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Abstract

In this paper, we present some computational aspects for a Bayesian
analysis involving stable distributions. It is well known that, in general, there
is no closed form for the probability density function of a stable distribution.
However, the use of a latent or auxiliary random variable facilitates obtaining
any posterior distribution when related to stable distributions. To show
the usefulness of the computational aspects, the methodology is applied to
linear and non-linear regression models. Posterior summaries of interest are
obtained using the OpenBUGS software.
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Resumen

En este trabajo, presentamos algunos aspectos computacionales de análi-
sis bayesiano con distribuciones estables. Es bien sabido que, en general, no
hay forma cerrada para la función de densidad de probabilidad de distribu-
ciones estables. Sin embargo, el uso de una variable aleatoria latente facilita
obtener la distribución a posteriori. La metodologia se aplica a regresión
lineal y non lineal utilizando el software OpenBUGS.
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OpenBUGS.
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1. Introduction

A wide class of distributions that encompasses the Gaussian one is given by the
class of stable distributions. This large class defines location-scale families that are
closed under convolution. This distribution family (see for instance Samorodnitsky
& Taqqu 1994) is described by four parameters α, β, δ and γ. The α ∈ (0, 2]
parameter defines the “fatness of the tails”, and when α = 2 this class reduces
to Gaussian distributions. The β ∈ [−1, 1] is the skewness parameter and for
β = 0 there are symmetric distributions. The location and scale parameters are,
respectively, δ ∈ (−∞,∞) and γ ∈ (0,∞) (see Lévy 1924).

Stable distributions are usually denoted by Sα(β, δ, γ). If a random variable
X ∼ Sα(β, δ, γ), then Z = X−δ

γ ∼ Sα(β, 0, 1), whenever α 6= 1 (see Lukacs 1970,
Nolan 2015).

The difficulty associated with stable distributions Sα(β, δ, γ) is that, in general,
there is no simple closed form for their probability density functions. However, it
is known that the probability density functions of stable distributions are continu-
ous (Gnedenko & Kolmogorov 1968, Skorohod 1961) and unimodal (Ibragimov &
Chernin 1959, Kanter 1976). Also the support of all stable distributions is given
in (−∞,∞), except for α < 1 and |β| = 1 when the support is [δ,∞) for β = 1
and (−∞, δ] for β = −1 (see page 12 in Nolan 2015). The characteristic function
ϕ(·) of a stable distribution is given by

log(ϕ(t)) =

{
iδt− γα|t|α[1 + iβ sign(t) tan(πα2 )(|γ t|1−α − 1)], for α 6= 1

iδt− γ|t|[1 + iβ 2
π sign(t) log(γ|t|)], for α = 1,

(1)
where i =

√
−1 and the sign(·) function is given by

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0.

(2)

Although this is a good class for data modeling in different areas, there are
difficulties in obtaining parameter estimates with a classical inference approach
due to the lack of closed form expressions for the probability density functions.
An alternative is the use of Bayesian methods. However, the computational cost
can be further exacerbated in assessing posterior summaries of interest.

A Bayesian analysis of stable distributions is introduced by Buckle (1995) using
Markov Chain Monte Carlo (MCMC) methods (also see Achcar, Lopes, Mazucheli
& Linhares 2013). The use of Bayesian methods with MCMC simulation can
have great flexibility by considering latent variables (see, for instance, Damien,
Wakefield & Walker 1999, Tanner & Wong 1987), where samples of latent variables
are simulated in each step of the Gibbs or Metropolis-Hastings algorithms.

Considering a latent or an auxiliary variable, Buckle (1995) proved a theorem
that is useful to simulate samples from the joint posterior distribution of the

Revista Colombiana de Estadística 39 (2016) 109–128



Linear and Non-Linear Regression Models Assuming a Stable Distribution 111

parameters α, β, δ and γ. This theorem establishes that a stable distribution for
a random variable Z defined in R−{0}, is obtained as the marginal of a bivariate
distribution for the random variable Z itself and an auxiliary random variable Y .
This variable Y is defined in the interval (−0.5, aα,β), when Z ∈ (−∞, 0), and in
(aα,β , 0.5), when Z ∈ (0,∞). The quantity aα,β is given by

aα,β = −bα,β
απ

(3)

where bα,β = β π2 min{α, 2− α}.
The joint probability density function for random variables Z and Y is given

by

f(z, y|α, β) = α

|α− 1|
exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}∣∣∣∣ z

tα,β(y)

∣∣∣∣θ 1

|z|
, (4)

where θ = α
α−1 ,

tα,β(y) =

(
sin(πα y + bα,β)

cos(πy)

)(
cos(πy)

cos(π(α− 1)y + bα,β)

) 1
θ

(5)

and Z = X−δ
γ , for γ 6= 0 and α 6= 1.

From the bivariate density (4), Buckle (1995) shows that the marginal distribu-
tion for the random variable Z is Sα(β, 0, 1). Usually, the computational costs of
obtain posterior summaries of interest using MCMC methods is high for this class
of models, which could give some limitations for practical applications. Another
problem could be the simulation algorithm convergence. In this paper, we propose
the use of a software that is popular and free available to obtain the subsequently
summaries of interest: the OpenBUGS software.

