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Abstract
In this study, robust Brown-Forsythe and robust Modified Brown-Forsythe

ANOVA tests are proposed to take into consideration heteroscedastic and
non-normality data sets with outliers. The non-normal data is assumed to be
a two parameters Weibull distribution. Robust proposed tests are obtained
by using robust mean and variance estimators based on median/MAD and
median/Qn methods instead of maximum likelihood. The behaviors of the
robust proposed and classical ANOVA tests are examined by simulation
study. The results shows that the proposed robust tests have good per-
formance especially in the presence of heteroscedasticity and contamination.

Key words: Brown-Forsythe, Modified Brown-Forsythe, ANOVA, Weibull
Distribution.

Resumen
En este estudio se proponen tests Brown-Forsythe y robustos Brown-

Forsythe ANOVA para tener en cuenta la no-normalidad en datos debida a
la presencia de datos atípicos. Se asume que los datos no-normales tienen una
distribución Weibull de dos parámetros. Estos tests se construyen en base
a estimadores robustos de media y varianza obtenidos con métodos basados
en la mediana en vez de métodos de máxima verosimilitud. Se examina en
comportamiento de estos tests con datos simulados. Los resultados muestran
que éstos tienen un buen desempeño, especialmente en presencia de atípicos
y datos contaminados.

Palabras clave: ANOVA, Brown-Forsythe, Brown-Forsythe modificado, dis-
tribución Weibull.
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1. Introduction

The procedures to test equal means in the conventional analysis of variance
(ANOVA) are based on assumptions of normality, independence, and equality of
the error variances.

If the assumptions of normality and homogeneity of variances are invalid and
also outliers are present, classical ANOVA does not give accurate results. The one-
way ANOVA under the violation of assumptions has been studied extensively. To
deal with non-normal data and/or heteroscedastic variances across groups, many
alternatives such as Q, Welch, Brown-Forsythe and Modified Brown-Forsythe tests
have been developed instead of classical ANOVA. The statistic Q has been exten-
sively studied by many authors under a variety of assumptions. James (1951) and
Welch (1951) derived improved approximations for the distribution of Q under
the null hypothesis; these approximations are more accurate for small sample sizes
of groups. A number of authors have discussed extensions of the Welch methods
based on the use of robust estimators for the population location and scale pa-
rameters. Notable among these are the efforts of Wilcox (1995), Wilcox (1997),
and the references contained in these papers. Kulinskaya & Dollinger (2007) con-
sider three common robust estimators: Huber’s proposed two estimators of lo-
cation and scale, Hampel’s M-estimator of location with scale estimated by the
median absolute deviation (MAD), and the trimmed mean with scale estimated
by the Winsorized standard deviation. In the presence of heteroscedasticity, the
actual size of the ANOVA (which uses the F-test) can exceed the nominal level.
The challenge of how to accurately compare independent heteroscedastic normal
means of three or more groups is referred to as the generalized Behrens-Fisher
problem. Various solutions to this problem have been proposed. In practice,
some approximate procedures such as the weighted F, Welch, Brown Forsythe
(BF ) and modified Brown Forsythe (MBF ) tests are widely used (cf. Gamage
& Weerahandi 1998, Welch 1951, Brown & Forsythe 1974). Weerahandi (1995)
introduced a test using the notion of generalized p-value for comparing the means
of k populations with unequal error variances. Senoglu (2005) and Senoglu (2007)
obtained robust and efficient estimators of the parameters in the different factorial
designs by using the methodology known as modified maximum likelihood (MML)
and proposed new test statistics based onMML estimators to test the main effects
and the interactions when the distribution of error terms is generalized logistic. In
this paper we consider the problem of comparing the means of k populations not
only with heteroscedastic variances and non-normality, but also with the outliers.

