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Abstract

In this article we develop the Inter-battery Factor Analysis (IBA) by
using PLS (Partial Least Squares) methods. As the PLS methods are algo-
rithms that iterate until convergence, an adequate intervention in some of
their stages provides a solution to problems such as missing data. Specifi-
cally, we take the iterative stage of the PLS regression and implement the
“available data” principle from the NIPALS (Non-linear estimation by Itera-
tive Partial Least Squares) algorithm to allow the algorithmic development
of the IBA with missing data. We provide the basic elements to correctly
analyse and interpret the results. This new algorithm for IBA, developed
under the R programming environment, fundamentally executes iterative
convergent sequences of orthogonal projections of vectors coupled with the
available data, and works adequately in bases with or without missing data.

To present the basic concepts of the IBA and to cross-reference the re-
sults derived from the algorithmic application, we use the complete Linnerud
database for the classical analysis; then we contaminate this database with a
random sample that represents approximately 7% of the non-available (NA)
data for the analysis with missing data. We ascertain that the results ob-
tained from the algorithm running with complete data are exactly the same
as those obtained from the classic method for IBA, and that the results with
missing data are similar. However, this might not always be the case, as it
depends on how much the ‘original’ factorial covariance structure is affected
by the absence of information. As such, the interpretation is only valid in
relation to the available data.

Key words: Algorithm, Convergence, Missing data, Partial Least Squares
Regression.
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Resumen

En este artículo se desarrolla el Análisis Factorial Interbaterías (AIB)
mediante el uso de métodos PLS (Partial Least Squares). Ya que los méto-
dos PLS son algoritmos que iteran hasta la convergencia, permiten ser inter-
venidos adecuadamente en algunas de sus etapas para tratar problemas tales
como datos faltantes. Específicamente se toma la fase iterativa de la regre-
sión PLS y se implementa el principio de “datos disponibles” del algoritmo
NIPALS (Non-linear estimation by Iterative Partial Least Squares) para per-
mitir el desarrollo algorítmico del AIB con datos faltantes, proporcionando
los elementos básicos para el análisis e interpretación de los resultados. Este
nuevo algoritmo para AIB elaborado bajo el entorno de programación R,
fundamentalmente realiza secuencias iterativas convergentes de proyecciones
ortogonales de vectores emparejados con los datos disponibles y funciona
adecuadamente en bases con y sin datos faltantes.

Para efectos de presentar los conceptos básicos del AIB y cotejar los
resultados derivados de la aplicación algorítmica, se toma la base de datos
completa de Linnerud para el análisis clásico; y luego esta base es conta-
minada con una muestra aleatoria que representa aproximadamente el 7%
de los datos no disponibles (NA) para el análisis con datos faltantes. Se
comprueba que con datos completos los resultados derivados del algoritmo
son idénticos a los obtenidos mediante el desarrollo del método clásico para
AIB, y que los resultados con datos faltantes son similares, aunque esto no
siempre será así porque ello dependerá de que tanto se afecta la estructura de
covarianza factorial ‘original’ ante la cantidad de información ausente; por
tanto la interpretación será valida solo en relación con los datos disponibles.

Palabras clave: algoritmo, convergencia, datos faltantes, regresión con mí-
nimos cuadrados parciales.

1. Introduction

Among the PLS methods created by Wold (1985), the most important are NI-
PALS, PLS-Regression (PLS-R) and PLS-Path Modeling (PLS-PM), which were
designed for the treatment of one, two and k quantitative data matrices, respec-
tively. PLS-R studies the relationship between two groups of variables X and Y
even in the presence of multicollinearity, and has been applied with great success
in fields such as Chemometrics, Sensometrics, Genetics, Medical Imaging (Pérez
& González 2013), among others.

These PLS methods are convergent algorithms, and, as such, they allow in-
tervention in some of their stages or phases in order to optimally handle missing
data problems, mixed data, etc. For this reason, the development of PLS algo-
rithms that replace classical methods like IBA is important (that being the main
focus of this article), as it happened with NIPALS (Wold 1966) for the Principal
Component Analysis (PCA) or GNM-NIPALS (Aluja & González 2014) for the
treatment of a mixed data matrix.

In recent literature (Tenenhaus & Tenenhaus 2011), IBA is considered as a spe-
cial case of the Regularized Generalized Canonical Correlation Analysis (RGCCA)
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for the optimization problem of two continuous data blocks that take advantage
of the flexibility of PLS-PM. See the rgcca() function from the RGCCA package
(Tenenhaus & Guillemot 2013).

When studying interrelations between two groups of variables Xn,p and Yn,q
via IBA (Tucker 1958, Tenenhaus 1998), it is frequent to find missing data. I such
a case, it is not possible to apply the classical method without suppressing or esti-
mating the individuals whose data is missing as IBA requires the spectral decompo-
sition of the product between the inter-group covariance matrices X ′Y Y ′X, (see,
for example the interbat() function from the plsdepot package (Sanchez, G. 2012)).