The paper is organized as follows: in Section 2, we present a Bayesian analysis
for stable distributions; in Section 3 we introduce the use of stable distributions
for linear regression models while non-linear regression models are considered in
Section 4; in Section 5, we introduce some numerical illustrations; finally, in Section
6, we present some concluding remarks.

2. A Bayesian Analysis for General Stable
Distributions

Let us assume that xi, for i = 1, . . . , n, is a random sample of size n, whereXi ∼
Sα(β, δ, γ), that is, Zi = Xi−δ

γ ∼ Sα(β, 0, 1). Assuming a prior joint distribution
for α, β, δ and γ, given by π0(α, β, δ, γ), Buckle (1995) shows that the posterior
joint distribution for the parameters α, β, δ and γ is given by

π(α, β, δ, γ|x) ∝
∫ (

α

|α− 1| γ

)n
× exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ
}

n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|

× π0(α, β, δ, γ)dy, (6)
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where θ = α
α−1 , zi =

xi−δ
γ , for i = 1, · · · , n, α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞)

and γ ∈ (0,∞); x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , yn)′ are respectively, the
observed and non-observed data vectors. Notice that the multivariate distribution
in expression (6) is given in terms of xi and the latent variables yi, and not in
terms of zi and yi (there is the Jacobian γ−1, multiplied by the right-hand-side of
expression (4)).

It can be observed that when α = 2, θ = 2 and bα,β = 0. In this case, we have
a Gaussian distribution with mean δ and variance 2γ2.

For a Bayesian analysis of the proposed model, we assume uniform U(a, b),
independent priors for α, β, δ and γ, in which the hyperparameters a and b are
assumed to be known in each application following the restrictions α ∈ (0, 2],
β ∈ [−1, 1], δ ∈ (−∞,∞) and γ ∈ (0,∞).

In the simulation algorithm created to obtain a Gibbs sample for the random
quantities α, β, δ and γ which have the joint posterior distribution (6), we assume
an uniform U(−0.5, 0.5) prior distribution for the latent random quantities Yi, for
i = 1, . . . , n. With this choice of prior, one has the possibility to use standard
software package like OpenBUGS (see Spiegelhalter, Thomas, Best & Lunn 2003)
that is very simple to obtain the simulated Gibbs samples for the joint posterior
distribution. As such, we can obtain the following algorithm:

(i) Start with the initial values α(0), β(0), δ(0), γ(0);

(ii) Simulate a sample y = (y1, . . . , yn)
′ from the conditional distributions

π(yi|α(0), β(0), δ(0), γ(0),x), for i = 1, . . . , n; that is, we simulate these latent
random variables y similarly to how we simulate the parameters;

(iii) Update α(0), β(0), δ(0), γ(0) by α(1), β(1), δ(1), γ(1) from the conditional distri-
butions π(α|β(0), δ(0), γ(0),x,y), π(β | α(0), δ(0), γ(0),x,y), π(δ|α(0), β(0), γ(0),x,y)
and π(γ|α(0), β(0), δ(0),x,y);

(iv) Repeat steps (i), (ii) and (iii) until convergence.

From expression (6), the posterior joint probability distribution for α, β, δ, γ
and y = (y1, y2, . . . , yn)

′ is given by

π(α, β, δ, γ,y|x) ∝
(

α

|α− 1| γ

)n
exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣
}

×
n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|
×

n∏
i=1

h(yi)π0(α, β, δ, γ), (7)

where θ and tα,β(·) are respectively defined in (4) and (5) and h(y) is a U(−0.5, 0.5)
density function.

Since we are using the OpenBUGS software to simulate samples from the joint
posterior distribution we are not presenting all the full conditional distributions
needed for the Gibbs sampling algorithm. This software only requires the data dis-
tribution and prior distributions for the interested random quantities. This gives

Revista Colombiana de Estadística 39 (2016) 109–128



Linear and Non-Linear Regression Models Assuming a Stable Distribution 113

great computational simplification to determine posterior summaries of interest as
shown in the applications in Section 5.

3. Linear Regression Models Assuming Stable
Distributions

Consider a random variable X related to a controlled variable V given by the
linear relationship

xi = d0 + d1vi + εi, for i = 1, 2, . . . , n, (8)

where

• the random variable Xi represents the response for the i-th unit associated
with an experimental value of the independent or explanatory variable v,
which is assumed to have a fixed value (a common regression model assump-
tion). In this way, xi it is an observation of Xi;

• the variables ε1, ε2, . . . , εn are considered as components of unknown errors
and are unobserved random variables. Assume that these random variables
εi, for i = 1, 2, . . . , n, are independent and identically distributed with nor-
mal distribution N (0, σ2

ε);

• the parameters d0 and d1 are unknown.

From the above assumptions, we have normality for the responses, that is,

Xi ∼ N (d0 + d1vi;σ
2
ε). (9)

In this way Xi has a normal distribution with mean d0 + d1vi and common
variance σ2

ε . Usually we get estimators for the regression parameters using the
least squares approach or standard maximum likelihood methods (see, for instance,
Draper & Smith 1981 or Seber & Lee, 2003).

Standard generalization for the linear model (8) is given in the presence of k
independent or explanatory variables, that is, a multiple linear regression model
given by

xi = d0 + d1vi1 + d2vi2 + · · ·+ dkvik + εi. (10)

From the normality assumption for the error εi in (10), the random variable Xi

has a normal distribution with mean d0 + d1vi1 + d2vi2 + · · ·+ dkvik and variance
σ2
ε .
In practical applications, we need to check if the above assumptions are sat-

isfied. As such, we consider graphical approaches to verify if the model residuals
satisfy the above assumptions.

