0.0557 0.0572 0.0828 0.0095

0.5 0.0455 0.0167 0.0695 0.0266

2.5 2.0 0.5 −0.5 0.0087 0.0244 0.0325 0.0282

0.5 0.0466 0.0162 0.0551 0.0161

8.2. Real Application

In this section, we present the empirical studies to compare the TSM and SM
distributions through two real data sets. The first data set is about bladder cancer
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patients, and the second data set is the Pakistani annual household expenditure
data. In order to compare the two distribution models, we consider AIC (Akaike
information criterion), AICC (corrected Akaike information criterion), and BIC
(Bayesian information criterion). The best fitted distribution for the data always
has the lowest value of the −2`, AIC, AICC, and BIC. Herein

AIC = 2k − 2` , AICC = AIC +
2k(k + 1)

n− k − 1
and BIC = −2`+ k × log(n)

where k is the number of parameters in the statistical model, n is the sample size,
and ` is the maximized value of the log-likelihood function in the model under
considered.

The first data set represents the remission times (in months) of a random sam-
ple of 128 bladder cancer patients. This data set is reported in Lee & Wang (2003).
Table 3 shows parameter estimations for each one of the five fitted distributions
for this data set and the values of AIC, BIC and AICC values. The values in Table
3 indicate that the TSM distribution is a strong competitor to other distributions,
those are considered here.

Table 3: Estimated parameters of the TSM, SM, Beta Pareto, Exponentiated Pareto
and Pareto distribution for the remission times dataset.

Model Parameter Estimate AIC BIC AICC

α̂ = 1.4127

Transmuted β̂ = 17.2260 827.4 838.8 827.7
Singh Maddala δ̂ = 2.2299

λ̂ = 0.4932

α̂ = 1.0822

Singh Maddala β̂ = 169.7710 832.1 844.1 832.2
δ̂ = 23.3425

k̂ = 0.0109

Beta-Pareto β̂ = 0.0800 970.7 979.2 970.9
â = 4.8049

b̂ = 100.5023

k̂ = 0.4722

EPareto β̂ = 0.0800 992.2 997.9 992.3
α̂ = 4.1518

Pareto k̂ = 0.1519 1189.3 1192.1 1189.3
β̂ = 0.0800

The variance-covariance matrix of the MLEs under the TSM distribution for
this data set is computed as

I(θ̂)−1 =


0.03575211 −2.162870 −0.1696611 −0.06911613

−2.16287024 173.784115 12.6916428 6.56234277

−0.16966107 12.691643 1.6940682 −0.01112940

−0.06911613 6.562343 −0.0111294 0.58391637

.
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Thus, the variances of the MLE of α, β, δ, and λ are var(α̂) = 0.03575 , var(β̂) =

173.78411, var(δ̂) = 1.69406 and var(λ̂) = 0.58391. Therefore, 95% confidence
intervals for α, β, δ, and λ are [1.042173, 1.783376], [0, 43.0642], [0.4.781056] and
[−1, 1], respectively.

The density plot over the empirical histogram, cdfs of the fitted models over
the empirical cdf and PP-plots are presented in Figure 5, Figure 6 and Figure 7,
respectively to compare the TSM and SM models. All the criteria showed that
the TSM model provided good fit.
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Figure 5: Estimated densities and empirical histogram for the remission times dataset.
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Figure 6: Empirical, fitted TSM, and SM cdf for the remission times dataset.
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Figure 7: P-P plots for fitted Transmuted Singh-Madala and the Singh-Madala distri-
bution for the remission times dataset.

The household expenditure data is a good tool to measure the living standards
and consumption patterns in a society. The best fit distribution provides reliable
knowledge about data patterns, to make policies those lead society in the direction
of development. In this study, we used the average monthly household expendi-
ture data from the Household Integrated Economic Survey (HIES) for 2010-2011
conducted by Pakistan Bureau of Statistics annually. HIES provides reliable data
about the expenditure patterns of people of Pakistan at national level. The sum-
mary statistics of this data set is given in Table 4.

The MLE parameter estimates, AIC, AICC, BIC and KS-test statistic values
corresponding to the fitted models for the expenditure data set are presented in
Table 5. The results indicate that the TSM distribution provides a better fit than
the parent distribution. The likelihood ratio test statistic is also computed to test
the hypothesis H0 : λ = 0 versus H1 : λ 6= 0, and we obtain the statistic 486.76
with a p-value of almost 1. Therefore, the test statistic does not support the null
hypothesis and leads us to conclude that the TSM model is the better fitted model.