However, the PLS-R algorithmic regression methods (Tenenhaus 1998) with
one (PLS1) or multiple (PLS2) Y variables provide a solution alternative as they
are based on the regression concepts. In effect, this can be seen as an orthogonal
projection between vectors of available data according to the basis of the NIPALS
algorithm for missing data, without resorting to data imputation.

PLS2 investigates the th and uh components in each group X and Y and for
each stage h = 1, 2, . . . , s1, maximizing cov(th, uh). These Xh−1ah and Yh−1bh
components are a linear combination of the variables from the respective groups.
The ideas behind the PLS2 algorithm are retaken during the convergence phase, as
in the limit, and through successive replacements. Then, the stationarity equations
associated with the first stage of IBA are verified in order to obtain the first λ1
eigenvalue associated with the product between the covariance matrices for each
h stage.

After obtaining convergence for orthonormal ah, the Xh−1 − thp′h matrices of
the first group, and the Yh−1thb′h matrices of the second group are deflated, both
with respect to th, in order to proceed to the next iteration on stage h + 1 (see
section 2.3.1).

However, these deflated matrices must be modified, taking the formXh−1−tha′h
in the first group and Yh−1 − uhb′h in the second group. In this way, IBA and its
properties are obtained via PLS with the previous orthonormalization of bh (see
section 3).

In this article, a PLS algorithm for the IBA method is developed under the
R environment, breaking the rigidity of the classical method, and contributing to
a solution to the missing data problem. This problem is solved by adequately
intervening in certain phases of the algorithm and implementing the available data
principle, according to the NIPALS method.

In section two, the methodologies inherent to the process are presented. Firstly
a recapitulation of IBA is created, and then the NIPALS and PLS2 methods are
described, including the pseudo-algorithms, which are useful in the algorithmic
solution proposed for IBA.

Chapter 3 ties together the basic concepts of the aforementioned procedures,
and proposes the basic structure of the algorithm, which executes classic IBA with
complete data and an IBA with missing data (see IBA R code in Appendix).

1s = range(X′Y )
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Section four describes the application: first, the linnerud database which is,
taken from the calibrate package, Graffelman (2013). This database is used for the
application of the IBA algorithm, both with the complete data, and the missing
data, which is the result of randomly contaminating 7% of the data set (declaring
them NA (not available) for the analysis). Subsequently, the results are presented,
highlighting the equivalences with the classic IBA (complete data), and puttying
an emphasis on the analysis performed an missing data, without forgetting that
these results, regardless of their likeness, must be upheld solely from an available
data starting point.

Finally, section five is dedicated to the main conclusions and recommendations
derived from the study. We particularly highlight future investigations oriented
towards IBA with missing data and mixed data that optimally quantify the qual-
itative variables from a k-dimensional function starting point, according to the
GNM-NIPALS method (Aluja & González 2014).

2. Methodologies

2.1. Inter-Battery Factor Analysis

The Inter-battery Analysis (developed by Tucker 1958) starting points are two
data sets X, and Y, containing n individuals and p and q variables (columns)
respectively, in which the th = Xah and uh = Y bh components are investigated.
Their own group is then explained and it is always as correlated as possible. It is
imposed on ah ∈ Rp and bh ∈ Rq to be orthonormal.

The objective is then to maximize the covariance or simultaneously to maximize
the product between their variances and correlation, which is:

max[cov(Xah, Y bh)] = max[r(Xah, Y bh)
√
v(Xah)

√
v(Y bh)]

This method is, in itself, a compromise between the Canonical Analysis (CA)
of X and Y that max[r(Xah, Y bh)] and the Principal Component Analysis (PCA)
of X that max[v(Xah)] and Y that max[v(Y bh)].

The variables are supposed to be centered and reduced; hence, the covariance,
or intra-X correlation matrix is R11 = 1

nX
′X, and the intergroup matrix corre-

sponds to R12 = 1
nX
′Y ; R21 = R′12. Observe that if A contains every ah then:

p∑
h

v(th) = ||XA||2 = trace(XAA′X ′) = trace(X ′X) = p

equally:
q∑
h

v(uh) = q
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2.1.1. Optimal Solution

From the covariance:

γh = cov(Xah, Y bh) = cov(th, uh) =
1

n
t′huh

= a′hR12bh = cos(ah, R12bh)||R12bh||

We can deduce that we have reached reach an optimal value when the cosine
equals 1, i.e., when the vector ah is collinear with R12bh, and so γh = ||R12bh||.
In the same way, we reach an optimal value when the vector bh is collinear with
a′hR12, and with this taken into account, γh = ||R21ah||.