In the presence of outliers or discordant observations, we could have a large
impact on the estimators obtained for the regression model given by (10), which
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could invalidate the inferences obtained. In this situation, we could use non-
parametric regression models or assume more robust probability distributions for
the data. One possibility is to assume that the random variable X in (10) or (8)
has a stable distribution Sα(β, δ, γ).

If this is the case, we assume that the response is xi in the linear regression
model (10), for i = 1, . . . , n, has a stable distribution Xi ∼ Sα(β, δi, γ), that is,
Zi =

X−δi
γ ∼ Sα(β, 0, 1), where the location parameter δi of the stable distribution

is related to the explanatory variables by a linear relation given by,

δi = d0 + d1vi1 + d2vi2 + · · ·+ dkvik. (11)

Assuming a joint prior distribution for α, β,d and γ, where d = (d0, d1, d2, . . . , dk)
′

given by π0(α, β,d, γ), Buckle (1995) or Achcar, Achcar & Martinez (2013) show
that the posterior joint distribution for parameters α, β, d and γ, is given by,

π(α, β,d, γ|x) ∝
∫ (

α

|α− 1|γ

)n
× exp

{
n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ
}

n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|
π0(α, β,d, γ)dy,

(12)

where θ = α
α−1 , zi =

xi−yi
γ , for i = 1, . . . , n, α ∈ (0, 2], β ∈ [−1, 1] and γ ∈ (0,∞);

x = (x1, x2, . . . , xn)
′ and y = (y1, y2, . . . , yn)

′ are respectively the observed and
non-observed data vectors.

4. Non-Linear Growth Regression Models Assum-
ing Stable Distributions

Growth curves are included in a class of nonlinear models widely used in biology
to model different problems such as the population size or biomass (in population
ecology and demography, for population growth analysis) or the individual body
height or biomass (in physiology, for growth analysis of individuals). A growth
curve is an empirical model of the evolution of a quantity over time. Growth curves
are employed in many disciplines besides biology, particularly in statistics, subject
in which there is a large amount of literature on this subject related to nonlinear
models. Under a more probabilistic and mathematical statistics approach, growth
curves are often modeled as being a continuous stochastic process.

Standard classical inference methods to obtain point or interval estimates for
the parameters of growth curves are presented within the nonlinear modeling
methodology.

Nonlinear regression methodology is similar to linear regression methodol-
ogy; it is, a modeling approach to relate a response X to a vector of covariates,
v = (v1, . . . , vk)

′, where v′ denotes the transpose of the vector v. Different from
linear models, nonlinear regression is characterized by the fact that the prediction
equation depends nonlinearly on one or more unknown parameters. Different from
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the linear regression methodology , and often used for building a purely empirical
model, nonlinear regression methodology is usually employed when there is some
physical reason which implies that the relationship between the response and the
predictors follows a particular functional form.

A nonlinear regression model has the general form,

Xi = f(vi,θ) + εi, (13)

where Xi are the responses, for i = 1, . . . , n; f is a known function of the covariate
vector; vi = (vi1, . . . , vik)

′ is a vector of k covariates or independent variables;
θ = (θ1, . . . , θp)

′ is the vector of p parameters and εi are random errors. The
errors εi are usually assumed to be uncorrelated and normally distributed with
mean zero and constant variance.

The most popular criterion to estimate the p parameter vector θ in the nonlin-
ear model (13) is to find estimates for the parameters (via nonlinear least squares)
which minimize the sum of squared errors, given by,

n∑
i=1

(xi − f(vi,θ))
2. (14)

Note 1. If the errors εi, for i ∈ {1, 2, · · · , n}, follow a normal distribution, then
the least squares estimator for θ is also the maximum likelihood estimator.

Usually, nonlinear regression estimates must be computed by iterative proce-
dures using optimization methods to minimize the sum of squared errors given by
the expression (14). It is important to point out that the definition of nonlinearity
is related to the unknown parameters and not to the relationship between the co-
variates and the response. As an example, X = β0 + β1v + β2v

2 + ε is considered
as a linear model (see, for instance, Bates & Watts 1988, Ratkowsky 1983, Seber
& Wild 1989).

A popular iterative technique to find the least squares estimator of nonlinear
models is the Gauss-Newton algorithm. The Gauss-Newton algorithm increments
the working estimate θ̂ at each iteration by an amount equal to the coefficients
from the linear regression of the current residuals ui, defined as ui = xi− f(vi, θ̂),
on the current gradient matrix X.

If the function f(·) in (13) is continuously differentiable in θ, then it can be
linearized locally as

f(v,θ) = f(v,θ0) +V0(θ − θ0), (15)

where V0 is the n × p gradient matrix with elements ∂f(vi,θ0)/∂θj and θ0 is a
vector of initial values for the iterative procedure. This leads to the Gauss-Newton
algorithm for estimating θ,

θ1 = θ0 + (V0
′V0)

−1V0
′e, (16)

where e is the vector of working residuals ei = xi − f(vi,θ0), for i = 1, 2, . . . , n.
If the errors εi are independent and normally distributed N (0, σ2

ε), then the
Gauss-Newton algorithm is an application of Fisher’s method of scoring. This
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algorithm is implemented in many existing statistical softwares such as, R, Minitab
(version 16) or SAS.