Normality is the one of the important assumptions of ANOVA. However, in
the application normality assumption does not work for the real life data modeled
by the exponential, Weibull or lognormal distributions; especially in the field of
reliability, engineering and life sciences. The characteristics of these distributions
can be explained by the Weibull distribution, which is also known as Extreme
Value Type III minimum distribution. This has made it extremely popular in
reliability engineering, biology and medicine. This distribution is the most com-
monly used distribution for modeling reliability data, because it represents a wide
range of asymmetric distributions. Moreover, ANOVA cannot handle censored or
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interval data because of non-normality. The simplest possible lifetime distribution
is exponential distribution. However, its constant hazard rate is improper and
unrealistic in many cases. Gamma distribution is another candidate distribution
for lifetimes. Nevertheless, distribution function or survival function of gamma
distribution cannot be expressed in a closed form if the shape parameter is not
an integer. It is in terms of an incomplete gamma function, that one needs to
obtain the distribution function, survival function or the hazard rate by numerical
integration. This makes gamma distribution a little unpopular compared to the
Weibull distribution, which has a nice distribution function, survival function and
hazard function Gupta & Kundu (2001). It has been used in many different fields
such as material science, engineering, physics, chemistry, meteorology,medicine,
pharmacy, quality control, biology, geology, geography, economics and business.

The purpose of this study is to develop test statistics by using robust methods
for the non-normal distribution with an outlier for the one-way ANOVA. For this
reason the Weibull distribution with the parameters λ and β is discussed the most
frequently encountered in the literature as a non-normal distribution. Robust
estimators of Weibull distribution parameters are based on the median/median
absolute deviation (median/MAD) and median/Qn methods. To test the hy-
pothesis of equal means under the assumption of heteroscedastic variances the
standard BF and MBF tests were proposed. To obtain these standard tests, the
maximum likelihood (ML) mean and variance estimates are used. However, incase
of the outliers these tests can exceed the nominal level. This is why we recom-
mend replacing the ML mean and variance estimates with the robust estimates
in the formulation of the tests. The equations from the robust tests are obtained
by using the robust estimators of mean and variance based on median/MAD and
median/Qn methods and tests are called Robust Brown-Forsythe (RBF ) and ro-
bust Modified Brown-Forsythe (RMBF ). The behavior of the developed robust
tests is examined by simulation study.

The robust mean and variance estimations of Weibull distribution is one of the
important subjects of this paper, since proposed robust tests are obtained based
on these estimators. The mean and variance of a Weibull random variable are the
functions of the parameters. Therefore, we consider robust estimators of Weibull
distribution parameters that are the median/MAD proposed by Olive (2006) and
the median/Qn proposed by Boudt, Caliskan & Croux (2011). These are two
robust estimator alternatives to the maximum likelihood estimator. In this paper
they use the log-Weibull density as a location-scale family with location µ = log λ
and scale σ = 1/β (see Boudt et al. 2011). An initial or auxiliary estimate of scale
is frequently required in robust estimation. This paper usually uses the median
absolute deviation MADn = 1.4826medi|xi −medjxj |, because it has a simple
explicit formula, needs little computation time, and is very robust as witnessed
by its bounded influence function and its 50% breakdown point. However MADn

is aimed at symmetric distributions and it has a low (37%) Gaussian efficiency.
Rousseeuw & Croux (1993) set out to construct explicit and 50% breakdown scale
estimators that are more efficient. Rousseeuw & Croux (1993) considered the
estimator Qn given by the 0.25 quantile of the distances |xi − xj |; i < j. The
advantages of the Qn are that it does not need any location estimate and the
Gaussian efficiency of Qn is 82%, Rousseeuw & Croux (1993).
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The remainder of our paper is organized as follows. Section 2 introduces robust
and explicit estimators of the mean and variance of Weibull distribution. Section
3 explains the robust proposed test statistics. A numerical example is given in
Section 4. To show the performance of proposed test statistics, a simulation study
and the results are presented in Section 5. Finally, the last section summarizes
the study’s.

2. Robust Estimators

The density and cumulative distribution functions of Weibull distribution are
given by

fλ,β(x) =
β

λ
(x/λ)

β−1
exp[−(x/λ)β ], (1)

Fλ,β(x) = 1− exp[−(x/λ)β ] (2)

x, λ, β > 0. Since fλ,β(x) = 1
λf1/λ,β(x), the parameter λ is called the scale pa-

rameter. The parameter β is the shape parameter. The mean and variance of a
Weibull random variable can be expressed as

E(X) = λΓ(1 + 1/β) (3)
V ar(X) = λ2[Γ(1 + 2/β)− Γ2(1 + 1/β)]. (4)

As shown in equation (3) and equation (4), the mean and variance of a Weibull
random variable are the functions of shape β and scale λ parameters of Weibull
distribution. After obtaining robust parameters estimators, the robust mean and
variance estimators of this distribution can be obtained. We consider robust es-
timators of Weibull distribution parameters that are median/MAD, proposed by
Olive (2006) and median/Qn proposed by Boudt et al. (2011). In the next Section
2.1. these robust location-scale estimators with be explained.