Applying the langrangian to cov(Xah, Y bh) under a′hah = 1 and b′hbh = 1 we
obtain the following system:

L =
1

n
a′X ′Y b− λ(a′a− 1)− µ(b′b− 1)

which derivatives δL
δa = 0 and δL

δb = 0 and leads to:

1

n
X ′Y b = 2λa and

1

n
Y ′Xa = 2µb

The previous system is relatively different to that found through CA. Pre-
multiplying the two equations by a′ and b′ respectively we obtain 2λ = 2µ = γ,
and, therefore,

a =
1

nγ
X ′Y b; b =

1

nγ
Y ′Xa (1)

verifying the previously noted collinearities. The stationarity equations are:

1

n2
X ′Y Y ′Xa = γ2a;

1

n2
Y ′XX ′Y b = γ2b (2)

That is to say, ah is a p order eigenvector of the symmetric matrix R12R21,
associated with the largest γ2h eigenvalue, guaranteeing maximum covariance. In
this way, the ah form an orthonormal base in Rp. Analogously, bh is an eigenvector
of R21R12 associated to the same biggest γ2h eigenvalue and form an orthonormal
base in Rq.

2.1.2. Properties of the th and uh Components

• The th components of the same group are not orthogonal, because of from
(4)

X ′Y Y ′Xah = γ2hah; and a′lX
′Y Y ′Xah = t′lY Y

′th = γ2ha
′
lah = 0

and with this t′htl 6= 0 (and analogously u′hul 6= 0) must be taken into account
when calculating the explained variances or redundancies.
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• The th and ul components of different groups and orders are orthogonal given
that:

cov(th, ul) =
1

n
t′hul =

1

n
a′hX

′Y bl = a′hR12bl = a′halγl = 0

• The interpretation of the components starting from (3) is:

ah =
1

nγh
X ′uh =

1

nrhσth

X ′uh
σuh

=
1

rhσth
{r(xj , uh)...∀j)} (3)

with this, ah is collinear to the correlations vector between Xj and uh. In a
similar fashion

bh =
1

nγh
Y ′th, (4)

bh is collinear to the correlations vector between Yk and th.

There is coherence between the variable coefficients and the correlations be-
tween variables of one group and the components of the other group.

2.1.3. Decomposing the Correlation Matrix R12

The PCA, like the reconstitution of R12 in (4), is given by R12 =
∑s
h γhahb

′
h

and, through (5) and (6), leads to:

r(xj , yk) =

s∑
h

1

rh
r(xj , uh)r(yk, th) (5)

The inter-group correlation matrix can be visualized using the correlations
between the group variables and the other group’s components.

In addition, the best approximation is obtained in the direction of the least
squares of R12 through its simile with dimension p, q and range m:

R12m =

m∑
h

γhahb
′
h; and, as ||R12||2 = ||R12m ||2 + ||R12 −R12m ||2. (6)

We can measure the quality of the approximation, defining the number of
components to be retained. In addition, these norms are calculated in terms of
the eigenvalues:

||R12||2 = trace(R12R21) =

s∑
h

γ2h; ||R12m ||2 =

m∑
h=1

γ2h (7)

||R12 −R12m ||2 =

s∑
h=m+1

γ2h (8)
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2.1.4. Relation Between the Two Variable Sets: Factorial Structure

In this section we describe the principal elements to be retained for the results
analysis. Firstly, the γ2h values and the eigenvectors ah, bh are associated with the
matrix R12R21, and therefore, with the th and uh components. This verifies that
the sum of variances across all of h is p and q, respectively.

As we have the correlations between the components of both groups r(th, uh)
and the factorial structure, we can reconstitute R12 starting from m compo-
nents according to (7). The factorial structure refers to the correlations r(xj , th),
r(xj , uh), r(yk, uh), and r(yk, th).

We are going to obtain the explained variance parts and the commonalities,
and due to the correlation between the components, this calculation must be made
with the help of regression.

• Intra-group Communality

We can measure the variance part of each variable explained in its m canon-
ical components to be retained, and these indexes are called commonalities,
as in factorial analysis. The intra-X communality with m components is
defined as:

R2(xj , t1, . . . , tm)

We calculate the variance of Xj explained in t1; (t1, t2); . . . ; (t1, t2, . . . , tm).
As in PCA, we have the reconstitution2 X =

∑m
h tha

′
h, and so the variable

Xj = t1a1j + · · ·+ tmamj . As such, when performing the regression with m
components we obtain:

Xj = X̂j + e = β̂1t1 + · · ·+ β̂mtm + e

When m = 1, this corresponds to a simple regression, in which β̂1 = X ′jt1;
with m = s, the estimation is exactly the same as that of the PCA be-
cause the coefficients a1j = β̂1, ., asj = β̂s match. In any regression, the
determination coefficient R2 =

v(X̂j)
v(Xj)

is obtained, and it measures the vari-

ability percentage of Xj which is explained by the X̂j regression. However,
as v(Xj) = 1 then

v(X̂j) = β̂2
1v(t1)+ · · ·+ β̂2

mv(tm)+2

m∑
i,k>i

β̂iβ̂kcov(ti, tk) = R2(Xj , t1, . . . , tm)

represents the intra-group communality of Xj in the m components. As
such, we need to execute as many progressive regressions as the number of
components we have, that is to say with t1; (t1, t2); . . . ; (t1, t2, . . . , tm). For
m = s, R2 = 1.