If X is of full column rank in a neighborhood of the least squares solution, then
it can be shown that the Gauss-Newton algorithm converges to the solution from
a sufficiently good starting value. Though, with practical applications, there is no
guarantee, that the algorithm will converge from values further from the solution.
Some improvement of the Gauss-Newton algorithm are given in the literature,
such as the Levenberg-Marquart damping algorithm (see, for instance, Seber &
Wild 1989).

Standard inferences for the parameters of nonlinear models are obtained from
the asymptotical normality of the least squares estimators θ̂ with mean θ and
variance-covariance matrix σ2

ε(V
′V)−1, where the variance σ2

ε is usually estimated
by,

s2 =
1

n− p

n∑
i=1

[xi − f(vi, θ̂)]
2. (17)

It is important to point out that since most asymptotic inference for nonlinear
regression models is based on the linear models analogy, and since this inference
is only approximated as the actual model differs from a linear model; various
measures of nonlinearity have been proposed in the literature to verify how good
linear approximations are likely to be in each case. One class of measurement
focuses on curvature (intrinsic curvatures) of the function f(·) and it is based on
the size of the second derivatives of f (see, for instance, Bates and Watts, 1980).
Another class of measurement is the intrinsic curvature defined by the residuals
ui = xi − f(vi, θ̂) or parameters effect curvatures (see, for instance, Bates &
Watts 1988).

In many applications, the systematic part of the response is known to be mono-
tonic increasing in v, where v might represent time or dosage. Nonlinear regression
models with this property are called growth models. The simplest growth model
is the exponential growth model defined as

f(v,θ) = θ1 exp(−θ2v), (18)

where θ = (θ1, θ2)
′.

There are several growth models introduced in the literature. In this paper we
consider the following special cases

1. f(v,θ) = θ1 + θ2v
θ3 , where θ = (θ1, θ2, θ3)

′.

2. f(v,θ) = θ1+θ2 exp(θ3v) (exponential growth model), where θ = (θ1, θ2, θ3)
′.

3. f(v,θ) = θ1 exp(−θ2v) + θ3 exp(−θ4v), where θ = (θ1, θ2, θ3, θ4)
′.

4. f(v,θ) = θ1v/(θ2 + v) (Michaelis-Menten), where θ = (θ1, θ2)
′.

5. f(v,θ) = θ1 exp(− exp(θ2 − θ3v)) (Gompertz ), where θ = (θ1, θ2, θ3)
′.

6. f(v,θ) = θ1+(θ2−θ1)/[1+exp((v−θ3)/θ4)] (logistic), where θ = (θ1, θ2, θ3, θ4)
′.
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7. f(v,θ) = θ1 + (θ2 − θ1) exp(θ3 vθ4) (Weibull), where θ = (θ1, θ2, θ3, θ4)
′.

8. f(v,θ) = 1− exp[− exp(θ1 − θ2v)] (sigmoid), where θ = (θ1, θ2)
′.

All these different models could be considered to be model growth curves. Very
often we have physical interpretations for the use of a particular model. In others
we try different growth models to decide which one best fits the data.

In many situations the usual normality assumption for the errors in (13) will
not be appropriate. For instance, this can be the case when we have discordant
observations which could have an impact on the obtained inferences. In this way,
we could assume more robust distributions for the data, like the stable distribution.

We point out that the use of asymptotical inference results may not be accurate
depending on the sample sizes and on the intrinsic curvature of the function f(·)
in (13). In those cases, we propose the use of stable distributions for the response
Xi in (13).

Let us assume that the response xi, for i = 1, . . . , n, in the nonlinear regression
model (13) has a stable distribution Xi ∼ Sα(β, δi, γ), that is, Zi = X−δi

γ ∼
Sα(β, 0, 1), where the location parameter δi of the stable distribution is related to
the explanatory variables by a nonlinear relation given by,

δi = f(vi,d). (19)

Assuming a joint prior distribution for α, β, d and γ, where d = (d0, d1, d2, . . . , dk)
′

given by π0(α, β,d, γ), Buckle (1995) shows that the joint posterior distribution
for parameters α, β, d and γ, is given by the general form (12).

5. Applications

5.1. An Example of a Simple Linear Regression Model

In Table 1, we have a data set related to an industrial experiment, where x
denotes the response and v denotes an explanatory variable associated with each
response considering n = 15 observations (see Johnson & Bhattacharyya 1980).

Table 1: An industrial experiment data set.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x 1.2 1.5 1.5 3.3 2.5 2.1 2.5 3.2 2.8 1.5 2.2 2.2 1.9 1.8 2.8
v 19 15 35 52 35 33 30 57 49 26 45 39 25 40 40

From a preliminary data analysis, we see that a linear regression model (8)
is suitable for this data set. The estimated regression straight line obtained by
minimum squares estimates and by using the software MINITAB (version 16) is
given by x̂i = 0.603 + 0.0444 vi, where the regression parameter d1 is statistically
different from zero (p-value < 0.05). From standard residuals graphs we can verify
that the required assumptions (residuals normality and homoscedastic variance
are satisfied).