2.1. Location-Scale Estimators

The proposed robust estimators are based on the log-Weibull density which is
a location-scale family with location µ = log λ and scale σ = 1/β. Estimation
of Weibull parameters can thus be seen as an estimation problem of the location
and scale of log x1, . . . , log xn. Olive (2006) presents the correction factors making
these estimators consistent for the log-Weibull distribution. Olive (2006) proposed
the standard location and scale estimators with a 50% breakdown point, which
were the median and median absolute deviation

σ̂MAD = 1.3037medj | log xj −medi log xi| (5)
µ̂med/MAD = medi log xi − σ̂MAD log log 2, (6)

where xi ∼ W (λ, β) and yi = logxi have log-Weibull distribution. By using
the location and scale estimators based on med/MAD given by (equation 5) and
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(equation 6), respectively, Boudt et al. (2011) proposed the med/MAD estimators
of scale and shape parameters of Weibull distribution:

λ̂med/MAD = exp(µ̂med/MAD) (7)

β̂med/MAD = 1/σ̂MAD. (8)

By considering robust med/MAD estimators given by equation (7) and equation
(8), themed/MAD estimators of the mean and the variance of Weibull distribution
are obtained as per the following

µ̂Wmed/MAD = λ̂med/MADΓ(1 + 1/β̂med/MAD) (9)

σ̂Wmed/MAD = λ̂2med/MAD[Γ(1 + 2/β̂med/MAD)− Γ2(1 + 1/β̂med/MAD)]. (10)

Qn scale-estimator is as a more efficient alternative and the the same breakdown
point of 50%. Boudt et al. (2011) recommended estimating σ using the Qn scale-
estimator proposed by Rousseeuw & Croux (1993). It was given by Boudt et al.
(2011)

σ̂Qn = 1.9577{| log xi − log xj |; i < j}(l) (11)
µ̂med/Qn = medi log xi − σ̂Qn log log 2, (12)

where the last part is the lth ordered value among this set of
(
n
2

)
values, where

l =
(
h
2

)
≈
(
n
2

)
/4 with h = bn/2c + 1. The correction factor 1.9577 ensures Fisher

consistency. It equals the inverse of the 1/4 quantile of the distribution of the ab-
solute difference between two log-Weibull random variables. These estimators are
called med/Qn estimators for scale and shape parameters. By using the med/Qn
location-scale estimators in equation (11) and equation (12), Boudt et al. (2011)
proposed the robust scale and shape estimators of Weibull distribution based on
med/Qn

λ̂med/Qn = exp(µ̂med) (13)

β̂med/Qn = 1/σ̂Qn. (14)

By considering robust estimators in equation (13) and equation (14), the med/Qn
mean and variance estimators of Weibull distribution are obtained as per the
following

µ̂Wmed/Qn = λ̂med/QnΓ(1 + 1/β̂med/Qn) (15)

σ̂Wmed/Qn = λ̂2med/Qn[Γ(1 + 2/β̂med/Qn)− Γ2(1 + 1/β̂med/Qn)]. (16)

In this study, to define the breakdown point of estimations, previous studies are
taken into account, especially Boudt et al. (2011). The breakdown point of the
mean estimator and the variance estimator for Weibull distribution based on the
proposed robust estimator are obtained a 50% as the breakdown of mean and
variance depends on the the breakdown point of shape and scale estimators of the
Weibull distribution.
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3. Robust BF and MBF ANOVA Tests

The ANOVA for non-normal data with heteroscedastic variance has been stud-
ied extensively. In the case of disruption of assumptions, instead of classical
ANOVA, many tests have been developed such as BF and MBF . Brown &
Forsythe (1974) proposed the BF test that can be shown by

BF =

∑k
i=1 ni(µ̂i. − µ̂..)2∑k
i=1(1− ni/N)σ̂2

i

(17)

where µ̂i., σ̂i and ni denoted the ML estimator of the sample mean and variance
and size for the ith k group, respectively, µ̂.. is the ML estimator of overall mean,
and N =

∑k
i=1 ni. The BF test has a Fk−1,v1 distribution with k − 1 and v1

degrees of freedom. v1 is defined as

v1 =
[
∑k
i=1(1− ni/N)σ̂2

i ]2∑k
i=1(1− ni/N)2σ̂4

i /(ni − 1)
. (18)