2Xaαa′α = tαa′α ⇒ X
∑
α aαa

′
α = X =

∑
α tαa

′
α
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Analogously, from v(u) = 1

R2(yk, u1, . . . , um) =

m∑
h

r2(yk, uh) =

m∑
h

1

r2h
r2(yk, th) (9)

As before, these coefficients are obtained from as many progressive regres-
sions as um components we have.

The variable with weak intra-group communality, does not participate much
in the study as they are not particularly related with the active variables of
the other group.

• Inter-Group Communality

It’s defined as the cross variance, that is to say, the variance of each variable
explained in the m components of the other group:

R2(xj , u1, . . . , um) =

m∑
h

r2(xj , uh)

R2(yk, t1, . . . , tm) =

m∑
h

r2(yk, th)

The variables with little inter-group communality are specific from their own
group, they are not very related to the other group; these variables can be
suppressed without perturbing the analysis.

2.2. NIPALS Algorithm

This algorithm is the base of the PLS regression (Wold 1966). It fundamentally
executes the singular decomposition of a data matrix through the use of conver-
gent iterative sequences for orthogonal projections (geometric concept of simple
regression). With complete databases, the results are equivalent to those found
using PCA; however, and this is probably its greatest virtue, it can execute PCA
even with missing data and obtain its estimations starting from the reconstituted
data matrix.

If Xn,p is the data matrix of range a ≤ p, columns X1, . . . , Xp are supposed
to be centered or standardized (under Sn). The reconstitution derived from the
PCA leads to X =

∑a
h thp

′
h where t is the principal component (scores)and p′h the

eigenvector (loadings) on the h axis.

[X1, . . . , Xp] = t1p
′
1 + · · ·+ tap

′
a

In this way, column Xj =
∑a
h phjth with j = 1, . . . , p and the ith row xi =∑a

h thiph with i = 1, . . . , n.
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It can be observed then that if h = 1, column j is expressed as Xj = p1jt1, that
is phj = X ′jth acts like the coefficient (slope)3 in the regression (without intercept)
of Xj over th. In the space of rows, thi is the constant-less regression coefficient
of the individual xi over ph.

If h > 1, phj is the regression coefficient of th in the simple regression of the
deflated vector Xj −

∑h−1
l pljtl over th, and thi is the coefficient of ph in the

regression of xi −
∑h−1
l tlipl over ph.

2.2.1. NIPALS Pseudo-Code

For h = 1, the algorithm starts by taking any column of the matrix X as the
first principal component t1, in order to immediately calculate a normalized p1 and
then recalculate t1 in an iterative process until p1 converges. The flow diagram
associated with the convergence procedure is:

X = X1 → t1 →p+1 = X ′1t1/t
′
1t1 → p1 =

p+1
||p+1 ||

↑ ↓
← t1 = X1p1 ←

After that, on each stage h = 2, . . . , a, the deflated matrix Xh = Xh−1 − thp′h
will be built, and from it we will take th orthogonal to th−1 in order to start the
convergence process of ph orthonormal to ph−1, according to the previous flow
diagram t1, p1 and X1 will be replaced with th, ph an Xh, respectively.

NIPALS’ main characteristic is that it works in terms of a series of scalar
products of the coupled elements. This allows the management of missing data,
adding the available pairs in each operation. Geometrically the procedure ‘takes’
the omitted elements as if they fell over the regression line: they are not leverage
points.

The NIPALS pseudo-algorithm associated with missing data provides the basic
elements to develop the IBA with missing data in the sense of only executing the
scalar products with the coupled available data. This is described in stage 2.2.1

• NIPALS pseudo-code with missing data
X0 = Xh . Stage 1
for h = 1, 2, . . . , a do . Stage 2

th = first column of Xh−1 . Stage 2.1
repeat . Stage 2.2

for j = 1, 2, . . . , p do . Stage2.2.1

phj =

∑
{i:xji and thi exist} xh−1,jithi∑

{i:xji and thiexist} t
2
hi

3From the simple regression β̂1 = p̂hj =
cov(th,Xj)

S2
th

=
X′jth
||t||2 = X′jth = r if x and t are

standardized.
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end for
Normalize ph to 1 . Stage 2.2.2
for i = 1, 2, . . . , n do . Stage 2.2.3

thi =

∑
{j:xji exists} xh−1,jiphj∑

{j:x exists} p
2
hj

end for
until ph converges
Xh = Xh−1 − thp′h . Stage 2.3

end for

In stages 2.2.1 and 2.2.3 we calculate the slopes of the least square lines that
pass through the origin of the cloud of points over the available data. The phj
and thi must preserve j and i in their positions as well as the missing data char-
acteristic given by xij , which can be expressed as NA (Not available). This allows
an excellent management through R functions such as na.omit() at the moment
of developing the corresponding script.

2.3. Multivariate Regression PLS2

We use the most important presentations of this algorithm in the books by
Wold, Martens & Wold (1983), Martens & Nars (1989), Esbensen, Schönkopf &
Midtgaard (1994), and the article by Vega & Guzmán (2011) as a starting point.