Revista Colombiana de Estadística 39 (2016) 109–128



118 Jorge A. Achcar & Sílvia R. C. Lopes

Under a Bayesian approach, Table 2 shows the posterior summaries of interest
assuming the linear regression model defined by (8) with a stable distribution for
the response. Using the OpenBugs software we assume the following prior distri-
butions: α ∼ U(0, 2), β ∼ U(−1, 0), d0 ∼ N (0, 1), d1 ∼ N (0, 1) and γ ∼ U(0, 3).
It can be observed that we are assuming approximately non-informative priors for
the parameters of the model. This procedure will be used in the other Bayesian
analysis. We further assume independence among the random quantities. We
also assume a uniform U(−0.5, 0.5) distribution for the latent variable Yi, for
i = 1, 2, . . . , 15. We simulated 800,000 Gibbs samples, with a “burn-in-sample” of
300,000 samples that were discarded to eliminate the effects of the initial values
in the iterative simulation procedure. We took a final sample of size 1,000 (ev-
ery 500th sample chosen from the 500,000 samples). Gibbs sampling algorithm
convergence was monitored from standard trace plots of the simulated samples.

In Table 2, we also have the sum of absolute values (SAV) for the differences
between the observed and fitted mean values, given by,

SAV =

n∑
i=1

absolute[observed(i)− fitted mean(i)]. (20)

In Table 2, we also show the posterior summaries of the regression model (8)
assuming a normal N (0, σ2

ε) distribution for the error and the following priors for
the parameters of the model: d0 ∼ N (0, 1), d1 ∼ N (0, 1) and ζ = 1/σ2

ε ∼ U(0, 3).
In this case, we simulated 55,000 Gibbs samples taking a “burn-in-sample” of
5,000 using the OpenBUGS software. We take a final sample of size 1,000 (every
50th sample chosen from the 50,000 samples). From results show in Table 2,
we can observe similar results, assuming both normality or stable distribution
for the data. In this case, we conclude that we do not need to assume a stable
distribution for the data, since the results are very similar to the results obtained
from the normality assumption for the errors. Besides, the computational cost of
using stable distributions is very high (see Achcar, Achcar & Martinez 2013).

Table 2: Posterior summaries (linear regression).

Stable distribution (SAV= 4.496)
Parameter Mean Standard Deviation 95% Credible Interval

α 1.7160 0.2123 (1.2380, 1.9890)

β −0.6183 0.2391 (−0.9881,−0.0719)

d0 0.5431 0.3559 (−0.1981, 1.2270)

d1 0.0460 0.0093 (0.0283, 0.0652)

γ 0.2931 0.0638 (0.1960, 0.446)
Normal distribution (SAV= 4.504)

Parameter Mean Standard Deviation 95% Credible Interval
d0 0.4802 0.4927 (−0.56587, 1.4230)

d1 0.0475 0.0131 (0.0213, 0.0737)

ζ 0.4949 0.1709 (0.2119, 0.8834)

Figure 1(a) shows the plots of observed and fitted means considering both
models versus samples. The graphs in Figure 1(a), manifest similar fit for both
models (linear regression model assuming both normality and stable distributions).
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It can be observed that we have SAV = 4.496 when we assume a stable distribution,
and SAV = 4.504 when we assume a normal distribution. Hence, we have very
close results.

Let us now consider the presence of an outlier or discordant response (consid-
ered as a measurement error) by replacing the 15th response (equal to 2.8) in Table
1 by the value 8.0. Table 3, presents the posterior summaries that were obtained
assuming the same priors and the same simulation procedure as in Table 2. Figure
1(b), show the plots of observed and fitted means considering both models versus
samples in the presence of one outlier. This figure, demonstrates that the model
with a stable distribution is very robust in terms of the presence of the outlier,
given similar inference results that were obtained without its presence (see results
in Table 2). Table 3 also reports the estimated regression parameters with normal
error and we can observe how strongly the results are affected by the presence of
this outlier. It can be seen that we have SAV = 4.623 assuming a stable distribu-
tion (a value very close to the SAV values given in Table 2, without the presence
of an outlier) and SAV = 6.394 assuming a normal distribution.
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Figure 1: Observed and fitted means values, considering both models: (a) samples; (b)
presence of one outlier.

Table 3: Posterior summaries (presence of one outlier).

Stable distribution (SAV = 4.623)
Parameter Mean Standard Deviation 95% Credible Interval

α 1.3730 0.2195 (1.0580, 1.8430)

β −0.5726 0.2703 (−0.9821,−0.0426)

d0 0.4797 0.3461 (−0.3483, 1.0400)

d1 0.0465 0.0096 (0.0292, 0.0701)

γ 0.3221 0.0802 (0.2004, 0.4856)
Normal distribution (SAV = 6.394)

Parameter Mean Standard Deviation 95% Credible Interval
d0 0.2408 0.7866 (−1.3100, 1.8200)

d1 0.0632 0.0225 (0.0201, 0.1061)

ζ 0.4949 0.1709 (0.2119, 0.8834)
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5.2. An Example With a Growth Non-Linear Model

In Table 4, shows a data set, reported by Bache, Serum, Youngs & Lisk (1972),
which is related to the concentration of polychlorinated biphenyl (PCB) residues
in a series of lake trout from Cayuga Lake, NY, USA. The ages of the fishes were
accurately known, since they were annually stocked as yearlings and distinctly
marked as to the year class. Every fish was mechanically chopped, ground, thor-
oughly mixed, and 5-gram samples were taken. The samples were treated and PCB
residues in parts per million (ppm) were estimated using column chromatography.