Mehrotra (1997) proposed the MBF test given by

MBF =

∑k
i=1 ni(µ̂i. − µ̂..)2∑k
i=1(1− ni/N)σ̂2

i

, (19)

which is the same as the equation (17). But the MBF test has Fv2,v1 distribution
with v2 and v1 degrees of freedom. By using Mehrotra’s (1997) approach the
numerator degrees of freedom v2 was defined as

v2 =
[
∑k
i=1(1− ni/N)σ̂2

i ]∑k
i=1 σ̂

4
i + [

∑k
i=1 niσ̂2

i

N ]2 − 2
∑k

i=1 niσ̂4
i

N

. (20)

In this study, two robust tests are proposed to test the equality of population
means under the Weibull distribution. The proposed tests correspond to the stan-
dard BF and MBF test statistics in which the maximum likelihood mean and
variance estimators are replaced with robust estimators. We propose using the
RBF and RMBF tests based on the med/MAD and med/Qn mean and variance
estimators of Weibull distribution. The RBF test is given by

RBF =

∑k
i=1 ni(µ̂ri. − µ̂r..)2∑k
i=1(1− ni/N)σ̂2

ri

, (21)

where µ̂ri., σ̂ri and ni denoted the robust estimators of mean and variance and size
for the ith k group, µ̂r.. is the robust estimator of overall mean, and N =

∑k
i=1 ni.

The RBF test has a Fk−1,vr distribution with k− 1 and vr degrees of freedom. vr
is defined as

vr =
[
∑k
i=1(1− ni/N)σ̂2

ri]
2∑k

i=1(1− ni/N)2σ̂4
ri/(ni − 1)

. (22)
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The RMBF tests is given by

RMBF =

∑k
i=1 ni(µ̂ri. − µ̂r..)2∑k
i=1(1− ni/N)σ̂2

ri

, (23)

which is the same as the equation (21). But the RMBF test has a Fvr2,vr distri-
bution with vr2 and vr degrees of freedom. By using Mehrotra’s (1997) approach
the numerator degrees of freedom vr2 is defined as

vr2 =
[
∑k
i=1(1− ni/N)σ̂2

ri]∑k
i=1 σ̂

4
ri + [

∑k
i=1 niσ̂2

ri

N ]2 − 2
∑k

i=1 niσ̂4
ri

N

. (24)

In the above equations equation (21), equation (22), equation (23) and equation
(24), µ̂ri., µ̂r.., σ̂ri robust mean and variance estimators are based on med/MAD
and med/Qn methods.

4. A Numerical Example

As an example, three Weibull populations, each with a size of 5,000, are gener-
ated with shape the following and scale parameters: The shape parameter of the
first population is 1.5 and the scale parameter is 1. With the second population,
the shape parameter is 2.5 and the scale parameter is 1. The shape parameter
of the third population is 3.5 and the scale parameter is 1. Supposing that three
random samples with a size of 20 are taken from each Weibull population, the
sample data are shown in Table 1.

Table 1: Three random samples with a size of 20 taken from each of three Weibull
populations.

Sample 1 Sample 2 Sample 3
0.7110 0.6601 0.9159
0.4247 0.9464 0.5436
0.8905 0.7786 0.9487
1.4064 0.7703 0.9932
0.8012 1.2813 0.9775
2.0574 0.5002 1.0214
0.6533 1.6926 0.9030
1.7747 1.0385 1.3542
0.3197 0.6782 0.9577
1.8344 0.8490 0.9496
0.6231 1.2822 0.6689
0.6943 1.1174 1.2202
1.2458 0.5139 1.0077
1.0185 0.8083 0.4797
0.2401 0.8469 1.0241
2.6065 1.0146 0.8206
0.8898 0.5889 0.5370
0.2850 2.0002 0.7586
1.2093 1.5597 1.0501
2.3521 0.4992 0.4278
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The Weibull P-P plot for each sample of this data is presented in Figure 1.
The results show that each sample of data is Weibull.