Table 4: Summary Statistics of expenditure data, HIES, Pakistani.

Sample Size 15510
Minimum expenditure 325.0
Maximum expenditure 93300.0
0.20 Percentile 4117.0
0.40 Percentile 5342.0
0.60 Percentile 6677.0
0.80 Percentile 8782.2
Median 5969.0
Mean 6845.0
Standard deviation 4120.234
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I(θ̂)−1 =


0.00269 −3.11107 −0.00108 −0.00030

−3.11107 31447.80291 1.59301 18.18336

−0.00108 1.59301 0.00059 0.00008

−0.00030 18.18336 0.00008 0.01209

.
Thus, the standard deviation (sd) of the MLE for estimates and λ are sd(α̂) =

0.51936, and sd(β̂) = 177.33528, sd(δ̂) = 0.02436, sd(λ̂) = 0.10997, respectively:
therefore, 95% confidence intervals for the α, β, δ and λ are [3.83943, 4.04302],
[5188.248, 5883.402], [0.80352, 0.89902] and [0.30195, 0.73304] respectively.

Table 5: Estimated parameters of TSM and SM distribution by MLE.

Model Parameter Estimate AIC BIC AICC KS
α̂ =3.9412

Transmuted β̂ = 5535.8248 291580.6 291611.2 291580.6 0.02657
Singh Maddala δ̂ = 0.6013

λ̂ = 0.5175

α̂ = 3.2104

Singh Maddala β̂ = 6262.0926 293744.2 293767.1 293744.2 0.15124
δ̂ = 23.3425

Figure 8 presents the density over the histogram of the data and Figure 9
shows the fitted cdf of the TSM and SM distribution on the empirical cdf of the
expenditure data. The PP-plots for the both the distributions are given in the
Figure 10 for the observed expenditure data set. All three plots indicates that
the TSM distribution models the data better than the SM distribution, so we can
suggest the proposed distribution to model the such kind of data sets.
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Figure 8: Estimated densities and empirical histogram for the household expenditures
dataset.
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Figure 9: Empirical, fitted TSM and SM cdf for the household expenditures dataset.
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Figure 10: P-P plots for fitted TSM and SM distribution for the household expenditures
dataset.

The first four moments and moment ratios are presented in Table 6. It is
noticed that the mean (1st moment) is highest in the LH-moments and lowest in
LL-moments case. The reason for this is that the LH-moments and LL-moments
are introduced to present the high and low parts of the data, respectively. The
variation (2nd moment) in the case of TL-moments and L-moments is lowest and
highest, respectively because TL-moment trimmed the extreme values of the data
but L-moments is based on the full data. In the same way, we can interpret
the value of the CV . It can also be observed that the Sk and Kr are high for
LH-moments, which is due to trimming of the lower value from the data.
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Table 6: First four L-, TL-, LL- and LH-moments for the household expenditure data.

rth L-moments TL-moments LL-moments LH-moments

1st 5781.51 5364.57 4286.17 7276.85

2nd 1495.34 677.626 808.807 1434.21

3rd 416.942 100.398 33.9845 521.938

4th 365.965 74.6485 99.9120 357.544

CV 0.25864 0.12631 0.18875 0.19709

Sk 0.27882 0.14816 0.04201 0.36391

Kr 0.24473 0.11016 0.12353 0.24929

9. Conclusions

The proposed transmuted Singh-Maddala distribution is the generalization of
the Singh-Maddala distribution. The main motivation to generalize a standard
distribution is to provide a more flexibile distribution that will demonstrate the
behavior of the hazard function as it necessitates for survival analysis. To show the
flexibility of new density, the plots of the pdf and cdf have been presented. We have
derived moments and other basic properties from the proposed distribution. One of
the interesting points is that it has a upside down bathtub-shaped hazard function
with the other shapes. The densities of the lowest, highest, rth order statistics,
the joint density of order statistics, and TL-moments have also been studied. The
parameter estimation is obtained by the maximum likelihood estimation using a
Newton-Raphson approach. Here, five goodness of fit criteria are considered to
select the most appropriate model. In terms of all of these criteria and the results
of the real life data set, we found that the transmuted Singh-Maddala distribution
is superior to its parent distribution. Finally, we hope that the proposed model
will be more useful for income distribution, actuarial, meteorological and survival
data analysis.
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