Table 4: Lake trout data set.
Row 1 2 3 4 5 6 7 8 9 10
Age 1 1 1 1 2 2 2 3 3 3
PCB 0.6 1.6 0.5 1.2 2.0 1.3 2.5 2.2 2.4 1.2
log(PCB) −0.5118 0.4700 −0.6932 0.1823 0.6932 0.2624 0.9163 0.7885 0.8755 0.1823
Row 11 12 13 14 15 16 16 18 19 20
Age 4 4 4 5 6 6 6 7 7 7
PCB 3.5 4.1 5.1 5.7 3.4 9.7 8.6 4.0 5.5 10.7
log(PCB) 1.2528 1.4110 1.6229 1.7405 1.2238 2.2721 2.1518 1.3863 1.7048 2.3514
Row 21 22 23 24 25 26 27 28
Age 8 8 8 9 11 12 12 12
PCB 17.5 13.4 4.5 30.4 12.4 13.4 26.2 7.4
log(PCB) 2.8622 2.5953 1.5041 3.4144 2.5177 2.5953 3.2658 2.0015

From a preliminary data analysis, we can see that a nonlinear regression model
(13) is suitable for the data set both in the original and transformed scales (see
Figure 2).

We assume standard classical approach for nonlinear models considering the
eigth growth models introduced in Section 4. The responses are in the logarithmic
scale log(PCB), and we use the software MINITAB (version 16). Table 5 presents
the estimation results for each assumed growth model, and we observe that for
some growth models we need a large number of iterations for the Gauss-Newton
algorithm convergence.

●

●

●
●

●
●

● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

0
5

10
15

20
25

30

Age

P
C

B

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10 12

0
1

2
3

Age

lo
g(

P
C

B
)

Figure 2: Observed values against age for PCB and log(PCB).

Figure 3, shows the observed log(PCB) plots and fitted models versus the
observations. From these plots, we can see that the most of the assumed models
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give a reasonable fit for the data (models 1, 2, 4, 5, 6 and 7 given in Table 5). Only
models 3 and 8 are not suitable for the data. It is important to note that the sum
of absolute values for the differences (observed - estimated mean) for models 1, 2,
4, 5, 6 and 7 are given, respectively, by 11.4412, 11.1411, 12.0196, 11.0047, 11.0209
and 11.0310. That is, those values are very similar to each other, and indicate a
similar fit. Considering models 3 and 8, the values for these differences are given,
respectively by, 15.5568 and 23.4592 (also see Figure 3).

Table 5: Classical estimates for the growth models.

Fitted model Iteration Estimate
(Standard Error)

θ1 θ2 θ3 θ4
(1) log(PCB) = θ1 + θ2Ageθ3 11 -4.8664 4.7033 0.1968 -

(8.4290) (8.2768) (0.2739)

(2) log(PCB) = θ1 + θ2 exp[θ3Age] 17 3.1293 -3.9292 -0.1903 -
(0.5785) (0.4513) (0.0744)

(3) log(PCB) = θ1 exp[−θ2Age]+ 200 12.9631 0.0304 -12.7809 0.0495
θ3 exp[−θ4Age] (10164.1) (7.1) (10163.5) (8.1)

(4) log(PCB) = θ1Age/[θ2 +Age] 12 8.6431 23.9661 - -
(5.3952) (20.0487)

(5) log(PCB) = θ1× 14 2.7062 1.5332 0.4354 -
exp[− exp(θ2 − θ3Age)] (0.3003) (0.4300) (0.1358)

(6) log(PCB) = θ1+ 13 2.9168 -5.1460 -0.8508 3.5608
(θ2 − θ1)/[1 + exp((Age− θ3)/θ4)] (0.7308) (22.1369) (16.8113) (4.2535)

(7) log(PCB) = θ1+ 18 2.92618 -0.5612 0.1445 1.1874
(θ2 − θ1) exp[θ3Ageθ4 ] (0.8067) (0.8808) (0.1734) (0.7762)

(8) log(PCB) = 1− 21 -3.4462 -1.2850 - -
exp[− exp(θ1 − θ2Age)] (5.8041) (2.2605)
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Figure 3: Observed log(PCB) values against estimated means considering the eight
fitted models.
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We can observe that the obtained classical estimates shown in Table 5, could
be very unstable depending on the initial values used in the iterative algorithm.
It is usually difficult to obtain good initial empirical values to be used in the
iterative procedure. We also point out that the estimates standard errors (given
in parenthesis in the right panel of Table 5) could be very large as is observed in
this table.

Using a Bayesian approach, Table 6, shows the posterior summaries of interest
considering the eight growth models 1-8 introduced in Section 4 with a normal dis-
tribution for the error (see expression (13)) and the OpenBUGS software assuming
the following prior distributions: θj ∼ U(0, 1), j = 1, 2, 3, 4 and ζ = 1/σ2 ∼ G(1, 1),
where G(a, b) denotes a gamma distribution with mean a/b and variance a/b2. We
simulated 10,000 Gibbs samples, with a “burn-in-sample” of 1,000 samples that
were discarded to eliminate the effects of the initial values in the iterative simula-
tion procedure and we took a final sample of 900 (every 10th sample choosen from
the 9,000 samples). Gibbs sampling algorithm convergence was monitored from
the standard trace plots of the simulated samples.