Figure 1: Weibull Probability Plot of Three Samples

The Anderson-Darling test Anderson & Darling (1952) is used to test if a
sample of data comes from a specific distribution. It is a modification of the
Kolmogorov-Smirnov (K-S) test and gives more weight to the tails than the K-S
test. The K-S test is distribution free in the sense that the critical values do not
depend on the specific distribution being tested. The Anderson-Darling (A-D)
test makes use of the specific distribution in calculating critical values. This has
the advantage of allowing a more sensitive test and the disadvantage that critical
values must be calculated for each distribution Trujillo-Ortiz, Hernandez-Walls,
Barba-Rojo, Castro-Perez & Lavaniegos-Espejo (2007). The sampled populations
have a Weibull distribution. The results of the Anderson-Darling tests for three
samples are shown in Table 2. Thus, these samples have been drawn from aWeibull
population with estimated parameters that are given in Table 2.

Weibull data are used to test the equality of the population means using
ANOVA. We consider not only clean samples but also contaminated samples. To
generate contaminated samples, 4 observations from each sample are randomly
replaced with 100. The classical ANOVA, RBF and RGBF tests are obtained for
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Table 2: Results of Anderson-Darling statistic.
Sample 1 Sample 2 Sample 3

A-D statistic 0.2440 0.4757 0.6327
A-D adjusted statistic 0.2549 0.4970 0.6610
Prob. A-D statistic 0.6577 0.2210 0.0872
Significance 0.050 0.050 0.050
Weibull population W (λ̂, β̂) W (1.2409, 1.7039) W (1.0974, 2.5538) W (0.9661, 4.2887)

clean and contaminated samples. The results are shown in Table 3. Fobt, RBFobt
and RMBFobt indicate the calculated tests. Ft, RBFt and RMBFt indicate the
F table value at the significant of 5% (α = 0.05). RBFobt and RMBFobt are based
on med/MAD and med/Qn robust methods. In the contamination case classical
ANOVA is badly deteriorated. For clean and contaminated data, since calculated
tests < F table value, there are not significant differences between the three popu-
lation means. The results shows that proposed robust tests give accurate results.

Table 3: Three random samples with a size of 20 taken from each of three Weibull
populations.

Tests Clean Sample Contaminated Sample
med/MAD med/Qn med/MAD med/Qn

Fobt 0.6905 1.0558 0.0003 0.0009
Ft 3.1588 3.1588 3.1588 3.1588
RBFobt 0.6219 0.4548 1.7068 0.4410
RBFt 3.2287 3.2715 3.3308 3.2954
RMBFobt 0.6219 0.4528 1.7068 0.4410
RMBFt 5.1432 3.3778 4.7062 3.5294

5. Simulation Study

In the simulation study the reference distribution is W (1, β). The value of the
shape parameters are selected, as in Table 4, with respect to the different exper-
imental designs we want to create. In this table for equal means, homogeneous
variances EA, EB are used for a balanced sample size, EC, ED are used for an
unbalanced sample size. For unequal means, heterogenous variances UA, UB are
used for balanced sample size and UC, UD are used for an unbalanced sample size.
As we mentioned, previously to generate data with equal means + homogeneous
variances and unequal means + heterogenous variances, we just change the shape
parameter of Weibull distribution. Since the mean and variance of the distribution
have been changed with respect to the shape and scale of the parameters of the
Weibull distribution, the creation of different experiment designs depends on the
parameters of the distribution.

In this table

• Design EA: balanced sample size (n = 5) with equal means and homogenous
variances,

• Design UA: balanced sample size (n = 5) with unequal means and heteroge-
nous variances,
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• Design EB: balanced sample size (n = 10) with equal means and homogenous
variances,

• Design UB: balanced sample size (n = 10) with unequal means and heteroge-
nous variances,

• Design EC: unbalanced sample size (n = 5, 10, 15) with equal means and
homogenous variances,

• Design UC: unbalanced sample size (n = 5, 10, 15) with unequal means and
heterogenous variances,

• Design ED: unbalanced sample size (n = 10, 20, 30) with equal means and
homogenous variances,

• Design UD: unbalanced sample size (n = 10, 20, 30) with unequal means and
heterogenous variances.