If Y is the matrix of dependent variables y1, . . . , yr and X is the matrix of
independent variables x1, . . . , xp with rank a over n individuals, and all the vari-
ables are centered and reduced, then there is the possibility of multicollinearity in
the interior of each block. Even of r and p are greater than n, there is also the
possibility that there is some missing data.

For now, we have two sets of variables Y and X, for which we assume that a
latent relation between the two blocks exists. This can be explained by H ≤ a
latent orthogonal components th (h = 1, 2, . . . ,H), which are obtained as a linear
combination of the variables of the predictor set X. They are highly related with
Y through their linear combination uh = Y ch

As such, the predictor and answer matrices are decomposed as follows:

X = THP
′
H +XH

Y = THC
′
H + YH

where PH and CH are the weight matrices containing the parameters for the
model, and XH and YH the residual matrices representing the variability of the
data unexplained by the parameter models.

2.3.1. PLS2 Pseudo-Algorithm

There are numerous versions of the PLS2 algorithm that differ in the level of
normalization chosen. Here we describe the classical PLS2 regression algorithm,
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taking into account the missing data management in accordance with the principles
extracted from the NIPALS (Lindgren, Geladi & Wold 1993).
X0 = X, Y0 = Y
for h = 1, 2, . . . , a do

1. Initialize: uh (u1 : first col of Yh−1, ...)
2.
repeat

wh = X ′h−1uh/||uh||
wh = wh/||wh||
th = Xh−1wh/(w

′
hwh)

ch = Y ′h−1th/t
′
hth

uh = Yh−1ch/(c
′
hch)

until wh converges
3. ph = X ′h−1th/(t

′
hth)

4. Xh = Xh−1 − thp′h
5. Yh = Yh−1 − thc′h

end for

When there is missing data, we apply the principles from the NIPALS algo-
rithm: the coordinates of the vectors wh, th, ch, uh and ph are calculated as the
slope of the least squares’ lines passing through the origin (only over the available
data).

2.3.2. Optimization Criteria

We can pin down the convergence on stage 2. The cyclical relationships of this
stage show that, on the limit, the vectors wh, th, ch and uh, through successive
replacements, verify the following equations:(

1

n− 1
X ′h−1Yh−1

)(
1

n− 1
Y ′h−1Xh−1

)
wh = λhwh

(
1

n− 1
Xh−1X

′
h−1

)(
1

n− 1
Yh−1Y

′
h−1

)
th = λhth

(
1

n− 1
Y ′h−1Xh−1

)(
1

n− 1
X ′h−1Yh−1

)
ch = λhch

(
1

n− 1
Yh−1Y

′
h−1

)(
1

n− 1
Xh−1X

′
h−1

)
uh = λhuh

λh is the greatest common eigenvalue between these matrices, which have been
divided by n-1 to reclaim the eigenvalues. Therefore, Stage two corresponds to an
application of the iterative power in order to calculate the eigenvector of a matrix,
associated to the largest eigenvalue for each h.
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We can obtain the th and uh components starting which is the first stage of
Tucker’s IBA from the tables Xh−1 and Yh−1. On each stage h we investigate two
normalized vectors wh and c∗h, maximizing the criteria cov(Xh−1wh, Yh−1c

∗
h), or

globally maximizing the criteria:

s∑
h=1

cov2(Xh−1wh, Yh−1c
∗
h)

the vector ch is collinear with the vector c∗h = ch/||ch|| and s ≤ a.
We will now build the deflated matrices Xh and Yh in stages 4 and 5 as residues

of the regressions of Xh−1 and Yh−1 over the th component. Observe that there
deflations must be modified to obtain the orthonormality properties on both the
ah and the bh, according to the IBA.

3. The IBA Algorithm Via PLS

This algorithm describes the relations between two data sets X and Y by
maximizing the covariance between the latent components th and uh of each set,
respectively. Basically, we perform a spectral decomposition of X ′Y Y ′X and
Y ′XX ′Y in order to obtain the respective h = 1, . . . ,H components; (H = s).

The algorithm is built over the structure of the PLS2 procedure, changing the
calculation of the vectors wh, th, ch, and uh for ah, th, bh and uh respectively, with
or without missing data (see ej cycle in section 3.1). The convergence of these
vectors on each stage h is quickly secured, usually in no more than 20 iterations;
nonetheless the ej cycle executes 100 iterations in order to leave some convenient
room. We can set the threshold ε = 0.0001 so that if ||ah,j − ah,j+1|| < ε we can
guarantee convergence of ah in the jth iteration in order to continue with the next
stage h.

Once the ah, th, bh and uh vectors have converged, the initial matrices are
deflated through the procedure X0− tha′h and Y0−uhb′h in order to guarantee the
orthonormality of the vectors ah and bh in the next stage h: this is the principal
restriction of the IBA.

Observe in Appendix (IBA R Code) that in order to calculate these vectors
we use the na.omit() function, which uses the coupled available data of the two
vectors Xj and uh. The scalar product between these two vectors allows us to
obtain, for example, ah.