Table 6: Bayesian estimates for the growth models assuming a normal error.

Fitted model DIC Posterior Mean
(Standard Deviation)

θ1 θ2 θ3 θ4
(1) log(PCB) = θ1 + θ2Ageθ3 45.0 -0.7804 0.9227 0.5946 -

(0.4839) (0.3843) (0.1458)

(2) log(PCB) = θ1 + θ2 exp[θ3Age] 61.71 -0.5457 1.0960 0.1065 -
(0.5339) (0.4373) (0.0279)

(3) log(PCB) = θ1 exp[−θ2Age]+ 52.56 -1.701 0.4978 1.0940 -0.0852
θ3 exp[−θ4Age] (0.6316) (0.2242) (0.2721) (0.0241)

(4) log(PCB) = θ1Age/[θ2 +Age] 67.6 2.3140 2.0540 - -
(0.3152) (0.6620)

(5) log(PCB) = θ1× 49.47 2.5060 1.5406 0.5010 -
exp[− exp(θ2 − θ3Age)] (0.2677) (0.4094) (0.1404)

(6) log(PCB) = θ1+ 51.17 2.3190 -1.4580 1.8730 1.7460
(θ2 − θ1)/[1 + exp((Age− θ3)/θ4)] (0.2294) (0.6554) (0.6762) (0.4869)

(7) log(PCB) = θ1+ -6.609 -1.318 -0.4967 -0.7765 0.3727
(θ2 − θ1) exp[θ3Ageθ4 ] (0.6242) (0.4649) (0.3716) (0.1372)

(8) log(PCB) = 1− 87.31 -0.3885 -0.7789 - -
exp[− exp(θ1 − θ2Age)] (1.0480) (0.5216)

From the results shown in Table 6, we observe that the posterior standard
deviation for each estimated parameter of the growth model is very small. It is
important to point out that these posterior summaries obtained using MCMC
methods are very accurate and do not depend on approximations as they do when
using the classical approach. Figure 4 shows observe that we have a good fit for
some of the data models.
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Figure 4: Log(PCB) values that were observed against posterior means considering
eight fitted models.

To decide on the best statistical model we could also use the selection Bayesian
Deviance Information Criterion (DIC) introduced by Spiegelhalter, Best, Carlin
& van der Linde (2002). This criterion is especially useful in problems in which
samples of the posterior distribution for the parameters of the model have been
simulated using Markov Chain Monte Carlo (MCMC) methods.

Define the deviation as

D(θ) = −2 logL(θ) + C, (21)

where θ is the vector of unknown parameters in the model, L(θ) is the likeli-
hood function and C is a constant that does not need to be known in the models
comparison. The DIC criterion is given by

DIC = D(θ̂) + 2nD, (22)

where D(θ̂) is the deviation evaluated at the posterior mean θ̂ = E(θ|data) and
nD is the effective number of parameters of the model, given by nD = D −D(θ̂),
with D = E(D(θ)|data) being the posterior deviation that measures the quality
of the data fit for the model. Smaller values of DIC indicate better models. It
should be noted that these values can be negative.

Overall, model 5 (Gompertz) gives the smallest value for the sum of absolute
values for the differences (observed - estimated mean) and smaller DIC (49.47)
value. We could consider this model to be the best fitted model.

We now assume a stable distribution of the responses considering the Gom-
pertz growth curve model (model 5) introduced in Section 4. Using a Bayesian
approach, Table 7 shows the posterior summaries of interest assuming the non-
linear regression model 5. It considers the regression model (13) for the location
parameter of the stable distribution given by,

δi = d1 exp[− exp(d2 − d3Agei)]. (23)

In the Bayesian analysis for this model, we use the OpenBugs software assuming
the following prior distributions: α ∼ U(0, 2), β ∼ U(−1, 0), dj ∼ N (0, 1), j =
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1, 2, 3 and γ ∼ U(0, 3). We also assume a uniform U(−0.5, 0.5) distribution for
the latent variable Yi, for i = 1, 2, · · · , 15. We simulated 4,000,000 Gibbs samples,
with a “burn-in-sample” of 1,000,000 samples that were discarded to eliminate the
effects of the initial values in the iterative simulation procedure. We took a final
sample of 3,000 (every 1000th sample chosen from the 3,000,000 samples). Gibbs
sampling algorithm convergence was monitored from standard trace plots from the
simulated samples.

Table 7: Bayesian estimates for the Gompertz growth model assuming a stable distri-
bution for the responses.

Parameter Mean Standard Deviation 95% Credible Interval
α 0.8859 0.0759 (0.7069, 0.9738)
β -0.7813 0.0918 (-0.9552, -0.5773)
d1 2.6740 0.4199 (2.1720, 3.3060)
d2 1.7300 0.5028 (0.8745, 2.6220)
d3 0.4568 0.1405 (0.2735, 0.7191)
γ 0.4554 0.0805 (0.2670, 0.5993)

Figure 5, shows the plot of the posterior means assuming a Gompertz growth
model (model 5) with a normal error against the observations, together with the
plot of the location posterior against observations assuming a stable distribution.
We observe similar results. We also observe that the sum of absolute values for
the differences (observed - estimated mean) for model 5 with a stable distribution
is given by 12.1437, that is, similar to the obtained value assuming normal errors
(11.0915).
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Figure 5: Log(PCB) values that were against posterior means considering the Gompertz
growth model, with Normal error and assuming a stable distribution.