Table 4: Experimental designs for k = 3, k = 6 and k = 9.
K = 3 K = 6 K = 9

EA ni 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

UA ni 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

EB ni 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

UB ni 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

EC ni 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

UC ni 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

ED ni 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

UD ni 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

The simulation experiment stork with k = 3 groups. The balanced and unbal-
anced sample sizes with homogenous and heterogeneous variances are considered.
To see the effect of the number of groups, k, on the level of the tests, we replicated
the experiment for k = 3 groups two and three times to provide the simulation
experiment for k = 6 and k = 9 groups, respectively. By using the proposed esti-
mators med/MAD and med/Qn the Type I errors of the robust test statistics and
classical ANOVA are obtained with 10,000 repetitions. Four different models are
discussed below to test the behaviors of the tests, when the model is deteriorated
and in the presence of outliers. In models the response variable is assumed to have
a Weibull distribution. The models for simulation study are:
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1. Clean sample: reference distribution W (1, β),

2. Dixon model: n− 1 observations from W (1, β), 1 observation from W (2, β),

3. Mixture model: 0.80W (1, β) + 0.20W (2, β/2),

4. Contaminated model: 0.80 W (1, β) + 0.20 (100 Uniform(0, 1)).

We obtain τ =
∑M

i=1 FHi
>FTi

M ∗ 100 value with respect to the classical F , RBF
and RMBF tests with 10.000 repetitions. In this equation FHi

indicates the
calculated tests and FTi

indicates the F table value at the significant of 5% for
the ith simulation, so the desirable value of τ is close to τ ∼= 5.

The results of τ values for experimental design EA with equal means and ho-
mogeneous variances are given in Table 5. While the classical ANOVA does not
deteriorate for the clean model (model 1), it badly deteriorates for the contam-
inated model. When RMBF based on med/MAD has good performs well for
a mixture model, RBF based on med/MAD gives desirable results for contami-
nated model. As can be seen in this table, the RBF test based on med/Qn only
works for the clean and Dixon models for k = 3. Robust tests based on med/Qn
do not work for k = 6, 9. The results of τ for experimental design UA are given in
Table 5. For the balanced small sample size of each group the classical ANOVA
test does not deteriorate, and in terms of type I error it gives the optimal result.
Because the observation number is small so it does not effect the results. The clas-
sical ANOVA is only deteriorated in the case of contamination. The contaminated
model RMBF test based on med/MAD gives the optimal results, which are close
to 5. The RBF test based on med/MAD can be used as an alternative to RMBF.
For the Dixon and mixture models RBF and RMBF based on med/Qn perform
well for k = 3. However, for k = 9 only the performance of RMBF test based on
med/Qn is good for the clean and Dixon models. The mixture model MBF test
based on med/Qn can be used for k = 3, 6.

The results of τ values for experimental design EB with equal means and homo-
geneous variances are given in Table 6. The classical ANOVA badly deteriorates
for contaminated model especially for k = 9. When RMBF based on med/MAD
performs well for mixture and contaminated models, RBF based onmed/Qn gives
desirable results for the Dixon model. The results of τ for experimental design UB
are given in Table 6. It can be seen that classical ANOVA is deteriorated especially
in the contamination case. The RMBF test based on med/MAD can be used for
mixture and contaminated models for k = 3, 6, 9. The RMBF test statistic based
on med/Qn is desirable for clean and Dixon models for k = 3, 6. The optimal test
statistic for the mixture model is RBF. RBF is based on med/Qn for k = 3, 6, 9.
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Table 5: The results of τ values for experimental designs EA and UA.
Experimental design EA

RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 4.70 13.02 10.0 4.71 12.68 87.3 4.69 13.05 8.50
2 3.55 11.34 8.61 3.81 11.42 7.71 4.47 18.86 11.36
3 3.32 10.31 7.67 3.37 8.40 5.66 3.09 7.34 4.50
4 0.10 7.06 5.24 0.19 6.30 3.90 0.10 5.45 3.23

med/Qn

1 4.33 5.43 3.87 4.61 3.90 2.36 4.96 2.79 1.42
2 3.94 5.07 3.35 3.74 3.65 2.25 3.59 2.20 1.12
3 3.11 3.71 2.66 3.08 1.58 0.90 3.15 1.03 0.61
4 0.20 1.79 1.22 0.12 0.75 0.45 0.08 0.45 0.24

Experimental design UA
RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 5.78 15.68 12.28 5.63 16.60 11.88 5.80 18.14 12.27
2 4.97 13.38 10.19 4.55 14.48 10.32 4.33 15.75 10.54
3 3.78 11.94 9.16 3.46 11.58 7.88 3.40 10.97 7.06
4 0.13 7.49 5.45 0.12 7.37 4.57 0.15 6.86 4.12

med/Qn

1 5.90 7.23 5.51 5.29 5.28 3.20 5.97 4.63 2.80
2 4.75 6.95 4.96 4.60 5.11 3.32 4.01 3.49 1.92
3 3.90 4.99 3.66 3.22 2.93 1.80 3.27 1.97 1.04
4 0.17 1.93 1.36 0.18 0.99 0.56 0.08 0.59 0.22