The algorithm inherits the properties described in 2.1.2 for the Classic IBA.
With missing data, the said properties are guaranteed through the orthonormaliza-
tion() function of the far library (see Appendix). The same process is analogously
applied in the calculation to obtain bh.

Finally, through list(aH,tH,bH,uH,lH,rH) the algorithmic function named fAIBna
returns these vectors along with the eigenvalues lH and the correlations rH be-
tween the components. The pseudo-code for the IBA with or without missing data
is presented in section 3.1, and the R code is presented in Appendix.
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3.1. IBA: Pseudo-Code Algorithm

The algorithm is based on the principles proposed by the NIPALS algorithm
with missing data, as well as an the structure proposed by the PLS2 algorithm.
The order exception is the deflation stages, which have been adequately modified
in order to maintain the IBA properties.
X0 = X, Y0 = Y
for h = 1, 2, . . . , s do

uh = 1st col of Yh−1
repeat

for j = 1, . . . , p do

ahj =
Σ{i:xij and uhi exist}xh−1,ijuhi

Σ{i:xij and uhi exist}u
2
hi

end for
orthonormalization(a1, . . . , ah)
for i = 1, . . . , n do

thi =
Σ{j:xij exists}xh−1,ijahj

Σ{j:xij exists}a
2
hj

end for
for k = 1, . . . , q do

bhk =
Σ{i:yik and thiexist}yh−1,ikthi

Σ{i:yik and thiexist}t
2
hi

end for
orthonormalization(b1, . . . , bh)
for i = 1, . . . , n do

uhi =
Σ{k:yik exists}yh−1,ikbhk

Σ{k:yik exists}b
2
hk

end for
until ah converges
Xh = Xh−1 − tha′h
Yh = Yh−1 − uhb′h

end for

4. Application

The IBA via PLS algorithm (IBApls) is implemented and run using the lin-
nerud and linnerudNA databases in order to study the relation between two ma-
trices with or without missing data.
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4.1. Linnerud Database

The linnerud database can be obtained from R’s calibrate package. It contains
the physical and exercise variables of 20 users of a gymnastics club. The database
is conformed by two groups, i.e., the first matrix X contains the physical variables
weight, height, and pulse (Poids, Tail, Pouls) that will be related to the exercise
variables contained in the matrix Y : Traction, flection, jump (Tracti, Flexin and
Sauts). Both matrices have a 20x3 dimension.

Table 1 represents the incomplete database (linnerudNA), approximately 7%
of the data has been declared Not Available (NA).

Table 1: LinnerudNA database.
# Poids Tail Pouls Tracti Flexin Sauts
1 191 36 50 5 162 60
2 189 NA 52 2 110 60
3 193 38 58 12 NA 101
4 162 35 62 12 105 37
5 189 35 46 13 NA 58
6 182 36 NA 4 101 42
7 211 38 56 8 101 38
8 167 34 60 6 125 40
9 176 31 74 15 200 40
10 154 33 56 17 251 250
11 169 34 50 17 120 38
12 166 33 52 13 210 115
13 154 34 64 14 215 105
14 247 46 50 1 50 50
15 193 36 46 6 70 31
16 NA 37 62 12 NA 120
17 NA 37 54 4 60 NA
18 157 32 52 11 230 80
19 156 33 54 15 225 73
20 138 33 68 2 110 43

4.2. Results

The application of this algorithm (see Appendix) through the fAIBna(Y,X)
function to the complete linnerud database, formed by the X and Y subgroups,
leads to the same results as those obtained by applying the classical IBA method
(Tenenhaus 1998). The results are the following:

The eigenvalues 1.27243, 0.00566 and 0.00111 correspond to the squared co-
variances γ2h on stages h = 1, 2, 3. Tables 2 and 3 show the eigenvectors and the
components associated with the classical IBA (complete data).

For the missing data case (NA) we use the database linnerudNA that is listed
in section 4.1; the same as before, the first three columns make up X and the last
three Y . By Applying the fAIBna(Y,X) function over this matrices, we get the
following results:
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Table 2: ah and bh eigenvectors, classical IBA.

a1 a2 a3 b1 b2 b3
[1, ] −0.590 0.772 0.236 0.613 0.214 0.7603
[2, ] −0.771 −0.452 −0.448 0.747 0.156 −0.6464
[3, ] 0.239 0.447 −0.862 0.257 −0.964 0.0644

Table 3: th and uh components, classical IBA.

t1 t2 t3 u1 u2 u3
[1, ] −0.643 −0.0747 0.76432 −0.3714 0.0544 −0.8229
[2, ] −0.770 −0.1546 0.36612 −1.3403 −0.1964 −0.7172
[3, ] −0.907 0.2008 −0.45300 −0.0823 −0.5849 0.8656
[4, ] 0.688 −0.0973 −0.80858 −0.3550 0.6286 0.7438
[5, ] −0.487 −0.2437 1.36340 0.4631 0.3986 0.3975
[6, ] −0.229 0.0154 −0.03941 −1.3058 0.2007 −0.3591
[7, ] −1.404 0.6398 −0.04148 −0.8618 0.4379 0.2111
[8, ] 0.744 0.0765 −0.38167 −0.7973 0.3790 −0.3220
[9, ] 1.715 1.6485 −1.55022 1.1423 0.9300 0.1976