Let us now consider the presence of one outlier or discordant response (consid-
ered as a measurement error) replacing the 5th PCB response (2.0) value in Table
4 by the value 200.0. This high value is necessary as otherwise the effect can not
be observed. Table 8, shows the obtained posterior summaries assuming the same
priors and same simulation procedure as in Table 7. Figure 6, shows the plots
of observed and fitted means considering both models versus samples. From the
graphs in Figure 6, we can see that the model with a stable distribution is very
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Table 8: Bayesian estimates for the Gompertz growth model assuming a stable distri-
bution for the responses (presence of one outlier).

Stable distribution (SAV = 11.8064)
Parameter Mean Standard Deviation 95% Credible Interval

α 0.8682 0.0806 (0.6694, 0.9674)
β -0.6747 0.2485 (-0.9476, -0.0344)
d1 2.4580 0.2719 (2.0980; 3.1040)
d2 1.8230 0.4832 (0.9447; 2.6920)
d3 0.5305 0.1201 (0.3114; 0.7528)
γ 0.4202 0.1141 (0.1708, 0.6201)

Normal distribution (SAV = 16.1205)
Parameter Mean Standard Deviation 95% Credible Interval

θ1 2.0730 0.3714 (1.4060, 2.8870)
θ2 0.7145 0.6787 (-0.7258, 2.0210)
θ3 0.6920 0.3985 (0.1847, 1.6290)
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Figure 6: Log(PCB) values that were against posterior means considering the Gompertz
growth model with Normal error, assuming a stable distribution (presence of
one outlier).

robust in term of the presence of the outlier, given similar inference results that
are obtained without this outlier (see results in Table 7). Table 8 also shows that
the estimated regression parameters with normal error are strongly affected by the
presence of this outlier. It can be seen that we have sum of absolute values for the
differences (observed - estimated mean) equals to 11.8064 and assuming a stable
distribution (a value very close to the respective one without the presence of an
outlier), while the sum of absolute values for the differences (observed - estimated
mean) is equal to 16.1205 assuming a normal distribution.

6. Some Concluding Remarks

The use of stable distributions could be a good alternative, especially using
Bayesian methods with MCMC simulation technique. This class of distributions
is very robust in the presence of discordant observations. The presence of outliers
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or discordant observations, is often, due to measurement errors very common in
practical applications of linear or nonlinear regression analysis. In the presence
of these discordant observations, the usual obtained classical inferences on the re-
gression parameters or in the predictions under the usually assumption of errors
normality and homoscedastic variance could be greatly affected, which could imply
in wrong inference results. In this way, the use of stable distributions could be a
good alternative, since this distribution has a great flexibility to fit for the data.
With the use of Bayesian methods and MCMC simulation algorithms it is possible
to obtain inferences for the model despite the nonexistence of an analytical form
for the density function, as was shown in this work. It is important to point out
that the computational effort in the sample simulations for the joint posterior dis-
tribution of interest can be largely simplified using standard free available software
like the OpenBUGS software.

In the illustrative examples that have been shown, we observed that the use of
data augmentation techniques (see, for instance, Damien et al. 1999) is the key to
obtaining a good performance for the MCMC simulation method for applications
using stable distributions.

We emphasize that the use of OpenBUGS software does not require large com-
putational time to obtain posterior summaries of interest, even when the simulation
of a large number of Gibbs samples is needed to achieve algorithm convergence.
These results could be of great interest for researchers and practitioners when
dealing with non Gaussian data, as in the applications presented here.
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Boston.

Ratkowsky, D. (1983), Nonlinear regression modelling: a unified practical ap-
proach, Marcel Dekker, Boston.

Samorodnitsky, G. & Taqqu, M. (1994), Stable Non-Gaussian Random Processes,
Chapman & Hall, New York.

Seber, G. & Lee, A. (2003), Linear regression analysis, Wiley, New York.

Seber, G. & Wild, C. (1989), Nonlinear regression, Wiley, New York.

Skorohod, A. (1961), On a theorem concerning stable distributions, in ‘Selected
Translations in Mathematical Statistics and Probability’, Vol. 1, Institute
of Mathematical Statistics and American Mathematical Society, Providence,
Rhode Island.

Spiegelhalter, D., Best, N., Carlin, B. & van der Linde, A. (2002), ‘Bayesian
measures of model complexity and fit’, Journal of the Royal Statistical Society.
Series B 64(4), 583–639.

Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. (2003), WinBUGS User’s
Manual, MRC Biostatistics Unit, Cambridge.

Revista Colombiana de Estadística 39 (2016) 109–128



128 Jorge A. Achcar & Sílvia R. C. Lopes

Tanner, M. & Wong, W. (1987), ‘The calculation of posterior distributions by data
augmentation’, Journal of American Statistical Association 82, 528–550.

Revista Colombiana de Estadística 39 (2016) 109–128


	Introduction
	A Bayesian Analysis for General Stable Distributions
	Linear Regression Models Assuming Stable Distributions
	Non-Linear Growth Regression Models Assuming Stable Distributions
	Applications
	An Example of a Simple Linear Regression Model
	An Example With a Growth Non-Linear Model

	Some Concluding Remarks