Table 6: The results of τ values for experimental designs EB and UB.
Experimental design EB

RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 4.93 11.58 7.54 4.98 14.73 9.35 5.15 16.54 9.90
2 4.40 11.32 6.90 4.19 14.16 8.38 4.17 15.84 9.14
3 3.87 9.14 5.44 3.14 9.31 5.16 3.02 9.26 4.51
4 0.04 9.06 4.72 1.14 10.82 5.40 22.37 12.16 5.29

med/Qn

1 4.91 6.27 3.64 5.09 6.43 3.26 4.76 6.62 3.17
2 4.43 5.79 3.01 4.43 6.32 3.28 4.06 5.99 2.79
3 3.61 3.69 1.84 3.03 2.92 1.32 3.10 2.33 0.91
4 0.05 2.16 0.58 0.84 1.88 0.45 22.12 1.69 0.34

Experimental design UB
RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 5.36 13.35 9.47 5.91 16.76 10.88 5.92 19.62 12.33
2 5.32 13.47 9.17 5.01 15.86 9.95 4.97 17.96 11.22
3 3.92 10.57 6.64 4.03 12.18 7.54 3.35 12.69 7.51
4 0.08 9.97 5.17 0.91 12.72 6.31 22.86 14.62 6.58

med/Qn

1 5.49 7.29 4.65 5.83 8.22 4.83 5.71 8.41 4.51
2 5.19 7.55 4.62 5.15 7.14 4.03 4.81 7.87 3.88
3 3.68 4.74 2.72 4.05 4.43 2.19 3.49 4.10 1.92
4 0.04 2.25 0.72 1.00 2.52 0.72 9.35 2.62 0.57

The results of τ values for experimental design EC with equal means and
homogeneous variances are given in Table 7. The classical ANOVA badly dete-
riorates especially for contaminated model. When RMBF based on med/MAD
performs well for mixture and contaminated models, RBF based onmed/Qn gives
desirable results for the mixture model. The results of τ for experimental design
UC are given in Table 7. In this table the classical ANOVA is deteriorated for
all methods. When RMBF based on med/Qn perform well for the Dixon model
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for k = 6, 9, RMBF based on based on med /MAD can be used in contaminated
models. When the number of groups is big, the type I error of the RMBF test
statistic based on the med/Qn method is not at a desirable level in the contami-
nated model, doe to a large amount of deterioration in the sample.

Table 7: The results of τ values for experimental designs EC and UC.
Experimental design EC

RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 6.60 17.28 11.10 5.62 17.76 10.99 5.33 19.97 12.24
2 5.62 16.60 10.59 4.86 17.64 10.65 4.79 19.54 11.59
3 4.84 12.84 7.63 4.06 12.04 6.58 3.88 11.56 6.37
4 30.82 9.70 6.02 60.69 9.96 5.65 67.13 10.10 5.24

med/Qn

1 6.75 9.10 4.86 5.97 8.46 4.48 5.82 8.04 4.32
2 5.41 9.10 4.83 4.34 7.98 4.04 4.44 7.10 3.60
3 4.95 6.36 3.01 4.37 4.51 2.19 4.06 3.67 1.70
4 30.71 2.82 1.36 60.69 1.83 0.70 68.21 1.54 0.46

Experimental design UC
RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 12.26 20.10 14.99 12.86 20.44 15.38 14.03 23.04 16.47
2 11.53 20.96 15.5 11.03 20.98 15.53 12.10 21.20 15.23
3 9.48 17.13 12.49 8.86 15.19 10.81 8.85 14.26 9.94
4 31.97 10.81 7.42 62.67 11.47 7.83 68.74 11.89 7.42

med/Qn

1 12.37 11.84 8.71 6.08 8.28 4.62 13.65 8.96 6.03
2 11.10 12.06 8.62 10.93 9.92 6.84 11.16 8.02 5.45
3 9.24 9.40 6.37 8.46 5.46 3.56 8.77 4.76 2.85
4 32.29 3.77 2.25 63.23 2.55 1.39 68.58 1.74 0.79