[10, ] 1.163 −0.4365 0.11210 3.0344 −2.8115 0.2222
[11, ] 0.365 −0.4802 0.83341 0.4092 0.8496 1.3092
[12, ] 0.743 −0.3090 0.70536 1.4051 −0.5366 −0.0991
[13, ] 1.187 −0.0824 −0.98450 1.5307 −0.2956 −0.0195
[14, ] −4.390 0.2642 −0.09814 −2.2227 −0.1981 −0.2537
[15, ] −0.823 −0.2599 1.26183 −1.4990 0.4115 0.2349
[16, ] −0.749 0.8711 −0.70534 1.3141 −0.6711 −0.2366
[17, ] −0.393 −0.4373 0.00248 −1.8804 0.4184 0.0431
[18, ] 1.199 −0.4492 0.75905 1.2366 0.0904 −0.6373
[19, ] 1.049 −0.4978 0.37044 1.6060 0.3716 −0.0192
[20, ] 1.942 −0.1938 −1.47619 −1.4254 0.1233 −0.7385

The eigenvalues 1.17246, 0.00962 and 0.00138 are relatively similar to those
obtained with classical IBA, and, in Tables 4 and 5, which contain the eigenvectors
and the components associated with the missing data IBA, we can also see a
similarity with the classical IBA results.

Table 4: a
◦
h and b

◦
h eigenvectors, missing data IBA.

a1◦ a2◦ a3◦ b1◦ b2◦ b3◦

[1, ] −0.670 0.733 0.122 0.615 0.3408 0.711
[2, ] −0.707 −0.579 −0.405 0.745 0.0464 −0.666
[3, ] 0.226 0.357 −0.906 0.260 −0.9390 0.225

It can be seen Table 6 that the correlations between components of different
groups and dimensions are practically 0, despite the absence of data. These re-
sults are relatively similar to those obtained with the complete linnerud database;
however, these factorial similarities will not always appear as they depend on how
much the ‘Original’ matrix is affected due to the absence of some data and how
this absence influences the correlation structure. The results must be interpreted
as a function of the available data.

Note that the correlations of the th and t
◦

h components and the uh and u
◦

h

components are generally high, with or without missing data, given that:
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Table 5: t
◦
h and u

◦
h components, missing data IBA.

t1◦ t2◦ t3◦ u1◦ u2◦ u3◦

[1, ] −0.691 −0.0252 0.72679 −0.374 −0.0428 −0.8396
[2, ] −0.860 −0.3273 0.28022 −1.317 −0.2732 −0.7124
[3, ] −0.933 0.0634 −0.49023 0.986 −0.3182 −0.0221
[4, ] 0.655 −0.1047 −0.75573 −0.326 0.7870 0.5834
[5, ] −0.544 −0.0984 1.33052 0.760 0.5238 0.0364
[6, ] −0.283 −0.0148 −0.00168 −1.277 0.1773 −0.4301
[7, ] −1.468 0.4854 −0.15959 −0.832 0.5081 0.0905
[8, ] 0.679 0.1202 −0.36322 −0.781 0.3597 −0.4148
[9, ] 1.519 1.5863 −1.66097 1.122 0.9933 0.0304

[10, ] 1.115 −0.2697 0.18797 2.996 −2.6680 0.6965
[11, ] 0.321 −0.3042 0.86964 0.431 1.1018 1.1073
[12, ] 0.677 −0.1169 0.73461 1.382 −0.4951 −0.0130
[13, ] 1.143 −0.0613 −0.91464 1.505 −0.2449 0.0268
[14, ] −4.331 −0.1854 −0.24537 −2.168 −0.1982 −0.2782
[15, ] −0.866 −0.1605 1.22567 −1.454 0.4846 0.1073
[16, ] −0.335 0.3233 −0.88698 1.201 −0.6577 −0.0457
[17, ] −0.778 −0.0401 0.11008 −1.706 0.0458 0.0136
[18, ] 1.131 −0.1988 0.81559 1.201 0.0279 −0.6392
[19, ] 1.001 −0.3085 0.44218 1.574 0.4098 −0.0806
[20, ] 1.903 −0.1520 −1.35642 −1.402 0.0365 −0.7867

Table 6: Correlation between t
◦
h and u

◦
h components.

t◦1 t◦2 t◦3 u◦1 u◦2 u◦3
t1◦ 1 0.13478 −0.230058 0.5506 −0.015547 0.09351
t2◦ 1 −0.568142 0.0998 0.290962 0.00483
t3◦ 1 0.0155 −0.000473 0.08878
u1◦ 1 −0.409760 0.39060
u2◦ 1 0.00403
u3◦ 1

r(t1,t1◦)=0.995; r(t2,t2◦)=0.913 and r(t3,t3◦)=0.995

r(u1,u1◦)=0.985; r(u2,u2◦)=0.985 and r(u3,u3◦)=0.891

Figure 1 displays the typology of the subject cloud, starting from the relations
between the t1 and u1 components. Regarding Figure 2, subject 14 exhibits a poor
performance in the exercises as a result of its low potential; meanwhile, subject
10 exhibits the best results from the whole group. Subject 20 has great potential,
but lacks training: this is evidenced by its mediocre results. Subjects 9, 12, 13, 18
and 19, on the other, hand have good results that pertain to their potential while
the rest of the subjects experience a medium level of potential and development.