Table 8: The results of τ values for experimental designs ED and UD.
Experimental design ED

RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 6.78 17.21 10.75 5.79 20.60 13.55 5.60 24.33 16.37
2 5.74 16.86 10.31 5.34 20.12 13.24 5.05 23.78 15.97
3 5.03 13.15 7.58 4.51 14.07 8.47 4.18 15.89 9.25
4 82.61 13.29 7.58 86.17 16.72 9.17 87.84 20.04 10.69

med/Qn

1 6.45 11.08 7.04 5.69 12.92 8.01 5.79 14.37 9.52
2 6.23 11.77 6.46 4.98 12.16 7.46 5.24 13.33 8.55
3 4.79 7.71 3.98 4.47 7.12 3.92 4.14 7.28 3.94
4 82.94 4.48 2.07 85.90 4.88 1.68 87.28 5.90 2.11

Experimental design UD
RE Model k = 3 k = 6 k = 9

F RBF RMBF F RBF RMBF F RBF RMBF

med/MAD

1 12.31 17.55 13.23 13.10 20.43 14.85 14.47 22.53 16.49
2 11.44 18.26 13.81 11.93 21.21 15.76 11.86 22.17 15.62
3 9.76 14.76 10.67 9.30 14.85 10.68 9.81 16.16 11.03
4 83.30 14.63 9.04 86.10 17.28 9.80 88.04 19.88 10.95

med/Qn

1 12.47 11.36 8.06 13.61 12.11 7.96 14.16 13.27 8.62
2 12.20 11.78 8.58 11.57 11.36 8.03 12.31 12.03 7.69
3 10.40 8.92 6.17 9.17 7.43 4.53 10.09 7.39 4.47
4 83.06 4.99 2.31 86.79 5.79 1.94 87.96 6.43 1.88

The results of τ values for experimental design ED with equal means and
homogeneous variances are given in Table 8. The classical ANOVA badly deteri-
orates especially for the contaminated model. When RMBF based on med/Qn
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works well for the mixture model, RBF based on med/Qn gives desirable results
for contaminated models. Robust tests based on med/MAD do not work in the
case of big size unbalanced samples. The results of τ for experimental design UD
are given in Table 8. In this experimental design, while proposed test statistics
based on med/MAD do not work, the RBF test based on med/Qn gives desirable
results in contaminated models. The RMBF test based on med/Qn can be used
in mixture model.

6. Conclusion

ANOVA is one of the most commonly used models in many fields such as
medicine, engineering, psychology, sociology, etc. In general, the main interest of
this paper was testing the homogeneity of group means using the classical ANOVA,
which uses the F-test statistic. One-way ANOVA is based on assuming the normal-
ity of the observations and the homogeneity of group variances. If the assumptions
of normality and homogeneity of variances are invalid and there are also outliers are
present, classical ANOVA does not give accurate results. Therefore, test statistics
based on robust methods should be used instead of the classical ANOVA.

The aim of this paper was to test the equality of population means of groups
under heteroscedasticity for contaminated Weibull distribution in the one-way
ANOVA. To deal with non-normal contaminated data and heteroscedastic vari-
ances across groups, RBF and RMBF tests were developed by utilizing robust
mean and variance estimators, which are also proposed. Robust proposed estima-
tors and tests are obtained by using robust med/MAD and med/Qn estimators
instead of maximum likelihood estimators. The behaviors of the robust tests that
were developed are examined in terms of the type I-errors via a Monte-Carlo simu-
lation study. In the simulation study, various experimental designs are considered
such as balanced and unbalanced sample sizes for k = 3, 6, 9 groups with homoge-
nous and heterogeneous variances. The type I errors of the improved robust tests
and classical ANOVA under the Weibull distribution were obtained. In terms of
homogenous experimental designs: While the classical ANOVA did not deteriorate
for clean models (model 1), it badly deteriorates for contaminated models. When
RMBF based on med/MAD performs well for mixture models, RBF based on
med/MAD gives desirable results for contaminated models. While robust tests
work well for balanced samples, especially for contaminated models, robust tests
based on med/MAD do not work in the case of large-size unbalanced samples.
In terms of heterogeneous experimental designs: The performance of the RMBF
based on med/Qn is the best for mixed models. Also, RBF based on med/Qn is
an alternative to this test statistic. In unbalanced experimental designs, classical
ANOVA badly deteriorates, especially for contaminated models.
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