The correlation chart of Figure 2 is constructed starting with an estimation of
X through the PCA. This can be see in the following.

tα = Xaα ⇒ tαa
′
α = Xaαa

′
α ⇒ X̂ =

∑
α

tαa
′
α
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Figure 1: IBA with missing data, t1 vs u1 graph.

Figure 2: Correlations chart; variables vs components of the other group.

We then proceed to calculate the correlations between each of the physical
measures x̂j and the first two components u1, u2. Analogously, Ŷ =

∑
α uαb

′
α,

therefore we can calculate the correlations between the exercise variables ŷk with
the components t1 and t2. These correlations constitute the coordinates for axes
1 and 2.

Figure 2 portrays the inter-group correlation matrix R12. Axis 1 corresponds
to the physical potential fundamentally expressed through the weight and height
(poids, tail) of the subjects, attenuated by the pulse (pouls); axis 2, on the other
hand, grades the global performance on the exercises, opposing the pushups and
pullups (flex, tract) with the jumps (sauts).
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5. Conclusions and Recommendations

• The IBA via the PLS (IBApls) method was developed, preserving all of its
properties and optimization characteristics, and providing an algorithmic
procedure under R that leaves aside the rigidity of the classical method.

• The IBApls was run with databases that had missing data, proving its func-
tionality. The analysis was done under the available data principle as in
NIPALS, without data imputation.

• The linnerud database was used to apply the IBApls with or without missing
data. With the complete data set, the results are equivalent to those found
using the classical IBA, and with approximately 7% of the data missing,
the results are relatively similar. However, the analysis must be made as a
function of the available data.

• Starting with the flexibility of the IBApls, its possible to solve the mixed data
(quanti-qualitative variables) problem through the optimal GNM-NIPALS
quantification criteria.

• With these solutions, it is possible to find an optimal, joint solution for IBA
with mixed and missing data.[

Received: August 2015 — Accepted: March 2016
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Appendix. IBA R Code

fAIBna <- function(Y,X)
{

library(far)
Z <- as.matrix(cbind(X,Y)) #
Yo <- scale(Y) ; Xo <- scale(X) # omits NA when it scales
p <- ncol(Xo); n <- nrow(Xo); q <- ncol(Yo)
H <- qr(t(X)%*%Y)$rank # H=s
aH <- matrix(0,p,H); tH <- matrix(0,n,H)
bH <- matrix(0,q,H); uH <- matrix(0,n,H)
for(h in 1:H) # H componentes t e u.
{

uh <- Yo[,1] # numeric
for(ej in 1:100)
{

for(j in 1: p)
{

aju <- na.omit(cbind(Xo[,j],uh))
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aH[j,h] <- sum(aju[,1]*aju[,2])/sum(aju[,2]^2)
}
if(any(!is.finite(Z))){

ah. <- orthonormalization(aH[,1:h])
ah <- ah.[,h]

} else ah <- aH[,h]/sqrt(sum(aH[,h]^2)) # numeric
for(i in 1:n)
{

tia <- na.omit(cbind(Xo[i,],ah)) # na.omit f(cols)
tH[i,h] <- sum(tia[,1]*tia[,2])/sum(tia[,2]^2)

}
th <- tH[,h]
for(k in 1:q)
{

bkt <- na.omit(cbind(Yo[,k],th))
bH[k,h] <- sum(bkt[,1]*bkt[,2])/sum(bkt[,2]^2)

}
if(any(!is.finite(Z))){

bh. <- orthonormalization(bH[,1:h])
bh <- bh.[,h]

} else bh <- bH[,h]/sqrt(sum(bH[,h]^2))

for(i in 1:n)
{

uib <- na.omit(cbind(Yo[i,],bh))
uH[i,h] <- sum(uib[,1]*uib[,2])/sum(uib[,2]^2)

}
uh <- uH[,h]

} # end ej
X1 <- Xo - th%*%t(ah); Xo <- X1
Y1 <- Yo - uh%*%t(bh); Yo <- Y1
aH[,h]<-ah; tH[,h]<- th; bH[,h]<- bh; uH[,h]<-uh

} # end h
Lh <- diag(t(tH)%*%uH); lH <- Lh^2/(n-1)^2 # val.p
rH <- cor(cbind(tH,uH))
r.AIBna <- list(aH,tH,bH,uH,lH,rH)
return(r.AIBna)

} # end fAIBna with or without missing data
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